aboutsummaryrefslogtreecommitdiff
path: root/runtime/src/kmp_dispatch_hier.h
diff options
context:
space:
mode:
authorJonathan Peyton <jonathan.l.peyton@intel.com>2018-07-09 17:51:13 +0000
committerJonathan Peyton <jonathan.l.peyton@intel.com>2018-07-09 17:51:13 +0000
commit0afe745b655d87338689a9655aa466ad1acade4f (patch)
treede8a334e4ba12fa6d630a355a0eccb5499d2c982 /runtime/src/kmp_dispatch_hier.h
parentebe25f327bae857aeffdfb72aebc91db9ab3b218 (diff)
[OpenMP] Introduce hierarchical scheduling
This patch introduces the logic implementing hierarchical scheduling. First and foremost, hierarchical scheduling is off by default To enable, use -DLIBOMP_USE_HIER_SCHED=On during CMake's configure stage. This work is based off if the IWOMP paper: "Workstealing and Nested Parallelism in SMP Systems" Hierarchical scheduling is the layering of OpenMP schedules for different layers of the memory hierarchy. One can have multiple layers between the threads and the global iterations space. The threads will go up the hierarchy to grab iterations, using possibly a different schedule & chunk for each layer. [ Global iteration space (0-999) ] (use static) [ L1 | L1 | L1 | L1 ] (use dynamic,1) [ T0 T1 | T2 T3 | T4 T5 | T6 T7 ] In the example shown above, there are 8 threads and 4 L1 caches begin targeted. If the topology indicates that there are two threads per core, then two consecutive threads will share the data of one L1 cache unit. This example would have the iteration space (0-999) split statically across the four L1 caches (so the first L1 would get (0-249), the second would get (250-499), etc). Then the threads will use a dynamic,1 schedule to grab iterations from the L1 cache units. There are currently four supported layers: L1, L2, L3, NUMA OMP_SCHEDULE can now read a hierarchical schedule with this syntax: OMP_SCHEDULE='EXPERIMENTAL LAYER,SCHED[,CHUNK][:LAYER,SCHED[,CHUNK]...]:SCHED,CHUNK And OMP_SCHEDULE can still read the normal SCHED,CHUNK syntax from before I've kept most of the hierarchical scheduling logic inside kmp_dispatch_hier.h to try to keep it separate from the rest of the code. Differential Revision: https://reviews.llvm.org/D47962 git-svn-id: https://llvm.org/svn/llvm-project/openmp/trunk@336571 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'runtime/src/kmp_dispatch_hier.h')
-rw-r--r--runtime/src/kmp_dispatch_hier.h1090
1 files changed, 1090 insertions, 0 deletions
diff --git a/runtime/src/kmp_dispatch_hier.h b/runtime/src/kmp_dispatch_hier.h
new file mode 100644
index 0000000..8277eaa
--- /dev/null
+++ b/runtime/src/kmp_dispatch_hier.h
@@ -0,0 +1,1090 @@
+#ifndef KMP_DISPATCH_HIER_H
+#define KMP_DISPATCH_HIER_H
+#include "kmp.h"
+#include "kmp_dispatch.h"
+
+// Layer type for scheduling hierarchy
+enum kmp_hier_layer_e {
+ LAYER_THREAD = -1,
+ LAYER_L1,
+ LAYER_L2,
+ LAYER_L3,
+ LAYER_NUMA,
+ LAYER_LOOP,
+ LAYER_LAST
+};
+
+// Convert hierarchy type (LAYER_L1, LAYER_L2, etc.) to C-style string
+static inline const char *__kmp_get_hier_str(kmp_hier_layer_e type) {
+ switch (type) {
+ case kmp_hier_layer_e::LAYER_THREAD:
+ return "THREAD";
+ case kmp_hier_layer_e::LAYER_L1:
+ return "L1";
+ case kmp_hier_layer_e::LAYER_L2:
+ return "L2";
+ case kmp_hier_layer_e::LAYER_L3:
+ return "L3";
+ case kmp_hier_layer_e::LAYER_NUMA:
+ return "NUMA";
+ case kmp_hier_layer_e::LAYER_LOOP:
+ return "WHOLE_LOOP";
+ case kmp_hier_layer_e::LAYER_LAST:
+ return "LAST";
+ }
+ KMP_ASSERT(0);
+ // Appease compilers, should never get here
+ return "ERROR";
+}
+
+// Structure to store values parsed from OMP_SCHEDULE for scheduling hierarchy
+typedef struct kmp_hier_sched_env_t {
+ int size;
+ int capacity;
+ enum sched_type *scheds;
+ kmp_int32 *small_chunks;
+ kmp_int64 *large_chunks;
+ kmp_hier_layer_e *layers;
+ // Append a level of the hierarchy
+ void append(enum sched_type sched, kmp_int32 chunk, kmp_hier_layer_e layer) {
+ if (capacity == 0) {
+ scheds = (enum sched_type *)__kmp_allocate(sizeof(enum sched_type) *
+ kmp_hier_layer_e::LAYER_LAST);
+ small_chunks = (kmp_int32 *)__kmp_allocate(sizeof(kmp_int32) *
+ kmp_hier_layer_e::LAYER_LAST);
+ large_chunks = (kmp_int64 *)__kmp_allocate(sizeof(kmp_int64) *
+ kmp_hier_layer_e::LAYER_LAST);
+ layers = (kmp_hier_layer_e *)__kmp_allocate(sizeof(kmp_hier_layer_e) *
+ kmp_hier_layer_e::LAYER_LAST);
+ capacity = kmp_hier_layer_e::LAYER_LAST;
+ }
+ int current_size = size;
+ KMP_DEBUG_ASSERT(current_size < kmp_hier_layer_e::LAYER_LAST);
+ scheds[current_size] = sched;
+ layers[current_size] = layer;
+ small_chunks[current_size] = chunk;
+ large_chunks[current_size] = (kmp_int64)chunk;
+ size++;
+ }
+ // Sort the hierarchy using selection sort, size will always be small
+ // (less than LAYER_LAST) so it is not necessary to use an nlog(n) algorithm
+ void sort() {
+ if (size <= 1)
+ return;
+ for (int i = 0; i < size; ++i) {
+ int switch_index = i;
+ for (int j = i + 1; j < size; ++j) {
+ if (layers[j] < layers[switch_index])
+ switch_index = j;
+ }
+ if (switch_index != i) {
+ kmp_hier_layer_e temp1 = layers[i];
+ enum sched_type temp2 = scheds[i];
+ kmp_int32 temp3 = small_chunks[i];
+ kmp_int64 temp4 = large_chunks[i];
+ layers[i] = layers[switch_index];
+ scheds[i] = scheds[switch_index];
+ small_chunks[i] = small_chunks[switch_index];
+ large_chunks[i] = large_chunks[switch_index];
+ layers[switch_index] = temp1;
+ scheds[switch_index] = temp2;
+ small_chunks[switch_index] = temp3;
+ large_chunks[switch_index] = temp4;
+ }
+ }
+ }
+ // Free all memory
+ void deallocate() {
+ if (capacity > 0) {
+ __kmp_free(scheds);
+ __kmp_free(layers);
+ __kmp_free(small_chunks);
+ __kmp_free(large_chunks);
+ scheds = NULL;
+ layers = NULL;
+ small_chunks = NULL;
+ large_chunks = NULL;
+ }
+ size = 0;
+ capacity = 0;
+ }
+} kmp_hier_sched_env_t;
+
+extern int __kmp_dispatch_hand_threading;
+extern kmp_hier_sched_env_t __kmp_hier_scheds;
+
+// Sizes of layer arrays bounded by max number of detected L1s, L2s, etc.
