aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/libgnat/s-secsta.adb
blob: be9591dd4f2ee6a9dbcb7edf0c11c8a0c4cc6dc9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--               S Y S T E M . S E C O N D A R Y _ S T A C K                --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2024, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with Ada.Unchecked_Conversion;
with Ada.Unchecked_Deallocation;

with System.Parameters;       use System.Parameters;
with System.Soft_Links;       use System.Soft_Links;
with System.Storage_Elements; use System.Storage_Elements;

package body System.Secondary_Stack is

   ------------------------------------
   -- Binder Allocated Stack Support --
   ------------------------------------

   --  When at least one of the following restrictions
   --
   --    No_Implicit_Heap_Allocations
   --    No_Implicit_Task_Allocations
   --
   --  is in effect, the binder creates a static secondary stack pool, where
   --  each stack has a default size. Assignment of these stacks to tasks is
   --  performed by SS_Init. The following variables are defined in this unit
   --  in order to avoid depending on the binder. Their values are set by the
   --  binder.

   Binder_SS_Count : Natural := 0;
   pragma Export (Ada, Binder_SS_Count, "__gnat_binder_ss_count");
   --  The number of secondary stacks in the pool created by the binder

   Binder_Default_SS_Size : Size_Type;
   pragma Export (Ada, Binder_Default_SS_Size, "__gnat_default_ss_size");
   --  The default secondary stack size as specified by the binder. The value
   --  is defined here rather than in init.c or System.Init because the ZFP and
   --  Ravenscar-ZFP run-times lack these locations.

   Binder_Default_SS_Pool : Address;
   pragma Export (Ada, Binder_Default_SS_Pool, "__gnat_default_ss_pool");
   --  The address of the secondary stack pool created by the binder

   Binder_Default_SS_Pool_Index : Natural := 0;
   --  Index into the secondary stack pool created by the binder

   -----------------------
   -- Local subprograms --
   -----------------------

   procedure Allocate_Dynamic
     (Stack    : SS_Stack_Ptr;
      Mem_Size : Memory_Size;
      Addr     : out Address);
   pragma Inline (Allocate_Dynamic);
   --  Allocate enough space on dynamic secondary stack Stack to fit a request
   --  of size Mem_Size. Addr denotes the address of the first byte of the
   --  allocation.

   procedure Allocate_On_Chunk
     (Stack      : SS_Stack_Ptr;
      Prev_Chunk : SS_Chunk_Ptr;
      Chunk      : SS_Chunk_Ptr;
      Byte       : Memory_Index;
      Mem_Size   : Memory_Size;
      Addr       : out Address);
   pragma Inline (Allocate_On_Chunk);
   --  Allocate enough space on chunk Chunk to fit a request of size Mem_Size.
   --  Stack is the owner of the allocation Chunk. Prev_Chunk is the preceding
   --  chunk of Chunk. Byte indicates the first free byte within Chunk. Addr
   --  denotes the address of the first byte of the allocation. This routine
   --  updates the state of Stack.all to reflect the side effects of the
   --  allocation.

   procedure Allocate_Static
     (Stack    : SS_Stack_Ptr;
      Mem_Size : Memory_Size;
      Addr     : out Address);
   pragma Inline (Allocate_Static);
   --  Allocate enough space on static secondary stack Stack to fit a request
   --  of size Mem_Size. Addr denotes the address of the first byte of the
   --  allocation.

   procedure Free is new Ada.Unchecked_Deallocation (SS_Chunk, SS_Chunk_Ptr);
   --  Free a dynamically allocated chunk

   procedure Free is new Ada.Unchecked_Deallocation (SS_Stack, SS_Stack_Ptr);
   --  Free a dynamically allocated secondary stack

   function Has_Enough_Free_Memory
     (Chunk    : SS_Chunk_Ptr;
      Byte     : Memory_Index;
      Mem_Size : Memory_Size) return Boolean;
   pragma Inline (Has_Enough_Free_Memory);
   --  Determine whether chunk Chunk has enough room to fit a memory request of
   --  size Mem_Size, starting from the first free byte of the chunk denoted by
   --  Byte.

