aboutsummaryrefslogtreecommitdiff
path: root/gcc/f/equiv.c
blob: 54dc12bf71976f72d56e5f5bf791c93c7137e253 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
/* equiv.c -- Implementation File (module.c template V1.0)
   Copyright (C) 1995, 1996, 1997, 1998 Free Software Foundation, Inc.
   Contributed by James Craig Burley.

This file is part of GNU Fortran.

GNU Fortran is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Fortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Fortran; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

   Related Modules:
      None

   Description:
      Handles the EQUIVALENCE relationships in a program unit.

   Modifications:
*/

#define FFEEQUIV_DEBUG 0

/* Include files. */

#include "proj.h"
#include "equiv.h"
#include "bad.h"
#include "bld.h"
#include "com.h"
#include "data.h"
#include "global.h"
#include "lex.h"
#include "malloc.h"
#include "symbol.h"

/* Externals defined here. */


/* Simple definitions and enumerations. */


/* Internal typedefs. */


/* Private include files. */


/* Internal structure definitions. */

struct _ffeequiv_list_
  {
    ffeequiv first;
    ffeequiv last;
  };

/* Static objects accessed by functions in this module. */

static struct _ffeequiv_list_ ffeequiv_list_;

/* Static functions (internal). */

static void ffeequiv_destroy_ (ffeequiv eq);
static void ffeequiv_layout_local_ (ffeequiv eq);
static bool ffeequiv_offset_ (ffetargetOffset *offset, ffesymbol s,
			      ffebld expr, bool subtract,
			      ffetargetOffset adjust, bool no_precede);

/* Internal macros. */


static void
ffeequiv_destroy_ (ffeequiv victim)
{
  ffebld list;
  ffebld item;
  ffebld expr;

  for (list = victim->list; list != NULL; list = ffebld_trail (list))
    {
      for (item = ffebld_head (list); item != NULL; item = ffebld_trail (item))
	{
	  ffesymbol sym;

	  expr = ffebld_head (item);
	  sym = ffeequiv_symbol (expr);
	  if (sym == NULL)
	    continue;
	  if (ffesymbol_equiv (sym) != NULL)
	    ffesymbol_set_equiv (sym, NULL);
	}
    }
  ffeequiv_kill (victim);
}

/* ffeequiv_layout_local_ -- Lay out storage for local equivalenced vars

   ffeequiv eq;
   ffeequiv_layout_local_(eq);

   Makes a single master ffestorag object that contains all the vars
   in the equivalence, and makes subordinate ffestorag objects for the
   vars with the correct offsets.

   The resulting var offsets are relative not necessarily to 0 -- the
   are relative to the offset of the master area, which might be 0 or
   negative, but should never be positive.  */

static void
ffeequiv_layout_local_ (ffeequiv eq)
{
  ffestorag st;			/* Equivalence storage area. */
  ffebld list;			/* List of list of equivalences. */
  ffebld item;			/* List of equivalences. */
  ffebld root_exp;		/* Expression for root sym. */
  ffestorag root_st;		/* Storage for root. */
  ffesymbol root_sym;		/* Root itself. */
  ffebld rooted_exp;		/* Expression for rooted sym in an eqlist. */
  ffestorag rooted_st;		/* Storage for rooted. */
  ffesymbol rooted_sym;		/* Rooted symbol itself. */
  ffetargetOffset eqlist_offset;/* Offset for eqlist from rooted sym. */
  ffetargetAlign alignment;
  ffetargetAlign modulo;
  ffetargetAlign pad;
  ffetargetOffset size;
  ffetargetOffset num_elements;
  bool new_storage;		/* Established new storage info. */
  bool need_storage;		/* Have need for more storage info. */
  bool init;

  assert (eq != NULL);

  if (ffeequiv_common (eq) != NULL)
    {				/* Put in common due to programmer error. */
      ffeequiv_destroy_ (eq);
      return;
    }

  /* Find the symbol for the first valid item in the list of lists, use that
     as the root symbol.  Doesn't matter if it won't end up at the beginning
     of the list, though.  */

#if FFEEQUIV_DEBUG
  fprintf (stderr, "Equiv1:\n");
#endif

  root_sym = NULL;
  root_exp = NULL;

  for (list = ffeequiv_list (eq);
       list != NULL;
       list = ffebld_trail (list))
    {				/* For every equivalence list in the list of
				   equivs */
      for (item = ffebld_head (list);
	   item != NULL;
	   item = ffebld_trail (item))
	{			/* For every equivalence item in the list */
	  ffetargetOffset ign;	/* Ignored. */

	  root_exp = ffebld_head (item);
	  root_sym = ffeequiv_symbol (root_exp);
	  if (root_sym == NULL)
	    continue;		/* Ignore me. */

	  assert (ffesymbol_storage (root_sym) == NULL);	/* No storage yet. */

	  if (!ffeequiv_offset_ (&ign, root_sym, root_exp, FALSE, 0, FALSE))
	    {
	      /* We can't just eliminate this one symbol from the list
		 of candidates, because it might be the only one that
		 ties all these equivs together.  So just destroy the
		 whole list.  */

	      ffeequiv_destroy_ (eq);
	      return;
	    }

	  break;	/* Use first valid eqv expr for root exp/sym. */
	}
      if (root_sym != NULL)
	break;
    }

  if (root_sym == NULL)
    {
      ffeequiv_destroy_ (eq);
      return;
    }


#if FFEEQUIV_DEBUG
  fprintf (stderr, "  Root: `%s'\n", ffesymbol_text (root_sym));
#endif

  /* We've got work to do, so make the LOCAL storage object that'll hold all
     the equivalenced vars inside it. */

  st = ffestorag_new (ffestorag_list_master ());
  ffestorag_set_parent (st, NULL);	/* Initializations happen here. */
  ffestorag_set_init (st, NULL);
  ffestorag_set_accretion (st, NULL);
  ffestorag_set_offset (st, 0);		/* Assume equiv will be at root offset 0 for now. */
  ffestorag_set_alignment (st, 1);
  ffestorag_set_modulo (st, 0);
  ffestorag_set_type (st, FFESTORAG_typeLOCAL);
  ffestorag_set_basictype (st, ffesymbol_basictype (root_sym));
  ffestorag_set_kindtype (st, ffesymbol_kindtype (root_sym));
  ffestorag_set_typesymbol (st, root_sym);
  ffestorag_set_is_save (st, ffeequiv_is_save (eq));
  if (ffesymbol_is_save (root_sym))
    ffestorag_update_save (st);
  ffestorag_set_is_init (st, ffeequiv_is_init (eq));
  if (ffesymbol_is_init (root_sym))
    ffestorag_update_init (st);
  ffestorag_set_symbol (st, root_sym);	/* Assume this will be the root until
					   we know better (used only to generate
					   the internal name for the aggregate area,
					   e.g. for debugging). */