+extern int __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LAST + 1];
+extern int __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LAST + 1];
+
+extern int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type);
+extern int __kmp_dispatch_get_id(int gtid, kmp_hier_layer_e type);
+extern int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1,
+ kmp_hier_layer_e t2);
+extern void __kmp_dispatch_free_hierarchies(kmp_team_t *team);
+
+template <typename T> struct kmp_hier_shared_bdata_t {
+ typedef typename traits_t<T>::signed_t ST;
+ volatile kmp_uint64 val[2];
+ kmp_int32 status[2];
+ T lb[2];
+ T ub[2];
+ ST st[2];
+ dispatch_shared_info_template<T> sh[2];
+ void zero() {
+ val[0] = val[1] = 0;
+ status[0] = status[1] = 0;
+ lb[0] = lb[1] = 0;
+ ub[0] = ub[1] = 0;
+ st[0] = st[1] = 0;
+ sh[0].u.s.iteration = sh[1].u.s.iteration = 0;
+ }
+ void set_next_hand_thread(T nlb, T nub, ST nst, kmp_int32 nstatus,
+ kmp_uint64 index) {
+ lb[1 - index] = nlb;
+ ub[1 - index] = nub;
+ st[1 - index] = nst;
+ status[1 - index] = nstatus;
+ }
+ void set_next(T nlb, T nub, ST nst, kmp_int32 nstatus, kmp_uint64 index) {
+ lb[1 - index] = nlb;
+ ub[1 - index] = nub;
+ st[1 - index] = nst;
+ status[1 - index] = nstatus;
+ sh[1 - index].u.s.iteration = 0;
+ }
+
+ kmp_int32 get_next_status(kmp_uint64 index) const {
+ return status[1 - index];
+ }
+ T get_next_lb(kmp_uint64 index) const { return lb[1 - index]; }
+ T get_next_ub(kmp_uint64 index) const { return ub[1 - index]; }
+ ST get_next_st(kmp_uint64 index) const { return st[1 - index]; }
+ dispatch_shared_info_template<T> volatile *get_next_sh(kmp_uint64 index) {
+ return &(sh[1 - index]);
+ }
+
+ kmp_int32 get_curr_status(kmp_uint64 index) const { return status[index]; }
+ T get_curr_lb(kmp_uint64 index) const { return lb[index]; }
+ T get_curr_ub(kmp_uint64 index) const { return ub[index]; }
+ ST get_curr_st(kmp_uint64 index) const { return st[index]; }
+ dispatch_shared_info_template<T> volatile *get_curr_sh(kmp_uint64 index) {
+ return &(sh[index]);
+ }
+};
+
+/*
+ * In the barrier implementations, num_active is the number of threads that are
+ * attached to the kmp_hier_top_unit_t structure in the scheduling hierarchy.
+ * bdata is the shared barrier data that resides on the kmp_hier_top_unit_t
+ * structure. tdata is the thread private data that resides on the thread
+ * data structure.
+ *
+ * The reset_shared() method is used to initialize the barrier data on the
+ * kmp_hier_top_unit_t hierarchy structure
+ *
+ * The reset_private() method is used to initialize the barrier data on the
+ * thread's private dispatch buffer structure
+ *
+ * The barrier() method takes an id, which is that thread's id for the
+ * kmp_hier_top_unit_t structure, and implements the barrier. All threads wait
+ * inside barrier() until all fellow threads who are attached to that
+ * kmp_hier_top_unit_t structure have arrived.
+ */
+
+// Core barrier implementation
+// Can be used in a unit with between 2 to 8 threads
+template <typename T> class core_barrier_impl {
+ static inline kmp_uint64 get_wait_val(int num_active) {
+ kmp_uint64 wait_val;
+ switch (num_active) {
+ case 2:
+ wait_val = 0x0101LL;
+ break;
+ case 3:
+ wait_val = 0x010101LL;
+ break;
+ case 4:
+ wait_val = 0x01010101LL;
+ break;
+ case 5:
+ wait_val = 0x0101010101LL;
+ break;
+ case 6:
+ wait_val = 0x010101010101LL;
+ break;
+ case 7:
+ wait_val = 0x01010101010101LL;
+ break;
+ case 8:
+ wait_val = 0x0101010101010101LL;
+ break;
+ default:
+ // don't use the core_barrier_impl for more than 8 threads
+ KMP_ASSERT(0);
+ }
+ return wait_val;
+ }
+
+public:
+ static void reset_private(kmp_int32 num_active,
+ kmp_hier_private_bdata_t *tdata);
+ static void reset_shared(kmp_int32 num_active,
+ kmp_hier_shared_bdata_t<T> *bdata);
+ static void barrier(kmp_int32 id, kmp_hier_shared_bdata_t<T> *bdata,
+ kmp_hier_private_bdata_t *tdata);
+};
+
+template <typename T>
+void core_barrier_impl<T>::reset_private(kmp_int32 num_active,
+ kmp_hier_private_bdata_t *tdata) {
+ tdata->num_active = num_active;
+ tdata->index = 0;
+ tdata->wait_val[0] = tdata->wait_val[1] = get_wait_val(num_active);
+}
+template <typename T>
+void core_barrier_impl<T>::reset_shared(kmp_int32 num_active,
+ kmp_hier_shared_bdata_t<T> *bdata) {
+ bdata->val[0] = bdata->val[1] = 0LL;
+ bdata->status[0] = bdata->status[1] = 0LL;
+}
