aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/libgnat/s-valueu.adb
blob: a981871744d14c588d86ffeea8a3c8f2cbae10fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                       S Y S T E M . V A L U E _ U                        --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2024, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with System.SPARK.Cut_Operations; use System.SPARK.Cut_Operations;
with System.Val_Util;             use System.Val_Util;

package body System.Value_U is

   --  Ghost code, loop invariants and assertions in this unit are meant for
   --  analysis only, not for run-time checking, as it would be too costly
   --  otherwise. This is enforced by setting the assertion policy to Ignore.

   pragma Assertion_Policy (Ghost              => Ignore,
                            Loop_Invariant     => Ignore,
                            Assert             => Ignore,
                            Assert_And_Cut     => Ignore,
                            Subprogram_Variant => Ignore);

   use type Spec.Uns_Option;
   use type Spec.Split_Value_Ghost;

   --  Local lemmas

   procedure Lemma_Digit_Not_Last
     (Str  : String;
      P    : Integer;
      From : Integer;
      To   : Integer)
   with Ghost,
     Pre  => Str'Last /= Positive'Last
       and then From in Str'Range
       and then To in From .. Str'Last
       and then Str (From) in '0' .. '9' | 'a' .. 'f' | 'A' .. 'F'
       and then P in From .. To
       and then P <= Spec.Last_Hexa_Ghost (Str (From .. To)) + 1
       and then Spec.Is_Based_Format_Ghost (Str (From .. To)),
     Post =>
       (if Str (P) in '0' .. '9' | 'a' .. 'f' | 'A' .. 'F'
        then P <= Spec.Last_Hexa_Ghost (Str (From .. To)));

   procedure Lemma_Underscore_Not_Last
     (Str  : String;
      P    : Integer;
      From : Integer;
      To   : Integer)
   with Ghost,
     Pre  => Str'Last /= Positive'Last
       and then From in Str'Range
       and then To in From .. Str'Last
       and then Str (From) in '0' .. '9' | 'a' .. 'f' | 'A' .. 'F'
       and then P in From .. To
       and then Str (P) = '_'
       and then P <= Spec.Last_Hexa_Ghost (Str (From .. To)) + 1
       and then Spec.Is_Based_Format_Ghost (Str (From .. To)),
     Post => P + 1 <= Spec.Last_Hexa_Ghost (Str (From .. To))
       and then Str (P + 1) in '0' .. '9' | 'a' .. 'f' | 'A' .. 'F';

   -----------------------------
   -- Local lemma null bodies --
   -----------------------------

   procedure Lemma_Digit_Not_Last
     (Str  : String;
      P    : Integer;
      From : Integer;
      To   : Integer)
   is null;

   procedure Lemma_Underscore_Not_Last
     (Str  : String;
      P    : Integer;
      From : Integer;
      To   : Integer)
   is null;

   -----------------------
   -- Scan_Raw_Unsigned --
   -----------------------

   procedure Scan_Raw_Unsigned
     (Str : String;
      Ptr : not null access Integer;
      Max : Integer;
      Res : out Uns)
   is
      P : Integer;
      --  Local copy of the pointer

      Uval : Uns;
      --  Accumulated unsigned integer result

      Expon : Integer;
      --  Exponent value

      Overflow : Boolean := False;
      --  Set True if overflow is detected at any point

      Base_Char : Character;
      --  Base character (# or :) in based case

      Base : Uns := 10;
      --  Base value (reset in based case)

      Digit : Uns;
      --  Digit value

      Ptr_Old       : constant Integer := Ptr.all
      with Ghost;
      Last_Num_Init : constant Integer :=
        Last_Number_Ghost (Str (Ptr.all .. Max))
      with Ghost;
      Init_Val      : constant Spec.Uns_Option :=
        Spec.Scan_Based_Number_Ghost (Str, Ptr.all, Last_Num_Init)
      with Ghost;
      Starts_As_Based : constant Boolean :=
        Spec.Raw_Unsigned_Starts_As_Based_Ghost (Str, Last_Num_Init, Max)
      with Ghost;
      Last_Num_Based  : constant Integer :=
        (if Starts_As_Based
         then Spec.Last_Hexa_Ghost (Str (Last_Num_Init + 2 .. Max))
         else Last_Num_Init)
      with Ghost;
      Is_Based        : constant Boolean :=
        Spec.Raw_Unsigned_Is_Based_Ghost
          (Str, Last_Num_Init, Last_Num_Based, Max)
      with Ghost;
      Based_Val       : constant Spec.Uns_Option :=
        (if Starts_As_Based and then not Init_Val.Overflow
         then Spec.Scan_Based_Number_Ghost
           (Str, Last_Num_Init + 2, Last_Num_Based, Init_Val.Value)
         else Init_Val)
      with Ghost;
      First_Exp       : constant Integer :=
        (if Is_Based then Last_Num_Based + 2 else Last_Num_Init + 1)
      with Ghost;

   begin
      --  We do not tolerate strings with Str'Last = Positive'Last

      if Str'Last = Positive'Last then
         raise Program_Error with
           "string upper bound is Positive'Last, not supported";
      end if;