  /* Make the EQUIV storage object for the root symbol. */

  if (ffesymbol_rank (root_sym) == 0)
    num_elements = 1;
  else
    num_elements = ffebld_constant_integerdefault (ffebld_conter
						(ffesymbol_arraysize (root_sym)));
  ffetarget_layout (ffesymbol_text (root_sym), &alignment, &modulo, &size,
		    ffesymbol_basictype (root_sym), ffesymbol_kindtype (root_sym),
		    ffesymbol_size (root_sym), num_elements);
  ffestorag_set_size (st, size);	/* Set initial size of aggregate area. */

  pad = ffetarget_align (ffestorag_ptr_to_alignment (st),
			 ffestorag_ptr_to_modulo (st), 0, alignment,
			 modulo);
  assert (pad == 0);

  root_st = ffestorag_new (ffestorag_list_equivs (st));
  ffestorag_set_parent (root_st, st);	/* Initializations happen there. */
  ffestorag_set_init (root_st, NULL);
  ffestorag_set_accretion (root_st, NULL);
  ffestorag_set_symbol (root_st, root_sym);
  ffestorag_set_size (root_st, size);
  ffestorag_set_offset (root_st, 0);	/* Will not change; always 0 relative to itself! */
  ffestorag_set_alignment (root_st, alignment);
  ffestorag_set_modulo (root_st, modulo);
  ffestorag_set_type (root_st, FFESTORAG_typeEQUIV);
  ffestorag_set_basictype (root_st, ffesymbol_basictype (root_sym));
  ffestorag_set_kindtype (root_st, ffesymbol_kindtype (root_sym));
  ffestorag_set_typesymbol (root_st, root_sym);
  ffestorag_set_is_save (root_st, FALSE);	/* Assume FALSE, then... */
  if (ffestorag_is_save (st))	/* ...update to TRUE if needed. */
    ffestorag_update_save (root_st);
  ffestorag_set_is_init (root_st, FALSE);	/* Assume FALSE, then... */
  if (ffestorag_is_init (st))	/* ...update to TRUE if needed. */
    ffestorag_update_init (root_st);
  ffesymbol_set_storage (root_sym, root_st);
  ffesymbol_signal_unreported (root_sym);
  init = ffesymbol_is_init (root_sym);

  /* Now that we know the root (offset=0) symbol, revisit all the lists and
     do the actual storage allocation.	Keep doing this until we've gone
     through them all without making any new storage objects. */

  do
    {
      new_storage = FALSE;
      need_storage = FALSE;
      for (list = ffeequiv_list (eq);
	   list != NULL;
	   list = ffebld_trail (list))
	{			/* For every equivalence list in the list of
				   equivs */
	  /* Now find a "rooted" symbol in this list.  That is, find the
	     first item we can that is valid and whose symbol already
	     has a storage area, because that means we know where it
	     belongs in the equivalence area and can then allocate the
	     rest of the items in the list accordingly.  */

	  rooted_sym = NULL;
	  rooted_exp = NULL;
	  eqlist_offset = 0;

	  for (item = ffebld_head (list);
	       item != NULL;
	       item = ffebld_trail (item))
	    {			/* For every equivalence item in the list */
	      rooted_exp = ffebld_head (item);
	      rooted_sym = ffeequiv_symbol (rooted_exp);
	      if ((rooted_sym == NULL)
		  || ((rooted_st = ffesymbol_storage (rooted_sym)) == NULL))
		{
		  rooted_sym = NULL;
		  continue;	/* Ignore me. */
		}

	      need_storage = TRUE;	/* Somebody is likely to need
					   storage. */

#if FFEEQUIV_DEBUG
	      fprintf (stderr, "  Rooted: `%s' at %" ffetargetOffset_f "d\n",
		       ffesymbol_text (rooted_sym),
		       ffestorag_offset (rooted_st));
#endif

	      /* The offset of this symbol from the equiv's root symbol
		 is already known, and the size of this symbol is already
		 incorporated in the size of the equiv's aggregate area.
		 What we now determine is the offset of this equivalence
		 _list_ from the equiv's root symbol.

		 For example, if we know that A is at offset 16 from the
		 root symbol, given EQUIVALENCE (B(24),A(2)), we're looking
		 at A(2), meaning that the offset for this equivalence list
		 is 20 (4 bytes beyond the beginning of A, assuming typical
		 array types, dimensions, and type info).  */

	      if (!ffeequiv_offset_ (&eqlist_offset, rooted_sym, rooted_exp, FALSE,
				     ffestorag_offset (rooted_st), FALSE))

		{	/* Can't use this one. */
		  ffesymbol_set_equiv (rooted_sym, NULL);/* Equiv area slated for
							    death. */
		  rooted_sym = NULL;
		  continue;		/* Something's wrong with eqv expr, try another. */
		}

#if FFEEQUIV_DEBUG
	      fprintf (stderr, "  Eqlist offset: %" ffetargetOffset_f "d\n",
		       eqlist_offset);
#endif

	      break;
	    }

	  /* If no rooted symbol, it means this list has no roots -- yet.
	     So, forget this list this time around, but we'll get back
	     to it after the outer loop iterates at least one more time,
	     and, ultimately, it will have a root.  */

	  if (rooted_sym == NULL)
	    {
#if FFEEQUIV_DEBUG
	      fprintf (stderr, "No roots.\n");
#endif
	      continue;
	    }

	  /* We now have a rooted symbol/expr and the offset of this equivalence
	     list from the root symbol.  The other expressions in this
	     list all identify an initial storage unit that must have the
	     same offset. */

	  for (item = ffebld_head (list);
	       item != NULL;
	       item = ffebld_trail (item))
	    {			/* For every equivalence item in the list */
	      ffebld item_exp;			/* Expression for equivalence. */
	      ffestorag item_st;		/* Storage for var. */
	      ffesymbol item_sym;		/* Var itself. */
	      ffetargetOffset item_offset;	/* Offset for var from root. */
	      ffetargetOffset new_size;

	      item_exp = ffebld_head (item);
	      item_sym = ffeequiv_symbol (item_exp);
	      if ((item_sym == NULL)
		  || (ffesymbol_equiv (item_sym) == NULL))
		continue;	/* Ignore me. */

	      if (item_sym == rooted_sym)
		continue;	/* Rooted sym already set up. */

	      if (!ffeequiv_offset_ (&item_offset, item_sym, item_exp, TRUE,
				     eqlist_offset, FALSE))
		{
		  ffesymbol_set_equiv (item_sym, NULL);	/* Don't bother with me anymore. */
		  continue;
		}