+template <typename T>
+void core_barrier_impl<T>::barrier(kmp_int32 id,
+ kmp_hier_shared_bdata_t<T> *bdata,
+ kmp_hier_private_bdata_t *tdata) {
+ kmp_uint64 current_index = tdata->index;
+ kmp_uint64 next_index = 1 - current_index;
+ kmp_uint64 current_wait_value = tdata->wait_val[current_index];
+ kmp_uint64 next_wait_value =
+ (current_wait_value ? 0 : get_wait_val(tdata->num_active));
+ KD_TRACE(10, ("core_barrier_impl::barrier(): T#%d current_index:%llu "
+ "next_index:%llu curr_wait:%llu next_wait:%llu\n",
+ __kmp_get_gtid(), current_index, next_index, current_wait_value,
+ next_wait_value));
+ char v = (current_wait_value ? 0x1 : 0x0);
+ (RCAST(volatile char *, &(bdata->val[current_index])))[id] = v;
+ __kmp_wait_yield<kmp_uint64>(&(bdata->val[current_index]), current_wait_value,
+ __kmp_eq<kmp_uint64> USE_ITT_BUILD_ARG(NULL));
+ tdata->wait_val[current_index] = next_wait_value;
+ tdata->index = next_index;
+}
+
+// Counter barrier implementation
+// Can be used in a unit with arbitrary number of active threads
+template <typename T> class counter_barrier_impl {
+public:
+ static void reset_private(kmp_int32 num_active,
+ kmp_hier_private_bdata_t *tdata);
+ static void reset_shared(kmp_int32 num_active,
+ kmp_hier_shared_bdata_t<T> *bdata);
+ static void barrier(kmp_int32 id, kmp_hier_shared_bdata_t<T> *bdata,
+ kmp_hier_private_bdata_t *tdata);
+};
+
+template <typename T>
+void counter_barrier_impl<T>::reset_private(kmp_int32 num_active,
+ kmp_hier_private_bdata_t *tdata) {
+ tdata->num_active = num_active;
+ tdata->index = 0;
+ tdata->wait_val[0] = tdata->wait_val[1] = (kmp_uint64)num_active;
+}
+template <typename T>
+void counter_barrier_impl<T>::reset_shared(kmp_int32 num_active,
+ kmp_hier_shared_bdata_t<T> *bdata) {
+ bdata->val[0] = bdata->val[1] = 0LL;
+ bdata->status[0] = bdata->status[1] = 0LL;
+}
+template <typename T>
+void counter_barrier_impl<T>::barrier(kmp_int32 id,
+ kmp_hier_shared_bdata_t<T> *bdata,
+ kmp_hier_private_bdata_t *tdata) {
+ volatile kmp_int64 *val;
+ kmp_uint64 current_index = tdata->index;
+ kmp_uint64 next_index = 1 - current_index;
+ kmp_uint64 current_wait_value = tdata->wait_val[current_index];
+ kmp_uint64 next_wait_value = current_wait_value + tdata->num_active;
+
+ KD_TRACE(10, ("counter_barrier_impl::barrier(): T#%d current_index:%llu "
+ "next_index:%llu curr_wait:%llu next_wait:%llu\n",
+ __kmp_get_gtid(), current_index, next_index, current_wait_value,
+ next_wait_value));
+ val = RCAST(volatile kmp_int64 *, &(bdata->val[current_index]));
+ KMP_TEST_THEN_INC64(val);
+ __kmp_wait_yield<kmp_uint64>(&(bdata->val[current_index]), current_wait_value,
+ __kmp_ge<kmp_uint64> USE_ITT_BUILD_ARG(NULL));
+ tdata->wait_val[current_index] = next_wait_value;
+ tdata->index = next_index;
+}
+
+// Data associated with topology unit within a layer
+// For example, one kmp_hier_top_unit_t corresponds to one L1 cache
+template <typename T> struct kmp_hier_top_unit_t {
+ typedef typename traits_t<T>::signed_t ST;
+ typedef typename traits_t<T>::unsigned_t UT;
+ kmp_int32 active; // number of topology units that communicate with this unit
+ // chunk information (lower/upper bound, stride, etc.)
+ dispatch_private_info_template<T> hier_pr;
+ kmp_hier_top_unit_t<T> *hier_parent; // pointer to parent unit
+ kmp_hier_shared_bdata_t<T> hier_barrier; // shared barrier data for this unit
+
+ kmp_int32 get_hier_id() const { return hier_pr.hier_id; }
+ void reset_shared_barrier() {
+ KMP_DEBUG_ASSERT(active > 0);
+ if (active == 1)
+ return;
+ hier_barrier.zero();
+ if (active >= 2 && active <= 8) {
+ core_barrier_impl<T>::reset_shared(active, &hier_barrier);
+ } else {
+ counter_barrier_impl<T>::reset_shared(active, &hier_barrier);
+ }
+ }
+ void reset_private_barrier(kmp_hier_private_bdata_t *tdata) {
+ KMP_DEBUG_ASSERT(tdata);
+ KMP_DEBUG_ASSERT(active > 0);
+ if (active == 1)
+ return;
+ if (active >= 2 && active <= 8) {
+ core_barrier_impl<T>::reset_private(active, tdata);
+ } else {
+ counter_barrier_impl<T>::reset_private(active, tdata);
+ }
+ }
+ void barrier(kmp_int32 id, kmp_hier_private_bdata_t *tdata) {
+ KMP_DEBUG_ASSERT(tdata);
+ KMP_DEBUG_ASSERT(active > 0);
+ KMP_DEBUG_ASSERT(id >= 0 && id < active);
+ if (active == 1) {
+ tdata->index = 1 - tdata->index;
+ return;
+ }
+ if (active >= 2 && active <= 8) {
+ core_barrier_impl<T>::barrier(id, &hier_barrier, tdata);