      P := Ptr.all;
      Spec.Lemma_Scan_Based_Number_Ghost_Step (Str, P, Last_Num_Init);
      Uval := Character'Pos (Str (P)) - Character'Pos ('0');
      pragma Assert (Str (P) in '0' .. '9');
      P := P + 1;

      --  Scan out digits of what is either the number or the base.
      --  In either case, we are definitely scanning out in base 10.

      declare
         Umax : constant Uns := (Uns'Last - 9) / 10;
         --  Max value which cannot overflow on accumulating next digit

         Umax10 : constant Uns := Uns'Last / 10;
         --  Numbers bigger than Umax10 overflow if multiplied by 10

      begin
         --  Loop through decimal digits
         loop
            pragma Loop_Invariant (P in P'Loop_Entry .. Last_Num_Init + 1);
            pragma Loop_Invariant
              (if Overflow then Init_Val.Overflow);
            pragma Loop_Invariant
              (if not Overflow
               then Init_Val = Spec.Scan_Based_Number_Ghost
                 (Str, P, Last_Num_Init, Acc => Uval));

            exit when P > Max;

            Digit := Character'Pos (Str (P)) - Character'Pos ('0');

            --  Non-digit encountered

            if Digit > 9 then
               if Str (P) = '_' then
                  Spec.Lemma_Scan_Based_Number_Ghost_Underscore
                    (Str, P, Last_Num_Init, Acc => Uval);
                  Scan_Underscore (Str, P, Ptr, Max, False);
               else
                  exit;
               end if;

            --  Accumulate result, checking for overflow

            else
               pragma Assert
                 (By
                    (Str (P) in '0' .. '9',
                     By
                       (Character'Pos (Str (P)) >= Character'Pos ('0'),
                        Uns '(Character'Pos (Str (P))) >=
                            Character'Pos ('0'))));
               Spec.Lemma_Scan_Based_Number_Ghost_Step
                 (Str, P, Last_Num_Init, Acc => Uval);
               Spec.Lemma_Scan_Based_Number_Ghost_Overflow
                 (Str, P, Last_Num_Init, Acc => Uval);

               if Uval <= Umax then
                  Uval := 10 * Uval + Digit;
                  pragma Assert
                    (if not Overflow
                     then Init_Val = Spec.Scan_Based_Number_Ghost
                            (Str, P + 1, Last_Num_Init, Acc => Uval));

               elsif Uval > Umax10 then
                  Overflow := True;

               else
                  Uval := 10 * Uval + Digit;

                  if Uval < Umax10 then
                     Overflow := True;
                  end if;
                  pragma Assert
                    (if not Overflow
                     then Init_Val = Spec.Scan_Based_Number_Ghost
                            (Str, P + 1, Last_Num_Init, Acc => Uval));

               end if;

               P := P + 1;
            end if;
         end loop;
         Spec.Lemma_Scan_Based_Number_Ghost_Base
            (Str, P, Last_Num_Init, Acc => Uval);
      end;

      pragma Assert_And_Cut
        (By
           (P = Last_Num_Init + 1,
            P > Max or else Str (P) not in '_' | '0' .. '9')
         and then Overflow = Init_Val.Overflow
         and then (if not Overflow then Init_Val.Value = Uval));

      Ptr.all := P;

      --  Deal with based case. We recognize either the standard '#' or the
      --  allowed alternative replacement ':' (see RM J.2(3)).

      if P < Max and then (Str (P) = '#' or else Str (P) = ':') then
         Base_Char := Str (P);
         P := P + 1;
         Base := Uval;
         Uval := 0;

         --  Check base value. Overflow is set True if we find a bad base, or
         --  a digit that is out of range of the base. That way, we scan out
         --  the numeral that is still syntactically correct, though illegal.
         --  We use a safe base of 16 for this scan, to avoid zero divide.

         if Base not in 2 .. 16 then
            Overflow := True;
            Base := 16;
         end if;

