aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/libgnat/s-valuef.adb
blob: 9be6f40a885386a59fc8ff75829467212e38eeb8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                       S Y S T E M . V A L U E _ F                        --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--            Copyright (C) 2020-2024, Free Software Foundation, Inc.       --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with System.Unsigned_Types; use System.Unsigned_Types;
with System.Val_Util;       use System.Val_Util;
with System.Value_R;

package body System.Value_F is

   --  The prerequisite of the implementation is that the computation of the
   --  operands of the scaled divide does not unduly overflow when the small
   --  is neither an integer nor the reciprocal of an integer, which means
   --  that its numerator and denominator must be both not larger than the
   --  smallest divide 2**(Int'Size - 1) / Base where Base ranges over the
   --  supported values for the base of the literal. Given that the largest
   --  supported base is 16, this gives a limit of 2**(Int'Size - 5).

   pragma Assert (Int'Size <= Uns'Size);
   --  We need an unsigned type large enough to represent the mantissa

   package Impl is new Value_R (Uns, 1, 2**(Int'Size - 1), Round => True);
   --  We use the Extra digit for ordinary fixed-point types

   function Integer_To_Fixed
     (Str    : String;
      Val    : Uns;
      Base   : Unsigned;
      ScaleB : Integer;
      Extra  : Unsigned;
      Minus  : Boolean;
      Num    : Int;
      Den    : Int) return Int;
   --  Convert the real value from integer to fixed point representation

   --  The goal is to compute Val * (Base ** ScaleB) / (Num / Den) with correct
   --  rounding for all decimal values output by Typ'Image, that is to say up
   --  to Typ'Aft decimal digits. Unlike for the output, the RM does not say
   --  what the rounding must be for the input, but a reasonable exegesis of
   --  the intent is that Typ'Value o Typ'Image should be the identity, which
   --  is made possible because 'Aft is defined such that 'Image is injective.

   --  For a type with a mantissa of M bits including the sign, the number N1
   --  of decimal digits required to represent all the numbers is given by:

   --    N1 = ceil ((M - 1) * log 2 / log 10) [N1 = 10/19/39 for M = 32/64/128]

   --  but this mantissa can represent any set of contiguous numbers with only
   --  N2 different decimal digits where:

   --    N2 = floor ((M - 1) * log 2 / log 10) [N2 = 9/18/38 for M = 32/64/128]

   --  Of course N1 = N2 + 1 holds, which means both that Val may not contain
   --  enough significant bits to represent all the values of the type and that
   --  1 extra decimal digit contains the information for the missing bits.

   --  Therefore the actual computation to be performed is

   --    V = (Val * Base + Extra) * (Base ** (ScaleB - 1)) / (Num / Den)

   --  using two steps of scaled divide if Extra is positive and ScaleB too

   --    (1)  Val * (Den * (Base ** ScaleB)) = Q1 * Num + R1

   --    (2)  Extra * (Den * (Base ** ScaleB)) = Q2 * -Base + R2

   --  which yields after dividing (1) by Num and (2) by Num * Base and summing

   --    V = Q1 + (R1 - Q2) / Num + R2 / (Num * Base)

   --  but we get rid of the third term by using a rounding divide for (2).

   --  This works only if Den * (Base ** ScaleB) does not overflow for inputs
   --  corresponding to 'Image. Let S = Num / Den, B = Base and N the scale in
   --  base B of S, i.e. the smallest integer such that B**N * S >= 1. Then,
   --  for X a positive of the mantissa, i.e. 1 <= X <= 2**(M-1), we have

   --    1/B <= X * S * B**(N-1) < 2**(M-1)

   --  which means that the inputs corresponding to the output of 'Image have a
   --  ScaleB equal either to 1 - N or (after multiplying the inequality by B)
   --  to -N, possibly after renormalizing X, i.e. multiplying it by a suitable
   --  power of B. Therefore

   --    Den * (Base ** ScaleB) <= Den * (B ** (1 - N)) < Num * B

   --  which means that the product does not overflow if Num <= 2**(M-1) / B.

   --  On the other hand, if Extra is positive and ScaleB negative, the above
   --  two steps are

   --   (1b)  Val * Den = Q1 * (Num * (Base ** -ScaleB)) + R1

   --   (2b)  Extra * Den = Q2 * -Base + R2

   --  which yields after dividing (1b) by Num * (Base ** -ScaleB) and (2b) by
   --  Num * (Base ** (1 - ScaleB)) and summing

   --    V = Q1 + (R1 - Q2) / (Num * (Base ** -ScaleB)) + R2 / ...

   --  but we get rid of the third term by using a rounding divide for (2b).

   --  This works only if Num * (Base ** -ScaleB) does not overflow for inputs
   --  corresponding to 'Image. With the determination of ScaleB above, we have

   --    Num * (Base ** -ScaleB) <= Num * (B ** N) < Den * B

   --  which means that the product does not overflow if Den <= 2**(M-1) / B.