+ } else {
+ counter_barrier_impl<T>::barrier(id, &hier_barrier, tdata);
+ }
+ }
+
+ kmp_int32 get_next_status(kmp_uint64 index) const {
+ return hier_barrier.get_next_status(index);
+ }
+ T get_next_lb(kmp_uint64 index) const {
+ return hier_barrier.get_next_lb(index);
+ }
+ T get_next_ub(kmp_uint64 index) const {
+ return hier_barrier.get_next_ub(index);
+ }
+ ST get_next_st(kmp_uint64 index) const {
+ return hier_barrier.get_next_st(index);
+ }
+ dispatch_shared_info_template<T> volatile *get_next_sh(kmp_uint64 index) {
+ return hier_barrier.get_next_sh(index);
+ }
+
+ kmp_int32 get_curr_status(kmp_uint64 index) const {
+ return hier_barrier.get_curr_status(index);
+ }
+ T get_curr_lb(kmp_uint64 index) const {
+ return hier_barrier.get_curr_lb(index);
+ }
+ T get_curr_ub(kmp_uint64 index) const {
+ return hier_barrier.get_curr_ub(index);
+ }
+ ST get_curr_st(kmp_uint64 index) const {
+ return hier_barrier.get_curr_st(index);
+ }
+ dispatch_shared_info_template<T> volatile *get_curr_sh(kmp_uint64 index) {
+ return hier_barrier.get_curr_sh(index);
+ }
+
+ void set_next_hand_thread(T lb, T ub, ST st, kmp_int32 status,
+ kmp_uint64 index) {
+ hier_barrier.set_next_hand_thread(lb, ub, st, status, index);
+ }
+ void set_next(T lb, T ub, ST st, kmp_int32 status, kmp_uint64 index) {
+ hier_barrier.set_next(lb, ub, st, status, index);
+ }
+ dispatch_private_info_template<T> *get_my_pr() { return &hier_pr; }
+ kmp_hier_top_unit_t<T> *get_parent() { return hier_parent; }
+ dispatch_private_info_template<T> *get_parent_pr() {
+ return &(hier_parent->hier_pr);
+ }
+
+ kmp_int32 is_active() const { return active; }
+ kmp_int32 get_num_active() const { return active; }
+ void print() {
+ KD_TRACE(
+ 10,
+ (" kmp_hier_top_unit_t: active:%d pr:%p lb:%d ub:%d st:%d tc:%d\n",
+ active, &hier_pr, hier_pr.u.p.lb, hier_pr.u.p.ub, hier_pr.u.p.st,
+ hier_pr.u.p.tc));
+ }
+};
+
+// Information regarding a single layer within the scheduling hierarchy
+template <typename T> struct kmp_hier_layer_info_t {
+ int num_active; // number of threads active in this level
+ kmp_hier_layer_e type; // LAYER_L1, LAYER_L2, etc.
+ enum sched_type sched; // static, dynamic, guided, etc.
+ typename traits_t<T>::signed_t chunk; // chunk size associated with schedule
+ int length; // length of the kmp_hier_top_unit_t array
+
+ // Print this layer's information
+ void print() {
+ const char *t = __kmp_get_hier_str(type);
+ KD_TRACE(
+ 10,
+ (" kmp_hier_layer_info_t: num_active:%d type:%s sched:%d chunk:%d "
+ "length:%d\n",
+ num_active, t, sched, chunk, length));
+ }
+};
+
+/*
+ * Structure to implement entire hierarchy
+ *
+ * The hierarchy is kept as an array of arrays to represent the different
+ * layers. Layer 0 is the lowest layer to layer num_layers - 1 which is the
+ * highest layer.
+ * Example:
+ * [ 2 ] -> [ L3 | L3 ]
+ * [ 1 ] -> [ L2 | L2 | L2 | L2 ]
+ * [ 0 ] -> [ L1 | L1 | L1 | L1 | L1 | L1 | L1 | L1 ]
+ * There is also an array of layer_info_t which has information regarding
+ * each layer
+ */
+template <typename T> struct kmp_hier_t {
+public:
+ typedef typename traits_t<T>::unsigned_t UT;
+ typedef typename traits_t<T>::signed_t ST;
+
+private:
+ int next_recurse(ident_t *loc, int gtid, kmp_hier_top_unit_t<T> *current,
+ kmp_int32 *p_last, T *p_lb, T *p_ub, ST *p_st,
+ kmp_int32 previous_id, int hier_level) {
+ int status;
+ kmp_info_t *th = __kmp_threads[gtid];
+ auto parent = current->get_parent();
+ bool last_layer = (hier_level == get_num_layers() - 1);
+ KMP_DEBUG_ASSERT(th);
+ kmp_hier_private_bdata_t *tdata = &(th->th.th_hier_bar_data[hier_level]);
+ KMP_DEBUG_ASSERT(current);
+ KMP_DEBUG_ASSERT(hier_level >= 0);
+ KMP_DEBUG_ASSERT(hier_level < get_num_layers());
+ KMP_DEBUG_ASSERT(tdata);
+ KMP_DEBUG_ASSERT(parent || last_layer);
+
+ KD_TRACE(
+ 1, ("kmp_hier_t.next_recurse(): T#%d (%d) called\n", gtid, hier_level));
+
+ T hier_id = (T)current->get_hier_id();
+ // Attempt to grab next iteration range for this level
+ if (previous_id == 0) {
+ KD_TRACE(1, ("kmp_hier_t.next_recurse(): T#%d (%d) is master of unit\n",
+ gtid, hier_level));
+ kmp_int32 contains_last;
+ T my_lb, my_ub;
+ ST my_st;
+ T nproc;
+ dispatch_shared_info_template<T> volatile *my_sh;
+ dispatch_private_info_template<T> *my_pr;
+ if (last_layer) {
+ // last layer below the very top uses the single shared buffer
+ // from the team struct.