         --  Scan out based integer

         declare
            Umax : constant Uns := (Uns'Last - Base + 1) / Base;
            --  Max value which cannot overflow on accumulating next digit

            UmaxB : constant Uns := Uns'Last / Base;
            --  Numbers bigger than UmaxB overflow if multiplied by base

         begin
            pragma Assert
              (if Str (P) in '0' .. '9' | 'A' .. 'F' | 'a' .. 'f'
               then Spec.Is_Based_Format_Ghost (Str (P .. Max)));

            --  Loop to scan out based integer value

            loop
               --  We require a digit at this stage

               if Str (P) in '0' .. '9' then
                  Digit := Character'Pos (Str (P)) - Character'Pos ('0');

               elsif Str (P) in 'A' .. 'F' then
                  Digit :=
                    Character'Pos (Str (P)) - (Character'Pos ('A') - 10);

               elsif Str (P) in 'a' .. 'f' then
                  Digit :=
                    Character'Pos (Str (P)) - (Character'Pos ('a') - 10);

               --  If we don't have a digit, then this is not a based number
               --  after all, so we use the value we scanned out as the base
               --  (now in Base), and the pointer to the base character was
               --  already stored in Ptr.all.

               else
                  pragma Assert
                    (By
                       (Spec.Only_Hexa_Ghost (Str, P, Last_Num_Based),
                        P > Last_Num_Init + 1
                        and Spec.Only_Hexa_Ghost
                          (Str, Last_Num_Init + 2, Last_Num_Based)));
                  Spec.Lemma_Scan_Based_Number_Ghost_Base
                    (Str, P, Last_Num_Based, Base, Uval);
                  Uval := Base;
                  Base := 10;
                  pragma Assert (Ptr.all = Last_Num_Init + 1);
                  pragma Assert
                    (if Starts_As_Based
                     then By
                       (P = Last_Num_Based + 1,
                        P <= Last_Num_Based + 1
                        and Str (P) not in
                        '0' .. '9' | 'a' .. 'f' | 'A' .. 'F' | '_'));
                  pragma Assert (not Is_Based);
                  pragma Assert (if not Overflow then Uval = Init_Val.Value);
                  exit;
               end if;

               pragma Loop_Invariant (P in P'Loop_Entry .. Last_Num_Based);
               pragma Loop_Invariant
                 (Str (P) in '0' .. '9' | 'a' .. 'f' | 'A' .. 'F'
                  and then Digit = Spec.Hexa_To_Unsigned_Ghost (Str (P)));
               pragma Loop_Invariant
                 (if Overflow'Loop_Entry then Overflow);
               pragma Loop_Invariant
                 (if Overflow then
                    (Overflow'Loop_Entry or else Based_Val.Overflow));
               pragma Loop_Invariant
                 (if not Overflow
                  then Based_Val = Spec.Scan_Based_Number_Ghost
                    (Str, P, Last_Num_Based, Base, Uval));
               pragma Loop_Invariant (Ptr.all = Last_Num_Init + 1);

               Spec.Lemma_Scan_Based_Number_Ghost_Step
                 (Str, P, Last_Num_Based, Base, Uval);
               Spec.Lemma_Scan_Based_Number_Ghost_Overflow
                 (Str, P, Last_Num_Based, Base, Uval);

               --  If digit is too large, just signal overflow and continue.
               --  The idea here is to keep scanning as long as the input is
               --  syntactically valid, even if we have detected overflow

               if Digit >= Base then
                  Overflow := True;

               --  Here we accumulate the value, checking overflow

               elsif Uval <= Umax then
                  Uval := Base * Uval + Digit;
                  pragma Assert
                    (if not Overflow
                     then Based_Val = Spec.Scan_Based_Number_Ghost
                       (Str, P + 1, Last_Num_Based, Base, Uval));

               elsif Uval > UmaxB then
                  Overflow := True;

               else
                  Uval := Base * Uval + Digit;

                  if Uval < UmaxB then
                     Overflow := True;
                  end if;
                  pragma Assert
                    (if not Overflow
                     then Based_Val = Spec.Scan_Based_Number_Ghost
                       (Str, P + 1, Last_Num_Based, Base, Uval));
               end if;

               --  If at end of string with no base char, not a based number
               --  but we signal Constraint_Error and set the pointer past
               --  the end of the field, since this is what the ACVC tests
               --  seem to require, see CE3704N, line 204.