   function Number_Of_Chunks (Stack : SS_Stack_Ptr) return Chunk_Count;
   pragma Inline (Number_Of_Chunks);
   --  Count the number of static and dynamic chunks of secondary stack Stack

   function Size_Up_To_And_Including (Chunk : SS_Chunk_Ptr) return Memory_Size;
   pragma Inline (Size_Up_To_And_Including);
   --  Calculate the size of secondary stack which houses chunk Chunk, from the
   --  start of the secondary stack up to and including Chunk itself. The size
   --  includes the following kinds of memory:
   --
   --    * Free memory in used chunks due to alignment holes
   --    * Occupied memory by allocations
   --
   --  This is a constant time operation, regardless of the secondary stack's
   --  nature.

   function Top_Chunk_Id (Stack : SS_Stack_Ptr) return Chunk_Id_With_Invalid;
   pragma Inline (Top_Chunk_Id);
   --  Obtain the Chunk_Id of the chunk indicated by secondary stack Stack's
   --  pointer.

   function Used_Memory_Size (Stack : SS_Stack_Ptr) return Memory_Size;
   pragma Inline (Used_Memory_Size);
   --  Calculate the size of stack Stack's occupied memory usage. This includes
   --  the following kinds of memory:
   --
   --    * Free memory in used chunks due to alignment holes
   --    * Occupied memory by allocations
   --
   --  This is a constant time operation, regardless of the secondary stack's
   --  nature.

   ----------------------
   -- Allocate_Dynamic --
   ----------------------

   procedure Allocate_Dynamic
     (Stack    : SS_Stack_Ptr;
      Mem_Size : Memory_Size;
      Addr     : out Address)
   is
      function Allocate_New_Chunk return SS_Chunk_Ptr;
      pragma Inline (Allocate_New_Chunk);
      --  Create a new chunk which is big enough to fit a request of size
      --  Mem_Size.

      ------------------------
      -- Allocate_New_Chunk --
      ------------------------

      function Allocate_New_Chunk return SS_Chunk_Ptr is
         Chunk_Size : Memory_Size;

      begin
         --  The size of the new chunk must fit the memory request precisely.
         --  In the case where the memory request is way too small, use the
         --  default chunk size. This avoids creating multiple tiny chunks.

         Chunk_Size := Mem_Size;

         if Chunk_Size < Stack.Default_Chunk_Size then
            Chunk_Size := Stack.Default_Chunk_Size;
         end if;

         return new SS_Chunk (Chunk_Size);

      --  The creation of the new chunk may exhaust the heap. Raise a new
      --  Storage_Error to indicate that the secondary stack is exhausted
      --  as well.

      exception
         when Storage_Error =>
            raise Storage_Error with "secondary stack exhausted";
      end Allocate_New_Chunk;

      --  Local variables

      Next_Chunk : SS_Chunk_Ptr;

   --  Start of processing for Allocate_Dynamic

   begin
      --  Determine whether the chunk indicated by the stack pointer is big
      --  enough to fit the memory request and if it is, allocate on it.

      if Has_Enough_Free_Memory
           (Chunk    => Stack.Top.Chunk,
            Byte     => Stack.Top.Byte,
            Mem_Size => Mem_Size)
      then
         Allocate_On_Chunk
           (Stack      => Stack,
            Prev_Chunk => null,
            Chunk      => Stack.Top.Chunk,
            Byte       => Stack.Top.Byte,
            Mem_Size   => Mem_Size,
            Addr       => Addr);

         return;
      end if;

      --  At this point it is known that the chunk indicated by the stack
      --  pointer is not big enough to fit the memory request. Examine all
      --  subsequent chunks, and apply the following criteria:
      --
      --    * If the current chunk is too small, free it
      --
      --    * If the current chunk is big enough, allocate on it
      --
      --  This ensures that no space is wasted. The process is costly, however
      --  allocation is costly in general. Paying the price here keeps routines
      --  SS_Mark and SS_Release cheap.