+ KD_TRACE(10,
+ ("kmp_hier_t.next_recurse(): T#%d (%d) using top level sh\n",
+ gtid, hier_level));
+ my_sh = reinterpret_cast<dispatch_shared_info_template<T> volatile *>(
+ th->th.th_dispatch->th_dispatch_sh_current);
+ nproc = (T)get_top_level_nproc();
+ } else {
+ // middle layers use the shared buffer inside the kmp_hier_top_unit_t
+ // structure
+ KD_TRACE(10, ("kmp_hier_t.next_recurse(): T#%d (%d) using hier sh\n",
+ gtid, hier_level));
+ my_sh =
+ parent->get_curr_sh(th->th.th_hier_bar_data[hier_level + 1].index);
+ nproc = (T)parent->get_num_active();
+ }
+ my_pr = current->get_my_pr();
+ KMP_DEBUG_ASSERT(my_sh);
+ KMP_DEBUG_ASSERT(my_pr);
+ enum sched_type schedule = get_sched(hier_level);
+ ST chunk = (ST)get_chunk(hier_level);
+ status = __kmp_dispatch_next_algorithm<T>(gtid, my_pr, my_sh,
+ &contains_last, &my_lb, &my_ub,
+ &my_st, nproc, hier_id);
+ KD_TRACE(
+ 10,
+ ("kmp_hier_t.next_recurse(): T#%d (%d) next_pr_sh() returned %d\n",
+ gtid, hier_level, status));
+ // When no iterations are found (status == 0) and this is not the last
+ // layer, attempt to go up the hierarchy for more iterations
+ if (status == 0 && !last_layer) {
+ status = next_recurse(loc, gtid, parent, &contains_last, &my_lb, &my_ub,
+ &my_st, hier_id, hier_level + 1);
+ KD_TRACE(
+ 10,
+ ("kmp_hier_t.next_recurse(): T#%d (%d) hier_next() returned %d\n",
+ gtid, hier_level, status));
+ if (status == 1) {
+ kmp_hier_private_bdata_t *upper_tdata =
+ &(th->th.th_hier_bar_data[hier_level + 1]);
+ my_sh = parent->get_curr_sh(upper_tdata->index);
+ KD_TRACE(10, ("kmp_hier_t.next_recurse(): T#%d (%d) about to init\n",
+ gtid, hier_level));
+ __kmp_dispatch_init_algorithm(loc, gtid, my_pr, schedule,
+ parent->get_curr_lb(upper_tdata->index),
+ parent->get_curr_ub(upper_tdata->index),
+ parent->get_curr_st(upper_tdata->index),
+#if USE_ITT_BUILD
+ NULL,
+#endif
+ chunk, nproc, hier_id);
+ status = __kmp_dispatch_next_algorithm<T>(
+ gtid, my_pr, my_sh, &contains_last, &my_lb, &my_ub, &my_st, nproc,
+ hier_id);
+ if (!status) {
+ KD_TRACE(10, ("kmp_hier_t.next_recurse(): T#%d (%d) status not 1 "
+ "setting to 2!\n",
+ gtid, hier_level));
+ status = 2;
+ }
+ }
+ }
+ current->set_next(my_lb, my_ub, my_st, status, tdata->index);
+ // Propagate whether a unit holds the actual global last iteration
+ // The contains_last attribute is sent downwards from the top to the
+ // bottom of the hierarchy via the contains_last flag inside the
+ // private dispatch buffers in the hierarchy's middle layers
+ if (contains_last) {
+ // If the next_algorithm() method returns 1 for p_last and it is the
+ // last layer or our parent contains the last serial chunk, then the
+ // chunk must contain the last serial iteration.
+ if (last_layer || parent->hier_pr.flags.contains_last) {
+ KD_TRACE(10, ("kmp_hier_t.next_recurse(): T#%d (%d) Setting this pr "
+ "to contain last.\n",
+ gtid, hier_level));
+ current->hier_pr.flags.contains_last = contains_last;
+ }
+ if (!current->hier_pr.flags.contains_last)
+ contains_last = FALSE;
+ }
+ if (p_last)
+ *p_last = contains_last;
+ } // if master thread of this unit
+ if (hier_level > 0 || !__kmp_dispatch_hand_threading) {
+ KD_TRACE(10,
+ ("kmp_hier_t.next_recurse(): T#%d (%d) going into barrier.\n",
+ gtid, hier_level));
+ current->barrier(previous_id, tdata);
+ KD_TRACE(10,
+ ("kmp_hier_t.next_recurse(): T#%d (%d) released and exit %d\n",
+ gtid, hier_level, current->get_curr_status(tdata->index)));
+ } else {
+ KMP_DEBUG_ASSERT(previous_id == 0);
+ return status;
+ }
+ return current->get_curr_status(tdata->index);
+ }
+
+public:
+ int top_level_nproc;
+ int num_layers;
+ bool valid;
+ int type_size;
+ kmp_hier_layer_info_t<T> *info;
+ kmp_hier_top_unit_t<T> **layers;
+ // Deallocate all memory from this hierarchy
+ void deallocate() {
+ for (int i = 0; i < num_layers; ++i)
+ if (layers[i] != NULL) {
+ __kmp_free(layers[i]);
+ }
+ if (layers != NULL) {
+ __kmp_free(layers);
+ layers = NULL;
+ }
+ if (info != NULL) {
+ __kmp_free(info);
+ info = NULL;
+ }
+ num_layers = 0;
+ valid = false;
+ }
+ // Returns true if reallocation is needed else false
+ bool need_to_reallocate(int n, const kmp_hier_layer_e *new_layers,
+ const enum sched_type *new_scheds,
+ const ST *new_chunks) const {
+ if (!valid || layers == NULL || info == NULL ||
+ traits_t<T>::type_size != type_size || n != num_layers)
+ return true;
+ for (int i = 0; i < n; ++i) {
+ if (info[i].type != new_layers[i])
+ return true;
+ if (info[i].sched != new_scheds[i])
+ return true;
+ if (info[i].chunk != new_chunks[i])
+ return true;
+ }
+ return false;
+ }
+ // A single thread should call this function while the other threads wait
+ // create a new scheduling hierarchy consisting of new_layers, new_scheds
+ // and new_chunks. These should come pre-sorted according to
+ // kmp_hier_layer_e value. This function will try to avoid reallocation
+ // if it can
+ void allocate_hier(int n, const kmp_hier_layer_e *new_layers,
+ const enum sched_type *new_scheds, const ST *new_chunks) {
+ top_level_nproc = 0;
+ if (!need_to_reallocate(n, new_layers, new_scheds, new_chunks)) {
+ KD_TRACE(
+ 10,
+ ("kmp_hier_t<T>::allocate_hier: T#0 do not need to reallocate\n"));
+ for (int i = 0; i < n; ++i) {
+ info[i].num_active = 0;