               P := P + 1;

               if P > Max then
                  Ptr.all := P;
                  Bad_Value (Str);
               end if;

               --  If terminating base character, we are done with loop

               if Str (P) = Base_Char then
                  Ptr.all := P + 1;
                  pragma Assert (P = Last_Num_Based + 1);
                  pragma Assert (Ptr.all = Last_Num_Based + 2);
                  pragma Assert
                    (By
                       (Is_Based,
                        So
                          (Starts_As_Based,
                           So
                             (Last_Num_Based < Max,
                              Str (Last_Num_Based + 1) = Base_Char
                              and Base_Char = Str (Last_Num_Init + 1)))));
                  Spec.Lemma_Scan_Based_Number_Ghost_Base
                    (Str, P, Last_Num_Based, Base, Uval);
                  exit;

               --  Deal with underscore

               elsif Str (P) = '_' then
                  Lemma_Underscore_Not_Last (Str, P, Last_Num_Init + 2, Max);
                  Spec.Lemma_Scan_Based_Number_Ghost_Underscore
                    (Str, P, Last_Num_Based, Base, Uval);
                  Scan_Underscore (Str, P, Ptr, Max, True);
                  pragma Assert
                    (if not Overflow
                     then Based_Val = Spec.Scan_Based_Number_Ghost
                       (Str, P, Last_Num_Based, Base, Uval));
                  pragma Assert (Str (P) not in '_' | Base_Char);
               end if;

               Lemma_Digit_Not_Last (Str, P, Last_Num_Init + 2, Max);
               pragma Assert (Str (P) not in '_' | Base_Char);
            end loop;
         end;
         pragma Assert
           (if Starts_As_Based then P = Last_Num_Based + 1
            else P = Last_Num_Init + 2);
         pragma Assert
           (By
              (Overflow /= Spec.Scan_Split_No_Overflow_Ghost
                   (Str, Ptr_Old, Max),
               So
                 (Last_Num_Init < Max - 1
                  and then Str (Last_Num_Init + 1) in '#' | ':',
                  Overflow =
                    (Init_Val.Overflow
                     or else Init_Val.Value not in 2 .. 16
                     or else (Starts_As_Based and Based_Val.Overflow)))));
      end if;

      pragma Assert_And_Cut
        (Overflow /= Spec.Scan_Split_No_Overflow_Ghost (Str, Ptr_Old, Max)
         and then Ptr.all = First_Exp
         and then Base in 2 .. 16
         and then
           (if not Overflow then
                (if Is_Based then Base = Init_Val.Value else Base = 10))
         and then
           (if not Overflow then
                (if Is_Based then Uval = Based_Val.Value
                 else Uval = Init_Val.Value)));

      --  Come here with scanned unsigned value in Uval. The only remaining
      --  required step is to deal with exponent if one is present.

      Scan_Exponent (Str, Ptr, Max, Expon);

      pragma Assert
        (By
           (Ptr.all = Spec.Raw_Unsigned_Last_Ghost (Str, Ptr_Old, Max),
            Ptr.all =
              (if not Starts_As_Exponent_Format_Ghost (Str (First_Exp .. Max))
               then First_Exp
               elsif Str (First_Exp + 1) in '-' | '+' then
                 Last_Number_Ghost (Str (First_Exp + 2 .. Max)) + 1
               else Last_Number_Ghost (Str (First_Exp + 1 .. Max)) + 1)));
      pragma Assert
        (if not Overflow
         then Spec.Scan_Split_Value_Ghost (Str, Ptr_Old, Max) =
           (Uval, Base, Expon));

      if Expon /= 0 and then Uval /= 0 then

         --  For non-zero value, scale by exponent value. No need to do this
         --  efficiently, since use of exponent in integer literals is rare,
         --  and in any case the exponent cannot be very large.

         declare
            UmaxB : constant Uns := Uns'Last / Base;
            --  Numbers bigger than UmaxB overflow if multiplied by base

            Res_Val : constant Spec.Uns_Option :=
              Spec.Exponent_Unsigned_Ghost (Uval, Expon, Base)
            with Ghost;
         begin
            for J in 1 .. Expon loop
               pragma Loop_Invariant
                 (if Overflow'Loop_Entry then Overflow);
               pragma Loop_Invariant
                 (if Overflow
                  then Overflow'Loop_Entry or else Res_Val.Overflow);
               pragma Loop_Invariant (Uval /= 0);
               pragma Loop_Invariant
                 (if not Overflow
                  then Res_Val = Spec.Exponent_Unsigned_Ghost
                    (Uval, Expon - J + 1, Base));

               pragma Assert
                 ((Uval > UmaxB) = Spec.Scan_Overflows_Ghost (0, Base, Uval));

               if Uval > UmaxB then
                  Spec.Lemma_Exponent_Unsigned_Ghost_Overflow
                     (Uval, Expon - J + 1, Base);
                  Overflow := True;
                  exit;
               end if;