#if FFEEQUIV_DEBUG
	      fprintf (stderr, "  Item `%s' at %" ffetargetOffset_f "d",
		       ffesymbol_text (item_sym), item_offset);
#endif

	      if (ffesymbol_rank (item_sym) == 0)
		num_elements = 1;
	      else
		num_elements = ffebld_constant_integerdefault (ffebld_conter
						(ffesymbol_arraysize (item_sym)));
	      ffetarget_layout (ffesymbol_text (item_sym), &alignment, &modulo,
				&size, ffesymbol_basictype (item_sym),
				ffesymbol_kindtype (item_sym), ffesymbol_size (item_sym),
				num_elements);
	      pad = ffetarget_align (ffestorag_ptr_to_alignment (st),
				     ffestorag_ptr_to_modulo (st),
				     item_offset, alignment, modulo);
	      if (pad != 0)
		{
		  ffebad_start (FFEBAD_EQUIV_ALIGN);
		  ffebad_string (ffesymbol_text (item_sym));
		  ffebad_finish ();
		  ffesymbol_set_equiv (item_sym, NULL);	/* Don't bother with me anymore. */
		  continue;
		}

	      /* If the variable's offset is less than the offset for the
		 aggregate storage area, it means it has to expand backwards
		 -- i.e. the new known starting point of the area precedes the
		 old one.  This can't happen with COMMON areas (the standard,
		 and common sense, disallow it), but it is normal for local
		 EQUIVALENCE areas.

		 Also handle choosing the "documented" rooted symbol for this
		 area here.  It's the symbol at the bottom (lowest offset)
		 of the aggregate area, with ties going to the name that would
		 sort to the top of the list of ties.  */

	      if (item_offset == ffestorag_offset (st))
		{
		  if ((item_sym != ffestorag_symbol (st))
		      && (strcmp (ffesymbol_text (item_sym),
				  ffesymbol_text (ffestorag_symbol (st)))
			  < 0))
		    ffestorag_set_symbol (st, item_sym);
		}
	      else if (item_offset < ffestorag_offset (st))
		{
		  /* Increase size of equiv area to start for lower offset
		     relative to root symbol.  */
		  if (! ffetarget_offset_add (&new_size,
					      ffestorag_offset (st)
					      - item_offset,
					      ffestorag_size (st)))
		    ffetarget_offset_overflow (ffesymbol_text (s));
		  else
		    ffestorag_set_size (st, new_size);

		  ffestorag_set_symbol (st, item_sym);
		  ffestorag_set_offset (st, item_offset);

#if FFEEQUIV_DEBUG
		  fprintf (stderr, " [eq offset=%" ffetargetOffset_f
			   "d, size=%" ffetargetOffset_f "d]",
			   item_offset, new_size);
#endif
		}

	      if ((item_st = ffesymbol_storage (item_sym)) == NULL)
		{		/* Create new ffestorag object, extend equiv
				   area. */
#if FFEEQUIV_DEBUG
		  fprintf (stderr, ".\n");
#endif
		  new_storage = TRUE;
		  item_st = ffestorag_new (ffestorag_list_equivs (st));
		  ffestorag_set_parent (item_st, st);	/* Initializations
							   happen there. */
		  ffestorag_set_init (item_st, NULL);
		  ffestorag_set_accretion (item_st, NULL);
		  ffestorag_set_symbol (item_st, item_sym);
		  ffestorag_set_size (item_st, size);
		  ffestorag_set_offset (item_st, item_offset);
		  ffestorag_set_alignment (item_st, alignment);
		  ffestorag_set_modulo (item_st, modulo);
		  ffestorag_set_type (item_st, FFESTORAG_typeEQUIV);
		  ffestorag_set_basictype (item_st, ffesymbol_basictype (item_sym));
		  ffestorag_set_kindtype (item_st, ffesymbol_kindtype (item_sym));
		  ffestorag_set_typesymbol (item_st, item_sym);
		  ffestorag_set_is_save (item_st, FALSE);	/* Assume FALSE... */
		  if (ffestorag_is_save (st))	/* ...update TRUE */
		    ffestorag_update_save (item_st);	/* if needed. */
		  ffestorag_set_is_init (item_st, FALSE);	/* Assume FALSE... */
		  if (ffestorag_is_init (st))	/* ...update TRUE */
		    ffestorag_update_init (item_st);	/* if needed. */
		  ffesymbol_set_storage (item_sym, item_st);
		  ffesymbol_signal_unreported (item_sym);
		  if (ffesymbol_is_init (item_sym))
		    init = TRUE;

		  /* Determine new size of equiv area, complain if overflow.  */

		  if (!ffetarget_offset_add (&size, item_offset, size)
		      || !ffetarget_offset_add (&size, -ffestorag_offset (st), size))
		    ffetarget_offset_overflow (ffesymbol_text (s));
		  else if (size > ffestorag_size (st))
		    ffestorag_set_size (st, size);
		  ffestorag_update (st, item_sym, ffesymbol_basictype (item_sym),
				    ffesymbol_kindtype (item_sym));
		}
	      else
		{
#if FFEEQUIV_DEBUG
		  fprintf (stderr, " (was %" ffetargetOffset_f "d).\n",
			   ffestorag_offset (item_st));
#endif
		  /* Make sure offset agrees with known offset. */
		  if (item_offset != ffestorag_offset (item_st))
		    {
		      char io1[40];
		      char io2[40];

		      sprintf (&io1[0], "%" ffetargetOffset_f "d", item_offset);
		      sprintf (&io2[0], "%" ffetargetOffset_f "d", ffestorag_offset (item_st));
		      ffebad_start (FFEBAD_EQUIV_MISMATCH);
		      ffebad_string (ffesymbol_text (item_sym));
		      ffebad_string (ffesymbol_text (root_sym));
		      ffebad_string (io1);
		      ffebad_string (io2);
		      ffebad_finish ();
		    }
		}
	      ffesymbol_set_equiv (item_sym, NULL);	/* Don't bother with me anymore. */
	    }			/* (For every equivalence item in the list) */
	  ffebld_set_head (list, NULL);	/* Don't do this list again. */
	}			/* (For every equivalence list in the list of
				   equivs) */
    } while (new_storage && need_storage);

  ffesymbol_set_equiv (root_sym, NULL);	/* This one has storage now. */

  ffeequiv_kill (eq);		/* Fully processed, no longer needed. */

  /* If the offset for this storage area is zero (it cannot be positive),
     that means the alignment/modulo info is already correct.  Otherwise,
     the alignment info is correct, but the modulo info reflects a
     zero offset, so fix it.  */

  if (ffestorag_offset (st) < 0)
    {
      /* Calculate the initial padding necessary to preserve
	 the alignment/modulo requirements for the storage area.
	 These requirements are themselves kept track of in the
	 record for the storage area as a whole, but really pertain
	 to offset 0 of that area, which is where the root symbol
	 was originally placed.