+ for (int j = 0; j < get_length(i); ++j)
+ layers[i][j].active = 0;
+ }
+ return;
+ }
+ KD_TRACE(10, ("kmp_hier_t<T>::allocate_hier: T#0 full alloc\n"));
+ deallocate();
+ type_size = traits_t<T>::type_size;
+ num_layers = n;
+ info = (kmp_hier_layer_info_t<T> *)__kmp_allocate(
+ sizeof(kmp_hier_layer_info_t<T>) * n);
+ layers = (kmp_hier_top_unit_t<T> **)__kmp_allocate(
+ sizeof(kmp_hier_top_unit_t<T> *) * n);
+ for (int i = 0; i < n; ++i) {
+ int max = 0;
+ kmp_hier_layer_e layer = new_layers[i];
+ info[i].num_active = 0;
+ info[i].type = layer;
+ info[i].sched = new_scheds[i];
+ info[i].chunk = new_chunks[i];
+ max = __kmp_hier_max_units[layer + 1];
+ if (max == 0) {
+ valid = false;
+ KMP_WARNING(HierSchedInvalid, __kmp_get_hier_str(layer));
+ deallocate();
+ return;
+ }
+ info[i].length = max;
+ layers[i] = (kmp_hier_top_unit_t<T> *)__kmp_allocate(
+ sizeof(kmp_hier_top_unit_t<T>) * max);
+ for (int j = 0; j < max; ++j) {
+ layers[i][j].active = 0;
+ }
+ }
+ valid = true;
+ }
+ // loc - source file location
+ // gtid - global thread identifier
+ // pr - this thread's private dispatch buffer (corresponding with gtid)
+ // p_last (return value) - pointer to flag indicating this set of iterations
+ // contains last
+ // iteration
+ // p_lb (return value) - lower bound for this chunk of iterations
+ // p_ub (return value) - upper bound for this chunk of iterations
+ // p_st (return value) - stride for this chunk of iterations
+ //
+ // Returns 1 if there are more iterations to perform, 0 otherwise
+ int next(ident_t *loc, int gtid, dispatch_private_info_template<T> *pr,
+ kmp_int32 *p_last, T *p_lb, T *p_ub, ST *p_st) {
+ int status;
+ kmp_int32 contains_last = 0;
+ kmp_info_t *th = __kmp_threads[gtid];
+ kmp_hier_private_bdata_t *tdata = &(th->th.th_hier_bar_data[0]);
+ auto parent = pr->get_parent();
+ KMP_DEBUG_ASSERT(parent);
+ KMP_DEBUG_ASSERT(th);
+ KMP_DEBUG_ASSERT(tdata);
+ KMP_DEBUG_ASSERT(parent);
+ T nproc = (T)parent->get_num_active();
+ T unit_id = (T)pr->get_hier_id();
+ KD_TRACE(
+ 10,
+ ("kmp_hier_t.next(): T#%d THREAD LEVEL nproc:%d unit_id:%d called\n",
+ gtid, nproc, unit_id));
+ // Handthreading implementation
+ // Each iteration is performed by all threads on last unit (typically
+ // cores/tiles)
+ // e.g., threads 0,1,2,3 all execute iteration 0
+ // threads 0,1,2,3 all execute iteration 1
+ // threads 4,5,6,7 all execute iteration 2
+ // threads 4,5,6,7 all execute iteration 3
+ // ... etc.
+ if (__kmp_dispatch_hand_threading) {
+ KD_TRACE(10,
+ ("kmp_hier_t.next(): T#%d THREAD LEVEL using hand threading\n",
+ gtid));
+ if (unit_id == 0) {
+ // For hand threading, the sh buffer on the lowest level is only ever
+ // modified and read by the master thread on that level. Because of
+ // this, we can always use the first sh buffer.
+ auto sh = &(parent->hier_barrier.sh[0]);
+ KMP_DEBUG_ASSERT(sh);
+ status = __kmp_dispatch_next_algorithm<T>(
+ gtid, pr, sh, &contains_last, p_lb, p_ub, p_st, nproc, unit_id);
+ if (!status) {
+ bool done = false;
+ while (!done) {
+ done = true;
+ status = next_recurse(loc, gtid, parent, &contains_last, p_lb, p_ub,
+ p_st, unit_id, 0);
+ if (status == 1) {
+ __kmp_dispatch_init_algorithm(loc, gtid, pr, pr->schedule,
+ parent->get_next_lb(tdata->index),
+ parent->get_next_ub(tdata->index),
+ parent->get_next_st(tdata->index),
+#if USE_ITT_BUILD
+ NULL,
+#endif
+ pr->u.p.parm1, nproc, unit_id);
+ sh->u.s.iteration = 0;
+ status = __kmp_dispatch_next_algorithm<T>(
+ gtid, pr, sh, &contains_last, p_lb, p_ub, p_st, nproc,
+ unit_id);
+ if (!status) {
+ KD_TRACE(10,
+ ("kmp_hier_t.next(): T#%d THREAD LEVEL status == 0 "
+ "after next_pr_sh()"
+ "trying again.\n",
+ gtid));
+ done = false;
+ }
+ } else if (status == 2) {
+ KD_TRACE(10, ("kmp_hier_t.next(): T#%d THREAD LEVEL status == 2 "
+ "trying again.\n",
+ gtid));
+ done = false;
+ }
+ }
+ }
+ parent->set_next_hand_thread(*p_lb, *p_ub, *p_st, status, tdata->index);
+ } // if master thread of lowest unit level
+ parent->barrier(pr->get_hier_id(), tdata);
+ if (unit_id != 0) {
+ *p_lb = parent->get_curr_lb(tdata->index);
+ *p_ub = parent->get_curr_ub(tdata->index);
+ *p_st = parent->get_curr_st(tdata->index);
+ status = parent->get_curr_status(tdata->index);
+ }
+ } else {
+ // Normal implementation
+ // Each thread grabs an iteration chunk and executes it (no cooperation)
+ auto sh = parent->get_curr_sh(tdata->index);
+ KMP_DEBUG_ASSERT(sh);
+ status = __kmp_dispatch_next_algorithm<T>(
+ gtid, pr, sh, &contains_last, p_lb, p_ub, p_st, nproc, unit_id);
+ KD_TRACE(10,
+ ("kmp_hier_t.next(): T#%d THREAD LEVEL next_algorithm status:%d "
+ "contains_last:%d p_lb:%d p_ub:%d p_st:%d\n",
+ gtid, status, contains_last, *p_lb, *p_ub, *p_st));
+ if (!status) {
+ bool done = false;
+ while (!done) {
+ done = true;
+ status = next_recurse(loc, gtid, parent, &contains_last, p_lb, p_ub,
+ p_st, unit_id, 0);
+ if (status == 1) {
+ sh = parent->get_curr_sh(tdata->index);
+ __kmp_dispatch_init_algorithm(loc, gtid, pr, pr->schedule,
+ parent->get_curr_lb(tdata->index),
+ parent->get_curr_ub(tdata->index),
+ parent->get_curr_st(tdata->index),
+#if USE_ITT_BUILD
+ NULL,
+#endif
+ pr->u.p.parm1, nproc, unit_id);
+ status = __kmp_dispatch_next_algorithm<T>(