   ----------------------
   -- Integer_To_Fixed --
   ----------------------

   function Integer_To_Fixed
     (Str    : String;
      Val    : Uns;
      Base   : Unsigned;
      ScaleB : Integer;
      Extra  : Unsigned;
      Minus  : Boolean;
      Num    : Int;
      Den    : Int) return Int
   is
      pragma Assert (Base in 2 .. 16);

      pragma Assert (Extra < Base);
      --  Accept only one extra digit after those used for Val

      pragma Assert (Num < 0 and then Den < 0);
      --  Accept only negative numbers to allow -2**(Int'Size - 1)

      function Safe_Expont
        (Base   : Int;
         Exp    : in out Natural;
         Factor : Int) return Int;
      --  Return (Base ** Exp) * Factor if the computation does not overflow,
      --  or else the number of the form (Base ** K) * Factor with the largest
      --  magnitude if the former computation overflows. In both cases, Exp is
      --  updated to contain the remaining power in the computation. Note that
      --  Factor is expected to be negative in this context.

      function Unsigned_To_Signed (Val : Uns) return Int;
      --  Convert an integer value from unsigned to signed representation

      -----------------
      -- Safe_Expont --
      -----------------

      function Safe_Expont
        (Base   : Int;
         Exp    : in out Natural;
         Factor : Int) return Int
      is
         pragma Assert (Base /= 0 and then Factor < 0);

         Min : constant Int := Int'First / Base;

         Result : Int := Factor;

      begin
         while Exp > 0 and then Result >= Min loop
            Result := Result * Base;
            Exp    := Exp - 1;
         end loop;

         return Result;
      end Safe_Expont;

      ------------------------
      -- Unsigned_To_Signed --
      ------------------------

      function Unsigned_To_Signed (Val : Uns) return Int is
      begin
         --  Deal with overflow cases, and also with largest negative number

         if Val > Uns (Int'Last) then
            if Minus and then Val = Uns (-(Int'First)) then
               return Int'First;
            else
               Bad_Value (Str);
            end if;

         --  Negative values

         elsif Minus then
            return -(Int (Val));

         --  Positive values

         else
            return Int (Val);
         end if;
      end Unsigned_To_Signed;

      --  Local variables

      B : constant Int := Int (Base);

      V : Uns := Val;
      E : Uns := Uns (Extra);

      Y, Z, Q1, R1, Q2, R2 : Int;

   begin
      --  We will use a scaled divide operation for which we must control the
      --  magnitude of operands so that an overflow exception is not unduly
      --  raised during the computation. The only real concern is the exponent.

      --  If ScaleB is too negative, then drop trailing digits, but preserve
      --  the last dropped digit.

      if ScaleB < 0 then
         declare
            LS : Integer := -ScaleB;

         begin
            Y := Den;
            Z := Safe_Expont (B, LS, Num);

            for J in 1 .. LS loop
               E := V rem Uns (B);
               V := V / Uns (B);
            end loop;
         end;

      --  If ScaleB is too positive, then scale V up, which may then overflow

      elsif ScaleB > 0 then
         declare
            LS : Integer := ScaleB;

         begin
            Y := Safe_Expont (B, LS, Den);
            Z := Num;

            for J in 1 .. LS loop
               if V <= (Uns'Last - E) / Uns (B) then
                  V := V * Uns (B) + E;
                  E := 0;
               else
                  Bad_Value (Str);
               end if;
            end loop;
         end;

      --  If ScaleB is zero, then proceed directly

      else
         Y := Den;
         Z := Num;
      end if;

      --  Perform a scaled divide operation with final rounding to match Image
      --  using two steps if there is an extra digit available. The second and
      --  third operands are always negative so the sign of the quotient is the
      --  sign of the first operand and the sign of the remainder the opposite.

      if E > 0 then
         Scaled_Divide (Unsigned_To_Signed (V), Y, Z, Q1, R1, Round => False);
         Scaled_Divide (Unsigned_To_Signed (E), Y, -B, Q2, R2, Round => True);

         --  Avoid an overflow during the subtraction. Note that Q2 is smaller
         --  than Y and R1 smaller than Z in magnitude, so it is safe to take
         --  their absolute value.

         if abs Q2 >= 2 ** (Int'Size - 2)
           or else abs R1 >= 2 ** (Int'Size - 2)
         then
            declare
               Bit : constant Int := Q2 rem 2;

            begin
               Q2 := (Q2 - Bit) / 2;
               R1 := (R1 - Bit) / 2;
               Y  := -2;
            end;

         else
            Y := -1;
         end if;

         Scaled_Divide (Q2 - R1, Y, Z, Q2, R2, Round => True);

         return Q1 + Q2;

      else
         Scaled_Divide (Unsigned_To_Signed (V), Y, Z, Q1, R1, Round => True);

         return Q1;
      end if;

   exception
      when Constraint_Error => Bad_Value (Str);
   end Integer_To_Fixed;

   ----------------
   -- Scan_Fixed --
   ----------------

   function Scan_Fixed
     (Str : String;
      Ptr : not null access Integer;
      Max : Integer;
      Num : Int;
      Den : Int) return Int
   is
      Base  : Unsigned;
      Scl   : Impl.Scale_Array;
      Extra : Unsigned;
      Minus : Boolean;
      Val   : Impl.Value_Array;

   begin
      Val := Impl.Scan_Raw_Real (Str, Ptr, Max, Base, Scl, Extra, Minus);

      return
        Integer_To_Fixed (Str, Val (1), Base, Scl (1), Extra, Minus, Num, Den);
   end Scan_Fixed;

   -----------------
   -- Value_Fixed --
   -----------------

   function Value_Fixed
     (Str : String;
      Num : Int;
      Den : Int) return Int
   is
      Base  : Unsigned;
      Scl   : Impl.Scale_Array;
      Extra : Unsigned;
      Minus : Boolean;
      Val   : Impl.Value_Array;

   begin
      Val := Impl.Value_Raw_Real (Str, Base, Scl, Extra, Minus);

      return
        Integer_To_Fixed (Str, Val (1), Base, Scl (1), Extra, Minus, Num, Den);
   end Value_Fixed;

end System.Value_F;