	 The goal here is to have the offset and size for the area
	 faithfully reflect the area itself, not extra requirements
	 like alignment.  So to meet the alignment requirements,
	 the modulo for the area should be set as if the area had an
	 alignment requirement of alignment/0 and was aligned/padded
	 downward to meet the alignment requirements of the area at
	 offset zero, the amount of padding needed being the desired
	 value for the modulo of the area.  */

      alignment = ffestorag_alignment (st);
      modulo = ffestorag_modulo (st);

      /* Since we want to move the whole area *down* (lower memory
	 addresses) as required by the alignment/modulo paid, negate
	 the offset to ffetarget_align, which assumes aligning *up*
	 is desired.  */
      pad = ffetarget_align (&alignment, &modulo,
			     - ffestorag_offset (st),
			     alignment, 0);
      ffestorag_set_modulo (st, pad);
    }

  if (init)
    ffedata_gather (st);	/* Gather subordinate inits into one init. */
}

/* ffeequiv_offset_ -- Determine offset from start of symbol

   ffetargetOffset offset;
   ffesymbol s;	 // Symbol for error reporting.
   ffebld expr;	 // opSUBSTR, opARRAYREF, opSYMTER, opANY.
   bool subtract;  // FALSE means add to adjust, TRUE means subtract from it.
   ffetargetOffset adjust;  // Helps keep answer in pos range (unsigned).
   if (!ffeequiv_offset_(&offset,s,expr,subtract,adjust))
       // error doing the calculation, message already printed

   Returns the offset represented by the SUBSTR, ARRAYREF, or SUBSTR/ARRAYREF
   combination added-to/subtracted-from the adjustment specified.  If there
   is an error of some kind, returns FALSE, else returns TRUE.	Note that
   only the first storage unit specified is considered; A(1:1) and A(1:2000)
   have the same first storage unit and so return the same offset.  */

static bool
ffeequiv_offset_ (ffetargetOffset *offset, ffesymbol s UNUSED,
		  ffebld expr, bool subtract, ffetargetOffset adjust,
		  bool no_precede)
{
  ffetargetIntegerDefault value = 0;
  ffetargetOffset cval;		/* Converted value. */
  ffesymbol sym;

  if (expr == NULL)
    return FALSE;

again:				/* :::::::::::::::::::: */

  switch (ffebld_op (expr))
    {
    case FFEBLD_opANY:
      return FALSE;

    case FFEBLD_opSYMTER:
      {
	ffetargetOffset size;	/* Size of a single unit. */
	ffetargetAlign a;	/* Ignored. */
	ffetargetAlign m;	/* Ignored. */

	sym = ffebld_symter (expr);
	if (ffesymbol_basictype (sym) == FFEINFO_basictypeANY)
	  return FALSE;

	ffetarget_layout (ffesymbol_text (sym), &a, &m, &size,
			  ffesymbol_basictype (sym),
			  ffesymbol_kindtype (sym), 1, 1);

	if (value < 0)
	  {			/* Really invalid, as in A(-2:5), but in case
				   it's wanted.... */
	    if (!ffetarget_offset (&cval, -value))
	      return FALSE;

	    if (!ffetarget_offset_multiply (&cval, cval, size))
	      return FALSE;

	    if (subtract)
	      return ffetarget_offset_add (offset, cval, adjust);

	    if (no_precede && (cval > adjust))
	      {
	      neg:		/* :::::::::::::::::::: */
		ffebad_start (FFEBAD_COMMON_NEG);
		ffebad_string (ffesymbol_text (sym));
		ffebad_finish ();
		return FALSE;
	      }
	    return ffetarget_offset_add (offset, -cval, adjust);
	  }

	if (!ffetarget_offset (&cval, value))
	  return FALSE;

	if (!ffetarget_offset_multiply (&cval, cval, size))
	  return FALSE;

	if (!subtract)
	  return ffetarget_offset_add (offset, cval, adjust);

	if (no_precede && (cval > adjust))
	  goto neg;		/* :::::::::::::::::::: */

	return ffetarget_offset_add (offset, -cval, adjust);
      }

    case FFEBLD_opARRAYREF:
      {
	ffebld symexp = ffebld_left (expr);
	ffebld subscripts = ffebld_right (expr);
	ffebld dims;
	ffetargetIntegerDefault width;
	ffetargetIntegerDefault arrayval;
	ffetargetIntegerDefault lowbound;
	ffetargetIntegerDefault highbound;
	ffebld subscript;
	ffebld dim;
	ffebld low;
	ffebld high;
	int rank = 0;

	if (ffebld_op (symexp) != FFEBLD_opSYMTER)
	  return FALSE;

	sym = ffebld_symter (symexp);
	if (ffesymbol_basictype (sym) == FFEINFO_basictypeANY)
	  return FALSE;

	if (ffesymbol_size (sym) == FFETARGET_charactersizeNONE)
	  width = 1;
	else
	  width = ffesymbol_size (sym);
	dims = ffesymbol_dims (sym);

	while (subscripts != NULL)
	  {
	    ++rank;
	    if (dims == NULL)
	      {
		ffebad_start (FFEBAD_EQUIV_MANY);
		ffebad_string (ffesymbol_text (sym));
		ffebad_finish ();
		return FALSE;
	      }

	    subscript = ffebld_head (subscripts);
	    dim = ffebld_head (dims);

	    if (ffebld_op (subscript) == FFEBLD_opANY)
	      return FALSE;

	    assert (ffebld_op (subscript) == FFEBLD_opCONTER);
	    assert (ffeinfo_basictype (ffebld_info (subscript))
		    == FFEINFO_basictypeINTEGER);
	    assert (ffeinfo_kindtype (ffebld_info (subscript))
		    == FFEINFO_kindtypeINTEGERDEFAULT);
	    arrayval = ffebld_constant_integerdefault (ffebld_conter
						       (subscript));

	    if (ffebld_op (dim) == FFEBLD_opANY)
	      return FALSE;

	    assert (ffebld_op (dim) == FFEBLD_opBOUNDS);
	    low = ffebld_left (dim);
	    high = ffebld_right (dim);

	    if (low == NULL)
	      lowbound = 1;
	    else
	      {
		if (ffebld_op (low) == FFEBLD_opANY)
		  return FALSE;

		assert (ffebld_op (low) == FFEBLD_opCONTER);
		assert (ffeinfo_basictype (ffebld_info (low))
			== FFEINFO_basictypeINTEGER);
		assert (ffeinfo_kindtype (ffebld_info (low))
			== FFEINFO_kindtypeINTEGERDEFAULT);
		lowbound
		  = ffebld_constant_integerdefault (ffebld_conter (low));
	      }