+ gtid, pr, sh, &contains_last, p_lb, p_ub, p_st, nproc, unit_id);
+ if (!status) {
+ KD_TRACE(10, ("kmp_hier_t.next(): T#%d THREAD LEVEL status == 0 "
+ "after next_pr_sh()"
+ "trying again.\n",
+ gtid));
+ done = false;
+ }
+ } else if (status == 2) {
+ KD_TRACE(10, ("kmp_hier_t.next(): T#%d THREAD LEVEL status == 2 "
+ "trying again.\n",
+ gtid));
+ done = false;
+ }
+ }
+ }
+ }
+ if (contains_last && !parent->hier_pr.flags.contains_last) {
+ KD_TRACE(10, ("kmp_hier_t.next(): T#%d THREAD LEVEL resetting "
+ "contains_last to FALSE\n",
+ gtid));
+ contains_last = FALSE;
+ }
+ if (p_last)
+ *p_last = contains_last;
+ KD_TRACE(10, ("kmp_hier_t.next(): T#%d THREAD LEVEL exit status %d\n", gtid,
+ status));
+ return status;
+ }
+ // These functions probe the layer info structure
+ // Returns the type of topology unit given level
+ kmp_hier_layer_e get_type(int level) const {
+ KMP_DEBUG_ASSERT(level >= 0);
+ KMP_DEBUG_ASSERT(level < num_layers);
+ return info[level].type;
+ }
+ // Returns the schedule type at given level
+ enum sched_type get_sched(int level) const {
+ KMP_DEBUG_ASSERT(level >= 0);
+ KMP_DEBUG_ASSERT(level < num_layers);
+ return info[level].sched;
+ }
+ // Returns the chunk size at given level
+ ST get_chunk(int level) const {
+ KMP_DEBUG_ASSERT(level >= 0);
+ KMP_DEBUG_ASSERT(level < num_layers);
+ return info[level].chunk;
+ }
+ // Returns the number of active threads at given level
+ int get_num_active(int level) const {
+ KMP_DEBUG_ASSERT(level >= 0);
+ KMP_DEBUG_ASSERT(level < num_layers);
+ return info[level].num_active;
+ }
+ // Returns the length of topology unit array at given level
+ int get_length(int level) const {
+ KMP_DEBUG_ASSERT(level >= 0);
+ KMP_DEBUG_ASSERT(level < num_layers);
+ return info[level].length;
+ }
+ // Returns the topology unit given the level and index
+ kmp_hier_top_unit_t<T> *get_unit(int level, int index) {
+ KMP_DEBUG_ASSERT(level >= 0);
+ KMP_DEBUG_ASSERT(level < num_layers);
+ KMP_DEBUG_ASSERT(index >= 0);
+ KMP_DEBUG_ASSERT(index < get_length(level));
+ return &(layers[level][index]);
+ }
+ // Returns the number of layers in the hierarchy
+ int get_num_layers() const { return num_layers; }
+ // Returns the number of threads in the top layer
+ // This is necessary because we don't store a topology unit as
+ // the very top level and the scheduling algorithms need this information
+ int get_top_level_nproc() const { return top_level_nproc; }
+ // Return whether this hierarchy is valid or not
+ bool is_valid() const { return valid; }
+ // Print the hierarchy
+ void print() {
+ KD_TRACE(10, ("kmp_hier_t:\n"));
+ for (int i = num_layers - 1; i >= 0; --i) {
+ KD_TRACE(10, ("Info[%d] = ", i));
+ info[i].print();
+ }
+ for (int i = num_layers - 1; i >= 0; --i) {
+ KD_TRACE(10, ("Layer[%d] =\n", i));
+ for (int j = 0; j < info[i].length; ++j) {
+ layers[i][j].print();
+ }
+ }
+ }
+};
+
+template <typename T>
+void __kmp_dispatch_init_hierarchy(ident_t *loc, int n,
+ kmp_hier_layer_e *new_layers,
+ enum sched_type *new_scheds,
+ typename traits_t<T>::signed_t *new_chunks,
+ T lb, T ub,
+ typename traits_t<T>::signed_t st) {
+ typedef typename traits_t<T>::signed_t ST;
+ typedef typename traits_t<T>::unsigned_t UT;
+ int tid, gtid, num_hw_threads, num_threads_per_layer1, active;
+ int my_buffer_index;
+ kmp_info_t *th;
+ kmp_team_t *team;
+ dispatch_private_info_template<T> *pr;
+ dispatch_shared_info_template<T> volatile *sh;
+ gtid = __kmp_entry_gtid();
+ tid = __kmp_tid_from_gtid(gtid);
+#ifdef KMP_DEBUG
+ KD_TRACE(10, ("__kmp_dispatch_init_hierarchy: T#%d called: %d layer(s)\n",
+ gtid, n));
+ for (int i = 0; i < n; ++i) {
+ const char *layer = __kmp_get_hier_str(new_layers[i]);
+ KD_TRACE(10, ("__kmp_dispatch_init_hierarchy: T#%d: new_layers[%d] = %s, "
+ "new_scheds[%d] = %d, new_chunks[%d] = %u\n",
+ gtid, i, layer, i, (int)new_scheds[i], i, new_chunks[i]));
+ }
+#endif // KMP_DEBUG
+ KMP_DEBUG_ASSERT(n > 0);
+ KMP_DEBUG_ASSERT(new_layers);
+ KMP_DEBUG_ASSERT(new_scheds);
+ KMP_DEBUG_ASSERT(new_chunks);
+ if (!TCR_4(__kmp_init_parallel))
+ __kmp_parallel_initialize();
+ th = __kmp_threads[gtid];
+ team = th->th.th_team;
+ active = !team->t.t_serialized;
+ th->th.th_ident = loc;
+ num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
+ if (!active) {
+ KD_TRACE(10, ("__kmp_dispatch_init_hierarchy: T#%d not active parallel. "
+ "Using normal dispatch functions.\n",
+ gtid));
+ pr = reinterpret_cast<dispatch_private_info_template<T> *>(
+ th->th.th_dispatch->th_disp_buffer);
+ KMP_DEBUG_ASSERT(pr);
+ pr->flags.use_hier = FALSE;
+ pr->flags.contains_last = FALSE;
+ return;
+ }
+ KMP_DEBUG_ASSERT(th->th.th_dispatch ==
+ &th->th.th_team->t.t_dispatch[th->th.th_info.ds.ds_tid]);
+
+ my_buffer_index = th->th.th_dispatch->th_disp_index;
+ pr = reinterpret_cast<dispatch_private_info_template<T> *>(
+ &th->th.th_dispatch
+ ->th_disp_buffer[my_buffer_index % __kmp_dispatch_num_buffers]);
+ sh = reinterpret_cast<dispatch_shared_info_template<T> volatile *>(
+ &team->t.t_disp_buffer[my_buffer_index % __kmp_dispatch_num_buffers]);
+ KMP_DEBUG_ASSERT(pr);
+ KMP_DEBUG_ASSERT(sh);
+ pr->flags.use_hier = TRUE;
+ pr->u.p.tc = 0;
+ // Have master allocate the hierarchy
+ if (__kmp_tid_from_gtid(gtid) == 0) {