      while Stack.Top.Chunk.Next /= null loop

         --  The current chunk is big enough to fit the memory request,
         --  allocate on it.

         if Has_Enough_Free_Memory
              (Chunk    => Stack.Top.Chunk.Next,
               Byte     => Stack.Top.Chunk.Next.Memory'First,
               Mem_Size => Mem_Size)
         then
            Allocate_On_Chunk
              (Stack      => Stack,
               Prev_Chunk => Stack.Top.Chunk,
               Chunk      => Stack.Top.Chunk.Next,
               Byte       => Stack.Top.Chunk.Next.Memory'First,
               Mem_Size   => Mem_Size,
               Addr       => Addr);

            return;

         --  Otherwise the chunk is too small, free it

         else
            Next_Chunk := Stack.Top.Chunk.Next.Next;

            --  Unchain the chunk from the stack. This keeps the next candidate
            --  chunk situated immediately after Top.Chunk.
            --
            --    Top.Chunk     Top.Chunk.Next   Top.Chunk.Next.Next
            --        |               |              (Next_Chunk)
            --        v               v                   v
            --    +-------+     +------------+     +--------------+
            --    |       | --> |            | --> |              |
            --    +-------+     +------------+     +--------------+
            --                   to be freed

            Free (Stack.Top.Chunk.Next);
            Stack.Top.Chunk.Next := Next_Chunk;
         end if;
      end loop;

      --  At this point one of the following outcomes took place:
      --
      --    * Top.Chunk is the last chunk in the stack
      --
      --    * Top.Chunk was not the last chunk originally. It was followed by
      --      chunks which were too small and as a result were deleted, thus
      --      making Top.Chunk the last chunk in the stack.
      --
      --  Either way, nothing should be hanging off the chunk indicated by the
      --  stack pointer.

      pragma Assert (Stack.Top.Chunk.Next = null);

      --  Create a new chunk big enough to fit the memory request, and allocate
      --  on it.

      Stack.Top.Chunk.Next := Allocate_New_Chunk;

      Allocate_On_Chunk
        (Stack      => Stack,
         Prev_Chunk => Stack.Top.Chunk,
         Chunk      => Stack.Top.Chunk.Next,
         Byte       => Stack.Top.Chunk.Next.Memory'First,
         Mem_Size   => Mem_Size,
         Addr       => Addr);
   end Allocate_Dynamic;

   -----------------------
   -- Allocate_On_Chunk --
   -----------------------

   procedure Allocate_On_Chunk
     (Stack      : SS_Stack_Ptr;
      Prev_Chunk : SS_Chunk_Ptr;
      Chunk      : SS_Chunk_Ptr;
      Byte       : Memory_Index;
      Mem_Size   : Memory_Size;
      Addr       : out Address)
   is
      New_High_Water_Mark : Memory_Size;

   begin
      --  The allocation occurs on a reused or a brand new chunk. Such a chunk
      --  must always be connected to some previous chunk.

      if Prev_Chunk /= null then
         pragma Assert (Prev_Chunk.Next = Chunk);

         --  Update the Size_Up_To_Chunk because this value is invalidated for
         --  reused and new chunks.
         --
         --                         Prev_Chunk          Chunk
         --                             v                 v
         --    . . . . . . .     +--------------+     +--------
         --                . --> |##############| --> |
         --    . . . . . . .     +--------------+     +--------
         --                       |            |
         --    -------------------+------------+
         --      Size_Up_To_Chunk      Size
         --
         --  The Size_Up_To_Chunk is equal to the size of the whole stack up to
         --  the previous chunk, plus the size of the previous chunk itself.

         Chunk.Size_Up_To_Chunk := Size_Up_To_And_Including (Prev_Chunk);
      end if;

      --  The chunk must have enough room to fit the memory request. If this is
      --  not the case, then a previous step picked the wrong chunk.

      pragma Assert (Has_Enough_Free_Memory (Chunk, Byte, Mem_Size));

      --  The first byte of the allocation is the first free byte within the
      --  chunk.