	    if (ffebld_op (high) == FFEBLD_opANY)
	      return FALSE;

	    assert (ffebld_op (high) == FFEBLD_opCONTER);
	    assert (ffeinfo_basictype (ffebld_info (high))
		    == FFEINFO_basictypeINTEGER);
	    assert (ffeinfo_kindtype (ffebld_info (high))
		    == FFEINFO_kindtypeINTEGER1);
	    highbound
	      = ffebld_constant_integerdefault (ffebld_conter (high));

	    if ((arrayval < lowbound) || (arrayval > highbound))
	      {
		char rankstr[10];

		sprintf (rankstr, "%d", rank);
		ffebad_start (FFEBAD_EQUIV_SUBSCRIPT);
		ffebad_string (ffesymbol_text (sym));
		ffebad_string (rankstr);
		ffebad_finish ();
	      }

	    subscripts = ffebld_trail (subscripts);
	    dims = ffebld_trail (dims);

	    value += width * (arrayval - lowbound);
	    if (subscripts != NULL)
	      width *= highbound - lowbound + 1;
	  }

	if (dims != NULL)
	  {
	    ffebad_start (FFEBAD_EQUIV_FEW);
	    ffebad_string (ffesymbol_text (sym));
	    ffebad_finish ();
	    return FALSE;
	  }

	expr = symexp;
      }
      goto again;		/* :::::::::::::::::::: */

    case FFEBLD_opSUBSTR:
      {
	ffebld begin = ffebld_head (ffebld_right (expr));

	expr = ffebld_left (expr);
	if (ffebld_op (expr) == FFEBLD_opANY)
	  return FALSE;
	if (ffebld_op (expr) == FFEBLD_opARRAYREF)
	  sym = ffebld_symter (ffebld_left (expr));
	else if (ffebld_op (expr) == FFEBLD_opSYMTER)
	  sym = ffebld_symter (expr);
	else
	  sym = NULL;

	if ((sym != NULL)
	    && (ffesymbol_basictype (sym) == FFEINFO_basictypeANY))
	  return FALSE;

	if (begin == NULL)
	  value = 0;
	else
	  {
	    if (ffebld_op (begin) == FFEBLD_opANY)
	      return FALSE;
	    assert (ffebld_op (begin) == FFEBLD_opCONTER);
	    assert (ffeinfo_basictype (ffebld_info (begin))
		    == FFEINFO_basictypeINTEGER);
	    assert (ffeinfo_kindtype (ffebld_info (begin))
		    == FFEINFO_kindtypeINTEGERDEFAULT);

	    value = ffebld_constant_integerdefault (ffebld_conter (begin));

	    if ((value < 1)
		|| ((sym != NULL)
		    && (value > ffesymbol_size (sym))))
	      {
		ffebad_start (FFEBAD_EQUIV_RANGE);
		ffebad_string (ffesymbol_text (sym));
		ffebad_finish ();
	      }

	    --value;
	  }
	if ((sym != NULL)
	    && (ffesymbol_basictype (sym) != FFEINFO_basictypeCHARACTER))
	  {
	    ffebad_start (FFEBAD_EQUIV_SUBSTR);
	    ffebad_string (ffesymbol_text (sym));
	    ffebad_finish ();
	    value = 0;
	  }
      }
      goto again;		/* :::::::::::::::::::: */

    default:
      assert ("bad op" == NULL);
      return FALSE;
    }

}

/* ffeequiv_add -- Add list of equivalences to list of lists for eq object

   ffeequiv eq;
   ffebld list;
   ffelexToken t;  // points to first item in equivalence list
   ffeequiv_add(eq,list,t);

   Check the list to make sure only one common symbol is involved (even
   if multiple times) and agrees with the common symbol for the equivalence
   object (or it has no common symbol until now).  Prepend (or append, it
   doesn't matter) the list to the list of lists for the equivalence object.
   Otherwise report an error and return.  */

void
ffeequiv_add (ffeequiv eq, ffebld list, ffelexToken t)
{
  ffebld item;
  ffesymbol symbol;
  ffesymbol common = ffeequiv_common (eq);

  for (item = list; item != NULL; item = ffebld_trail (item))
    {
      symbol = ffeequiv_symbol (ffebld_head (item));

      if (ffesymbol_common (symbol) != NULL)	/* Is symbol known in COMMON yet? */
	{
	  if (common == NULL)
	    common = ffesymbol_common (symbol);
	  else if (common != ffesymbol_common (symbol))
	    {
	      /* Yes, and symbol disagrees with others on the COMMON area. */
	      ffebad_start (FFEBAD_EQUIV_COMMON);
	      ffebad_here (0, ffelex_token_where_line (t), ffelex_token_where_column (t));
	      ffebad_string (ffesymbol_text (common));
	      ffebad_string (ffesymbol_text (ffesymbol_common (symbol)));
	      ffebad_finish ();
	      return;
	    }
	}
    }

  if ((common != NULL)
      && (ffeequiv_common (eq) == NULL))	/* Is COMMON involved already? */
    ffeequiv_set_common (eq, common);	/* No, but it is now. */

  for (item = list; item != NULL; item = ffebld_trail (item))
    {
      symbol = ffeequiv_symbol (ffebld_head (item));

      if (ffesymbol_equiv (symbol) == NULL)
	ffesymbol_set_equiv (symbol, eq);
      else
	assert (ffesymbol_equiv (symbol) == eq);

      if (ffesymbol_common (symbol) == NULL)	/* Is symbol in a COMMON
						   area? */
	{			/* No (at least not yet). */
	  if (ffesymbol_is_save (symbol))
	    ffeequiv_update_save (eq);	/* EQUIVALENCE has >=1 SAVEd entity. */
	  if (ffesymbol_is_init (symbol))
	    ffeequiv_update_init (eq);	/* EQUIVALENCE has >=1 init'd entity. */
	  continue;		/* Nothing more to do here. */
	}

#if FFEGLOBAL_ENABLED
      if (ffesymbol_is_init (symbol))
	ffeglobal_init_common (ffesymbol_common (symbol), t);
#endif

      if (ffesymbol_is_save (ffesymbol_common (symbol)))
	ffeequiv_update_save (eq);	/* EQUIVALENCE is in a SAVEd COMMON block. */
      if (ffesymbol_is_init (ffesymbol_common (symbol)))
	ffeequiv_update_init (eq);	/* EQUIVALENCE is in a init'd COMMON block. */
    }

  ffeequiv_set_list (eq, ffebld_new_item (list, ffeequiv_list (eq)));
}

/* ffeequiv_dump -- Dump info on equivalence object

   ffeequiv eq;
   ffeequiv_dump(eq);  */

#if FFECOM_targetCURRENT == FFECOM_targetFFE
void
ffeequiv_dump (ffeequiv eq)
{
  if (ffeequiv_common (eq) != NULL)
    fprintf (dmpout, "(common %s) ", ffesymbol_text (ffeequiv_common (eq)));
  ffebld_dump (ffeequiv_list (eq));
}
#endif