+ KD_TRACE(10, ("__kmp_dispatch_init_hierarchy: T#%d pr:%p sh:%p allocating "
+ "hierarchy\n",
+ gtid, pr, sh));
+ if (sh->hier == NULL) {
+ sh->hier = (kmp_hier_t<T> *)__kmp_allocate(sizeof(kmp_hier_t<T>));
+ }
+ sh->hier->allocate_hier(n, new_layers, new_scheds, new_chunks);
+ sh->u.s.iteration = 0;
+ }
+ __kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL);
+ // Check to make sure the hierarchy is valid
+ kmp_hier_t<T> *hier = sh->hier;
+ if (!sh->hier->is_valid()) {
+ pr->flags.use_hier = FALSE;
+ return;
+ }
+ // Have threads allocate their thread-private barrier data if it hasn't
+ // already been allocated
+ if (th->th.th_hier_bar_data == NULL) {
+ th->th.th_hier_bar_data = (kmp_hier_private_bdata_t *)__kmp_allocate(
+ sizeof(kmp_hier_private_bdata_t) * kmp_hier_layer_e::LAYER_LAST);
+ }
+ // Have threads "register" themselves by modifiying the active count for each
+ // level they are involved in. The active count will act as nthreads for that
+ // level regarding the scheduling algorithms
+ for (int i = 0; i < n; ++i) {
+ int index = __kmp_dispatch_get_index(tid, hier->get_type(i));
+ kmp_hier_top_unit_t<T> *my_unit = hier->get_unit(i, index);
+ // Setup the thread's private dispatch buffer's hierarchy pointers
+ if (i == 0)
+ pr->hier_parent = my_unit;
+ // If this unit is already active, then increment active count and wait
+ if (my_unit->is_active()) {
+ KD_TRACE(10, ("__kmp_dispatch_init_hierarchy: T#%d my_unit (%p) "
+ "is already active (%d)\n",
+ gtid, my_unit, my_unit->active));
+ KMP_TEST_THEN_INC32(&(my_unit->active));
+ break;
+ }
+ // Flag that this unit is active
+ if (KMP_COMPARE_AND_STORE_ACQ32(&(my_unit->active), 0, 1)) {
+ // Do not setup parent pointer for top level unit since it has no parent
+ if (i < n - 1) {
+ // Setup middle layer pointers to parents
+ my_unit->get_my_pr()->hier_id =
+ index % __kmp_dispatch_get_t1_per_t2(hier->get_type(i),
+ hier->get_type(i + 1));
+ int parent_index = __kmp_dispatch_get_index(tid, hier->get_type(i + 1));
+ my_unit->hier_parent = hier->get_unit(i + 1, parent_index);
+ } else {
+ // Setup top layer information (no parent pointers are set)
+ my_unit->get_my_pr()->hier_id =
+ index % __kmp_dispatch_get_t1_per_t2(hier->get_type(i),
+ kmp_hier_layer_e::LAYER_LOOP);
+ KMP_TEST_THEN_INC32(&(hier->top_level_nproc));
+ my_unit->hier_parent = nullptr;
+ }
+ // Set trip count to 0 so that next() operation will initially climb up
+ // the hierarchy to get more iterations (early exit in next() for tc == 0)
+ my_unit->get_my_pr()->u.p.tc = 0;
+ // Increment this layer's number of active units
+ KMP_TEST_THEN_INC32(&(hier->info[i].num_active));
+ KD_TRACE(10, ("__kmp_dispatch_init_hierarchy: T#%d my_unit (%p) "
+ "incrementing num_active\n",
+ gtid, my_unit));
+ } else {
+ KMP_TEST_THEN_INC32(&(my_unit->active));
+ break;
+ }
+ }
+ // Set this thread's id
+ num_threads_per_layer1 = __kmp_dispatch_get_t1_per_t2(
+ kmp_hier_layer_e::LAYER_THREAD, hier->get_type(0));
+ pr->hier_id = tid % num_threads_per_layer1;
+ // For oversubscribed threads, increment their index within the lowest unit
+ // This is done to prevent having two or more threads with id 0, id 1, etc.
+ if (tid >= num_hw_threads)
+ pr->hier_id += ((tid / num_hw_threads) * num_threads_per_layer1);
+ KD_TRACE(
+ 10, ("__kmp_dispatch_init_hierarchy: T#%d setting lowest hier_id to %d\n",
+ gtid, pr->hier_id));
+
+ pr->flags.contains_last = FALSE;
+ __kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL);
+
+ // Now that the number of active threads at each level is determined,
+ // the barrier data for each unit can be initialized and the last layer's
+ // loop information can be initialized.
+ int prev_id = pr->get_hier_id();
+ for (int i = 0; i < n; ++i) {
+ if (prev_id != 0)
+ break;
+ int index = __kmp_dispatch_get_index(tid, hier->get_type(i));
+ kmp_hier_top_unit_t<T> *my_unit = hier->get_unit(i, index);
+ // Only master threads of this unit within the hierarchy do initialization
+ KD_TRACE(10, ("__kmp_dispatch_init_hierarchy: T#%d (%d) prev_id is 0\n",
+ gtid, i));
+ my_unit->reset_shared_barrier();
+ my_unit->hier_pr.flags.contains_last = FALSE;
+ // Last layer, initialize the private buffers with entire loop information
+ // Now the next next_algorithim() call will get the first chunk of
+ // iterations properly
+ if (i == n - 1) {
+ __kmp_dispatch_init_algorithm<T>(
+ loc, gtid, my_unit->get_my_pr(), hier->get_sched(i), lb, ub, st,
+#if USE_ITT_BUILD
+ NULL,
+#endif
+ hier->get_chunk(i), hier->get_num_active(i), my_unit->get_hier_id());
+ }
+ prev_id = my_unit->get_hier_id();
+ }
+ // Initialize each layer of the thread's private barrier data
+ kmp_hier_top_unit_t<T> *unit = pr->hier_parent;
+ for (int i = 0; i < n && unit; ++i, unit = unit->get_parent()) {
+ kmp_hier_private_bdata_t *tdata = &(th->th.th_hier_bar_data[i]);
+ unit->reset_private_barrier(tdata);
+ }
+ __kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL);
+
+#ifdef KMP_DEBUG
+ if (__kmp_tid_from_gtid(gtid) == 0) {
+ for (int i = 0; i < n; ++i) {
+ KD_TRACE(10,
+ ("__kmp_dispatch_init_hierarchy: T#%d active count[%d] = %d\n",
+ gtid, i, hier->get_num_active(i)));
+ }
+ hier->print();
+ }
+ __kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL);
+#endif // KMP_DEBUG
+}
+#endif