      Addr := Chunk.Memory (Byte)'Address;

      --  The chunk becomes the chunk indicated by the stack pointer. This is
      --  either the currently indicated chunk, an existing chunk, or a brand
      --  new chunk.

      Stack.Top.Chunk := Chunk;

      --  The next free byte is immediately after the memory request
      --
      --          Addr     Top.Byte
      --          |        |
      --    +-----|--------|----+
      --    |##############|    |
      --    +-------------------+

      --  ??? this calculation may overflow on 32bit targets

      Stack.Top.Byte := Byte + Mem_Size;

      --  At this point the next free byte cannot go beyond the memory capacity
      --  of the chunk indicated by the stack pointer, except when the chunk is
      --  full, in which case it indicates the byte beyond the chunk. Ensure
      --  that the occupied memory is at most as much as the capacity of the
      --  chunk. Top.Byte - 1 denotes the last occupied byte.

      pragma Assert (Stack.Top.Byte - 1 <= Stack.Top.Chunk.Size);

      --  Calculate the new high water mark now that the memory request has
      --  been fulfilled, and update if necessary. The new high water mark is
      --  technically the size of the used memory by the whole stack.

      New_High_Water_Mark := Used_Memory_Size (Stack);

      if New_High_Water_Mark > Stack.High_Water_Mark then
         Stack.High_Water_Mark := New_High_Water_Mark;
      end if;
   end Allocate_On_Chunk;

   ---------------------
   -- Allocate_Static --
   ---------------------

   procedure Allocate_Static
     (Stack    : SS_Stack_Ptr;
      Mem_Size : Memory_Size;
      Addr     : out Address)
   is
   begin
      --  Static secondary stack allocations are performed only on the static
      --  chunk. There should be no dynamic chunks following the static chunk.

      pragma Assert (Stack.Top.Chunk = Stack.Static_Chunk'Access);
      pragma Assert (Stack.Top.Chunk.Next = null);

      --  Raise Storage_Error if the static chunk does not have enough room to
      --  fit the memory request. This indicates that the stack is about to be
      --  depleted.

      if not Has_Enough_Free_Memory
               (Chunk    => Stack.Top.Chunk,
                Byte     => Stack.Top.Byte,
                Mem_Size => Mem_Size)
      then
         raise Storage_Error with "secondary stack exhaused";
      end if;

      Allocate_On_Chunk
        (Stack      => Stack,
         Prev_Chunk => null,
         Chunk      => Stack.Top.Chunk,
         Byte       => Stack.Top.Byte,
         Mem_Size   => Mem_Size,
         Addr       => Addr);
   end Allocate_Static;

   --------------------
   -- Get_Chunk_Info --
   --------------------

   function Get_Chunk_Info
     (Stack : SS_Stack_Ptr;
      C_Id  : Chunk_Id) return Chunk_Info
   is
      function Find_Chunk return SS_Chunk_Ptr;
      pragma Inline (Find_Chunk);
      --  Find the chunk which corresponds to Id. Return null if no such chunk
      --  exists.

      ----------------
      -- Find_Chunk --
      ----------------

      function Find_Chunk return SS_Chunk_Ptr is
         Chunk : SS_Chunk_Ptr;
         Id    : Chunk_Id;

      begin
         Chunk := Stack.Static_Chunk'Access;
         Id    := 1;
         while Chunk /= null loop
            if Id = C_Id then
               return Chunk;
            end if;

            Chunk := Chunk.Next;
            Id    := Id + 1;
         end loop;

         return null;
      end Find_Chunk;

      --  Local variables

      Chunk : constant SS_Chunk_Ptr := Find_Chunk;

   --  Start of processing for Get_Chunk_Info

   begin
      if Chunk = null then
         return Invalid_Chunk;

      else
         return (Size             => Chunk.Size,
                 Size_Up_To_Chunk => Chunk.Size_Up_To_Chunk);
      end if;
   end Get_Chunk_Info;