/* ffeequiv_exec_transition -- Do the hard work on all the equivalence objects

   ffeequiv_exec_transition();	*/

void
ffeequiv_exec_transition ()
{
  while (ffeequiv_list_.first != (ffeequiv) &ffeequiv_list_.first)
    ffeequiv_layout_local_ (ffeequiv_list_.first);
}

/* ffeequiv_init_2 -- Initialize for new program unit

   ffeequiv_init_2();

   Initializes the list of equivalences.  */

void
ffeequiv_init_2 ()
{
  ffeequiv_list_.first = (ffeequiv) &ffeequiv_list_.first;
  ffeequiv_list_.last = (ffeequiv) &ffeequiv_list_.first;
}

/* ffeequiv_kill -- Kill equivalence object after removing from list

   ffeequiv eq;
   ffeequiv_kill(eq);

   Removes equivalence object from master list, then kills it.	*/

void
ffeequiv_kill (ffeequiv victim)
{
  victim->next->previous = victim->previous;
  victim->previous->next = victim->next;
  if (ffe_is_do_internal_checks ())
    {
      ffebld list;
      ffebld item;
      ffebld expr;

      /* Assert that nobody our victim points to still points to it.  */

      assert ((victim->common == NULL)
	      || (ffesymbol_equiv (victim->common) == NULL));

      for (list = victim->list; list != NULL; list = ffebld_trail (list))
	{
	  for (item = ffebld_head (list); item != NULL; item = ffebld_trail (item))
	    {
	      ffesymbol sym;

	      expr = ffebld_head (item);
	      sym = ffeequiv_symbol (expr);
	      if (sym == NULL)
		continue;
	      assert (ffesymbol_equiv (sym) != victim);
	    }
	}
    }
  malloc_kill_ks (ffe_pool_program_unit (), victim, sizeof (*victim));
}

/* ffeequiv_layout_cblock -- Lay out storage for common area

   ffestorag st;
   if (ffeequiv_layout_cblock(st))
       // at least one equiv'd symbol has init/accretion expr.

   Now that the explicitly COMMONed variables in the common area (whose
   ffestorag object is passed) have been laid out, lay out the storage
   for all variables equivalenced into the area by making subordinate
   ffestorag objects for them.	*/

bool
ffeequiv_layout_cblock (ffestorag st)
{
  ffesymbol s = ffestorag_symbol (st);	/* CBLOCK symbol. */
  ffebld list;			/* List of explicit common vars, in order, in
				   s. */
  ffebld item;			/* List of list of equivalences in a given
				   explicit common var. */
  ffebld root;			/* Expression for (1st) explicit common var
				   in list of eqs. */
  ffestorag rst;		/* Storage for root. */
  ffetargetOffset root_offset;	/* Offset for root into common area. */
  ffesymbol sr;			/* Root itself. */
  ffeequiv seq;			/* Its equivalence object, if any. */
  ffebld var;			/* Expression for equivalence. */
  ffestorag vst;		/* Storage for var. */
  ffetargetOffset var_offset;	/* Offset for var into common area. */
  ffesymbol sv;			/* Var itself. */
  ffebld altroot;		/* Alternate root. */
  ffesymbol altrootsym;		/* Alternate root symbol. */
  ffetargetAlign alignment;
  ffetargetAlign modulo;
  ffetargetAlign pad;
  ffetargetOffset size;
  ffetargetOffset num_elements;
  bool new_storage;		/* Established new storage info. */
  bool need_storage;		/* Have need for more storage info. */
  bool ok;
  bool init = FALSE;

  assert (st != NULL);
  assert (ffestorag_type (st) == FFESTORAG_typeCBLOCK);
  assert (ffesymbol_kind (ffestorag_symbol (st)) == FFEINFO_kindCOMMON);

  for (list = ffesymbol_commonlist (ffestorag_symbol (st));
       list != NULL;
       list = ffebld_trail (list))
    {				/* For every variable in the common area */
      assert (ffebld_op (ffebld_head (list)) == FFEBLD_opSYMTER);
      sr = ffebld_symter (ffebld_head (list));
      if ((seq = ffesymbol_equiv (sr)) == NULL)
	continue;		/* No equivalences to process. */
      rst = ffesymbol_storage (sr);
      if (rst == NULL)
	{
	  assert (ffesymbol_kind (sr) == FFEINFO_kindANY);
	  continue;
	}
      ffesymbol_set_equiv (sr, NULL);	/* Cancel ref to equiv obj. */
      do
	{
	  new_storage = FALSE;
	  need_storage = FALSE;
	  for (item = ffeequiv_list (seq);	/* Get list of equivs. */
	       item != NULL;
	       item = ffebld_trail (item))
	    {			/* For every eqv list in the list of equivs
				   for the variable */
	      altroot = NULL;
	      altrootsym = NULL;
	      for (root = ffebld_head (item);
		   root != NULL;
		   root = ffebld_trail (root))
		{		/* For every equivalence item in the list */
		  sv = ffeequiv_symbol (ffebld_head (root));
		  if (sv == sr)
		    break;	/* Found first mention of "rooted" symbol. */
		  if (ffesymbol_storage (sv) != NULL)
		    {
		      altroot = root;	/* If no mention, use this guy
					   instead. */
		      altrootsym = sv;
		    }
		}
	      if (root != NULL)
		{
		  root = ffebld_head (root);	/* Lose its opITEM. */
		  ok = ffeequiv_offset_ (&root_offset, sr, root, FALSE,
					 ffestorag_offset (rst), TRUE);
		  /* Equiv point prior to start of common area? */
		}
	      else if (altroot != NULL)
		{
		  /* Equiv point prior to start of common area? */
		  root = ffebld_head (altroot);
		  ok = ffeequiv_offset_ (&root_offset, altrootsym, root,
					 FALSE,
			 ffestorag_offset (ffesymbol_storage (altrootsym)),
					 TRUE);
		  ffesymbol_set_equiv (altrootsym, NULL);
		}
	      else
		/* No rooted symbol in list of equivalences! */
		{		/* Assume this was due to opANY and ignore
				   this list for now. */
		  need_storage = TRUE;
		  continue;
		}