               Spec.Lemma_Exponent_Unsigned_Ghost_Step
                  (Uval, Expon - J + 1, Base);

               Uval := Uval * Base;
            end loop;
            Spec.Lemma_Exponent_Unsigned_Ghost_Base (Uval, 0, Base);

            pragma Assert
              (Overflow /=
                 Spec.Raw_Unsigned_No_Overflow_Ghost (Str, Ptr_Old, Max));
            pragma Assert (if not Overflow then Res_Val = (False, Uval));
         end;
      end if;
      Spec.Lemma_Exponent_Unsigned_Ghost_Base (Uval, Expon, Base);
      pragma Assert
        (if Expon = 0 or else Uval = 0 then
            Spec.Exponent_Unsigned_Ghost (Uval, Expon, Base) = (False, Uval));
      pragma Assert
        (Overflow /=
           Spec.Raw_Unsigned_No_Overflow_Ghost (Str, Ptr_Old, Max));
      pragma Assert
        (if not Overflow then
            Uval = Spec.Scan_Raw_Unsigned_Ghost (Str, Ptr_Old, Max));

      --  Return result, dealing with overflow

      if Overflow then
         Bad_Value (Str);
         pragma Annotate
           (GNATprove, Intentional,
            "call to nonreturning subprogram might be executed",
            "it is expected that Constraint_Error is raised in case of"
            & " overflow");
      else
         Res := Uval;
      end if;
   end Scan_Raw_Unsigned;

   -------------------
   -- Scan_Unsigned --
   -------------------

   procedure Scan_Unsigned
     (Str : String;
      Ptr : not null access Integer;
      Max : Integer;
      Res : out Uns)
   is
      Start : Positive;
      --  Save location of first non-blank character

   begin
      pragma Warnings
        (Off,
         """Start"" is set by ""Scan_Plus_Sign"" but not used after the call");
      Scan_Plus_Sign (Str, Ptr, Max, Start);
      pragma Warnings
        (On,
         """Start"" is set by ""Scan_Plus_Sign"" but not used after the call");

      if Str (Ptr.all) not in '0' .. '9' then
         Ptr.all := Start;
         Bad_Value (Str);
      end if;

      Scan_Raw_Unsigned (Str, Ptr, Max, Res);
   end Scan_Unsigned;

   --------------------
   -- Value_Unsigned --
   --------------------

   function Value_Unsigned (Str : String) return Uns is
   begin
      --  We have to special case Str'Last = Positive'Last because the normal
      --  circuit ends up setting P to Str'Last + 1 which is out of bounds. We
      --  deal with this by converting to a subtype which fixes the bounds.

      if Str'Last = Positive'Last then
         declare
            subtype NT is String (1 .. Str'Length);
            procedure Prove_Is_Unsigned_Ghost with
              Ghost,
              Pre  => Str'Length < Natural'Last
              and then not Only_Space_Ghost (Str, Str'First, Str'Last)
              and then Spec.Is_Unsigned_Ghost (Spec.Slide_To_1 (Str)),
              Post => Spec.Is_Unsigned_Ghost (NT (Str));
            procedure Prove_Is_Unsigned_Ghost is null;
         begin
            Prove_Is_Unsigned_Ghost;
            return Value_Unsigned (NT (Str));
         end;

      --  Normal case where Str'Last < Positive'Last

      else
         declare
            V : Uns;
            P : aliased Integer := Str'First;
            Non_Blank : constant Positive := First_Non_Space_Ghost
              (Str, Str'First, Str'Last)
            with Ghost;
            Fst_Num   : constant Positive :=
              (if Str (Non_Blank) = '+' then Non_Blank + 1 else Non_Blank)
            with Ghost;
         begin
            declare
               P_Acc : constant not null access Integer := P'Access;
            begin
               Scan_Unsigned (Str, P_Acc, Str'Last, V);
            end;

            pragma Assert
              (P = Spec.Raw_Unsigned_Last_Ghost (Str, Fst_Num, Str'Last));
            pragma Assert
              (V = Spec.Scan_Raw_Unsigned_Ghost (Str, Fst_Num, Str'Last));

            Scan_Trailing_Blanks (Str, P);

            pragma Assert
              (Spec.Is_Value_Unsigned_Ghost
                 (Spec.Slide_If_Necessary (Str), V));
            return V;
         end;
      end if;
   end Value_Unsigned;

end System.Value_U;