	      /* We now know the root symbol and the operating offset of that
		 root into the common area.  The other expressions in the
		 list all identify an initial storage unit that must have the
		 same offset. */

	      for (var = ffebld_head (item);
		   var != NULL;
		   var = ffebld_trail (var))
		{		/* For every equivalence item in the list */
		  if (ffebld_head (var) == root)
		    continue;	/* Except root, of course. */
		  sv = ffeequiv_symbol (ffebld_head (var));
		  if (sv == NULL)
		    continue;	/* Except erroneous stuff (opANY). */
		  ffesymbol_set_equiv (sv, NULL);	/* Don't need this ref
							   anymore. */
		  if (!ok
		      || !ffeequiv_offset_ (&var_offset, sv,
					    ffebld_head (var), TRUE,
					    root_offset, TRUE))
		    continue;	/* Can't do negative offset wrt COMMON. */

		  if (ffesymbol_rank (sv) == 0)
		    num_elements = 1;
		  else
		    num_elements = ffebld_constant_integerdefault
		      (ffebld_conter (ffesymbol_arraysize (sv)));
		  ffetarget_layout (ffesymbol_text (sv), &alignment,
				    &modulo, &size,
				    ffesymbol_basictype (sv),
				    ffesymbol_kindtype (sv),
				    ffesymbol_size (sv), num_elements);
		  pad = ffetarget_align (ffestorag_ptr_to_alignment (st),
					 ffestorag_ptr_to_modulo (st),
					 var_offset, alignment, modulo);
		  if (pad != 0)
		    {
		      ffebad_start (FFEBAD_EQUIV_ALIGN);
		      ffebad_string (ffesymbol_text (sv));
		      ffebad_finish ();
		      continue;
		    }

		  if ((vst = ffesymbol_storage (sv)) == NULL)
		    {		/* Create new ffestorag object, extend
				   cblock. */
		      new_storage = TRUE;
		      vst = ffestorag_new (ffestorag_list_equivs (st));
		      ffestorag_set_parent (vst, st);	/* Initializations
							   happen there. */
		      ffestorag_set_init (vst, NULL);
		      ffestorag_set_accretion (vst, NULL);
		      ffestorag_set_symbol (vst, sv);
		      ffestorag_set_size (vst, size);
		      ffestorag_set_offset (vst, var_offset);
		      ffestorag_set_alignment (vst, alignment);
		      ffestorag_set_modulo (vst, modulo);
		      ffestorag_set_type (vst, FFESTORAG_typeEQUIV);
		      ffestorag_set_basictype (vst, ffesymbol_basictype (sv));
		      ffestorag_set_kindtype (vst, ffesymbol_kindtype (sv));
		      ffestorag_set_typesymbol (vst, sv);
		      ffestorag_set_is_save (vst, FALSE);	/* Assume FALSE... */
		      if (ffestorag_is_save (st))	/* ...update TRUE */
			ffestorag_update_save (vst);	/* if needed. */
		      ffestorag_set_is_init (vst, FALSE);	/* Assume FALSE... */
		      if (ffestorag_is_init (st))	/* ...update TRUE */
			ffestorag_update_init (vst);	/* if needed. */
		      if (!ffetarget_offset_add (&size, var_offset, size))
			/* Find one size of common block, complain if
			   overflow. */
			ffetarget_offset_overflow (ffesymbol_text (s));
		      else if (size > ffestorag_size (st))
			/* Extend common. */
			ffestorag_set_size (st, size);
		      ffesymbol_set_storage (sv, vst);
		      ffesymbol_set_common (sv, s);
		      ffesymbol_signal_unreported (sv);
		      ffestorag_update (st, sv, ffesymbol_basictype (sv),
					ffesymbol_kindtype (sv));
		      if (ffesymbol_is_init (sv))
			init = TRUE;
		    }
		  else
		    {
		      /* Make sure offset agrees with known offset. */
		      if (var_offset != ffestorag_offset (vst))
			{
			  char io1[40];
			  char io2[40];

			  sprintf (&io1[0], "%" ffetargetOffset_f "d", var_offset);
			  sprintf (&io2[0], "%" ffetargetOffset_f "d", ffestorag_offset (vst));
			  ffebad_start (FFEBAD_EQUIV_MISMATCH);
			  ffebad_string (ffesymbol_text (sv));
			  ffebad_string (ffesymbol_text (s));
			  ffebad_string (io1);
			  ffebad_string (io2);
			  ffebad_finish ();
			}
		    }
		}		/* (For every equivalence item in the list) */
	    }			/* (For every eqv list in the list of equivs
				   for the variable) */
	}
      while (new_storage && need_storage);

      ffeequiv_kill (seq);	/* Kill equiv obj. */
    }				/* (For every variable in the common area) */

  return init;
}

/* ffeequiv_merge -- Merge two equivalence objects, return the merged result

   ffeequiv eq1;
   ffeequiv eq2;
   ffelexToken t;  // points to current equivalence item forcing the merge.
   eq1 = ffeequiv_merge(eq1,eq2,t);

   If the two equivalence objects can be merged, they are, all the
   ffesymbols in their lists of lists are adjusted to point to the merged
   equivalence object, and the merged object is returned.

   Otherwise, the two equivalence objects have different non-NULL common
   symbols, so the merge cannot take place.  An error message is issued and
   NULL is returned.  */

ffeequiv
ffeequiv_merge (ffeequiv eq1, ffeequiv eq2, ffelexToken t)
{
  ffebld list;
  ffebld eqs;
  ffesymbol symbol;
  ffebld last = NULL;

  /* If both equivalence objects point to different common-based symbols,
     complain.	Of course, one or both might have NULL common symbols now,
     and get COMMONed later, but the COMMON statement handler checks for
     this. */

  if ((ffeequiv_common (eq1) != NULL) && (ffeequiv_common (eq2) != NULL)
      && (ffeequiv_common (eq1) != ffeequiv_common (eq2)))
    {
      ffebad_start (FFEBAD_EQUIV_COMMON);
      ffebad_here (0, ffelex_token_where_line (t), ffelex_token_where_column (t));
      ffebad_string (ffesymbol_text (ffeequiv_common (eq1)));
      ffebad_string (ffesymbol_text (ffeequiv_common (eq2)));
      ffebad_finish ();
      return NULL;
    }

  /* Make eq1 the new, merged object (arbitrarily). */

  if (ffeequiv_common (eq1) == NULL)
    ffeequiv_set_common (eq1, ffeequiv_common (eq2));

  /* If the victim object has any init'ed entities, so does the new object. */

  if (eq2->is_init)
    eq1->is_init = TRUE;

#if FFEGLOBAL_ENABLED
  if (eq1->is_init && (ffeequiv_common (eq1) != NULL))
    ffeglobal_init_common (ffeequiv_common (eq1), t);
#endif

  /* If the victim object has any SAVEd entities, then the new object has
     some. */

  if (ffeequiv_is_save (eq2))
    ffeequiv_update_save (eq1);

  /* If the victim object has any init'd entities, then the new object has
     some. */

  if (ffeequiv_is_init (eq2))
    ffeequiv_update_init (eq1);

  /* Adjust all the symbols in the list of lists of equivalences for the
     victim equivalence object so they point to the new merged object
     instead. */

  for (list = ffeequiv_list (eq2); list != NULL; list = ffebld_trail (list))
    {
      for (eqs = ffebld_head (list); eqs != NULL; eqs = ffebld_trail (eqs))
	{
	  symbol = ffeequiv_symbol (ffebld_head (eqs));
	  if (ffesymbol_equiv (symbol) == eq2)
	    ffesymbol_set_equiv (symbol, eq1);
	  else
	    assert (ffesymbol_equiv (symbol) == eq1);	/* Can see a sym > once. */
	}

      /* For convenience, remember where the last ITEM in the outer list is. */

      if (ffebld_trail (list) == NULL)
	{
	  last = list;
	  break;
	}
    }

  /* Append the list of lists in the new, merged object to the list of lists
     in the victim object, then use the new combined list in the new merged
     object. */

  ffebld_set_trail (last, ffeequiv_list (eq1));
  ffeequiv_set_list (eq1, ffeequiv_list (eq2));

  /* Unlink and kill the victim object. */

  ffeequiv_kill (eq2);

  return eq1;			/* Return the new merged object. */
}

/* ffeequiv_new -- Create new equivalence object, put in list

   ffeequiv eq;
   eq = ffeequiv_new();

   Creates a new equivalence object and adds it to the list of equivalence
   objects.  */

ffeequiv
ffeequiv_new ()
{
  ffeequiv eq;

  eq = malloc_new_ks (ffe_pool_program_unit (), "ffeequiv", sizeof (*eq));
  eq->next = (ffeequiv) &ffeequiv_list_.first;
  eq->previous = ffeequiv_list_.last;
  ffeequiv_set_common (eq, NULL);	/* No COMMON area yet. */
  ffeequiv_set_list (eq, NULL);	/* No list of lists of equivalences yet. */
  ffeequiv_set_is_save (eq, FALSE);
  ffeequiv_set_is_init (eq, FALSE);
  eq->next->previous = eq;
  eq->previous->next = eq;

  return eq;
}

/* ffeequiv_symbol -- Return symbol for equivalence expression

   ffesymbol symbol;
   ffebld expr;
   symbol = ffeequiv_symbol(expr);

   Finds the terminal SYMTER in an equivalence expression and returns the
   ffesymbol for it.  */

ffesymbol
ffeequiv_symbol (ffebld expr)
{
  assert (expr != NULL);

again:				/* :::::::::::::::::::: */

  switch (ffebld_op (expr))
    {
    case FFEBLD_opARRAYREF:
    case FFEBLD_opSUBSTR:
      expr = ffebld_left (expr);
      goto again;		/* :::::::::::::::::::: */

    case FFEBLD_opSYMTER:
      return ffebld_symter (expr);

    case FFEBLD_opANY:
      return NULL;

    default:
      assert ("bad eq expr" == NULL);
      return NULL;
    }
}

/* ffeequiv_update_init -- Update the INIT flag for the area to TRUE

   ffeequiv eq;
   ffeequiv_update_init(eq);

   If the INIT flag for the <eq> object is already set, return.	 Else,
   set it TRUE and call ffe*_update_init for all objects contained in
   this one.  */

void
ffeequiv_update_init (ffeequiv eq)
{
  ffebld list;			/* Current list in list of lists. */
  ffebld item;			/* Current item in current list. */
  ffebld expr;			/* Expression in head of current item. */

  if (eq->is_init)
    return;

  eq->is_init = TRUE;

  if ((eq->common != NULL)
      && !ffesymbol_is_init (eq->common))
    ffesymbol_update_init (eq->common);	/* Shouldn't be needed. */

  for (list = eq->list; list != NULL; list = ffebld_trail (list))
    {
      for (item = ffebld_head (list); item != NULL; item = ffebld_trail (item))
	{
	  expr = ffebld_head (item);

	again:			/* :::::::::::::::::::: */

	  switch (ffebld_op (expr))
	    {
	    case FFEBLD_opANY:
	      break;

	    case FFEBLD_opSYMTER:
	      if (!ffesymbol_is_init (ffebld_symter (expr)))
		ffesymbol_update_init (ffebld_symter (expr));
	      break;

	    case FFEBLD_opARRAYREF:
	      expr = ffebld_left (expr);
	      goto again;	/* :::::::::::::::::::: */

	    case FFEBLD_opSUBSTR:
	      expr = ffebld_left (expr);
	      goto again;	/* :::::::::::::::::::: */

	    default:
	      assert ("bad op for ffeequiv_update_init" == NULL);
	      break;
	    }
	}
    }
}

/* ffeequiv_update_save -- Update the SAVE flag for the area to TRUE

   ffeequiv eq;
   ffeequiv_update_save(eq);

   If the SAVE flag for the <eq> object is already set, return.	 Else,
   set it TRUE and call ffe*_update_save for all objects contained in
   this one.  */

void
ffeequiv_update_save (ffeequiv eq)
{
  ffebld list;			/* Current list in list of lists. */
  ffebld item;			/* Current item in current list. */
  ffebld expr;			/* Expression in head of current item. */

  if (eq->is_save)
    return;

  eq->is_save = TRUE;

  if ((eq->common != NULL)
      && !ffesymbol_is_save (eq->common))
    ffesymbol_update_save (eq->common);	/* Shouldn't be needed. */

  for (list = eq->list; list != NULL; list = ffebld_trail (list))
    {
      for (item = ffebld_head (list); item != NULL; item = ffebld_trail (item))
	{
	  expr = ffebld_head (item);

	again:			/* :::::::::::::::::::: */

	  switch (ffebld_op (expr))
	    {
	    case FFEBLD_opANY:
	      break;

	    case FFEBLD_opSYMTER:
	      if (!ffesymbol_is_save (ffebld_symter (expr)))
		ffesymbol_update_save (ffebld_symter (expr));
	      break;

	    case FFEBLD_opARRAYREF:
	      expr = ffebld_left (expr);
	      goto again;	/* :::::::::::::::::::: */

	    case FFEBLD_opSUBSTR:
	      expr = ffebld_left (expr);
	      goto again;	/* :::::::::::::::::::: */

	    default:
	      assert ("bad op for ffeequiv_update_save" == NULL);
	      break;
	    }
	}
    }
}