   --------------------
   -- Get_Stack_Info --
   --------------------

   function Get_Stack_Info (Stack : SS_Stack_Ptr) return Stack_Info is
      Info : Stack_Info;

   begin
      Info.Default_Chunk_Size := Stack.Default_Chunk_Size;
      Info.Freeable           := Stack.Freeable;
      Info.High_Water_Mark    := Stack.High_Water_Mark;
      Info.Number_Of_Chunks   := Number_Of_Chunks (Stack);
      Info.Top.Byte           := Stack.Top.Byte;
      Info.Top.Chunk          := Top_Chunk_Id (Stack);

      return Info;
   end Get_Stack_Info;

   ----------------------------
   -- Has_Enough_Free_Memory --
   ----------------------------

   function Has_Enough_Free_Memory
     (Chunk    : SS_Chunk_Ptr;
      Byte     : Memory_Index;
      Mem_Size : Memory_Size) return Boolean
   is
   begin
      --  First check if the chunk is full (Byte is > Memory'Last in that
      --  case), then check there is enough free memory.

      --  Byte - 1 denotes the last occupied byte. Subtracting that byte from
      --  the memory capacity of the chunk yields the size of the free memory
      --  within the chunk. The chunk can fit the request as long as the free
      --  memory is as big as the request.

      return Chunk.Memory'Last >= Byte
        and then Chunk.Size - (Byte - 1) >= Mem_Size;

   end Has_Enough_Free_Memory;

   ----------------------
   -- Number_Of_Chunks --
   ----------------------

   function Number_Of_Chunks (Stack : SS_Stack_Ptr) return Chunk_Count is
      Chunk : SS_Chunk_Ptr;
      Count : Chunk_Count;

   begin
      Chunk := Stack.Static_Chunk'Access;
      Count := 0;
      while Chunk /= null loop
         Chunk := Chunk.Next;
         Count := Count + 1;
      end loop;

      return Count;
   end Number_Of_Chunks;

   ------------------------------
   -- Size_Up_To_And_Including --
   ------------------------------

   function Size_Up_To_And_Including
     (Chunk : SS_Chunk_Ptr) return Memory_Size
   is
   begin
      return Chunk.Size_Up_To_Chunk + Chunk.Size;
   end Size_Up_To_And_Including;

   -----------------
   -- SS_Allocate --
   -----------------

   procedure SS_Allocate
     (Addr         : out Address;
      Storage_Size : Storage_Count;
      Alignment    : SSE.Storage_Count := Standard'Maximum_Alignment)
   is

      function Round_Up (Size : Storage_Count) return Memory_Size;
      pragma Inline (Round_Up);
      --  Round Size up to the nearest multiple of the maximum alignment

      function Align_Addr (Addr : Address) return Address;
      pragma Inline (Align_Addr);
      --  Align Addr to the next multiple of Alignment

      ----------------
      -- Align_Addr --
      ----------------

      function Align_Addr (Addr : Address) return Address is
         Int_Algn : constant Integer_Address := Integer_Address (Alignment);
         Int_Addr : constant Integer_Address := To_Integer (Addr);
      begin

         --  L : Alignment
         --  A : Standard'Maximum_Alignment

         --           Addr
         --      L     |     L           L
         --      A--A--A--A--A--A--A--A--A--A--A
         --                  |     |
         --      \----/      |     |
         --     Addr mod L   |   Addr + L
         --                  |
         --                Addr + L - (Addr mod L)

         return To_Address (Int_Addr + Int_Algn - (Int_Addr mod Int_Algn));
      end Align_Addr;

      --------------
      -- Round_Up --
      --------------

      function Round_Up (Size : Storage_Count) return Memory_Size is
         Algn_MS : constant Memory_Size := Standard'Maximum_Alignment;
         Size_MS : constant Memory_Size := Memory_Size (Size);

      begin
         --  Detect a case where the Size is very large and may yield
         --  a rounded result which is outside the range of Chunk_Memory_Size.
         --  Treat this case as secondary-stack depletion.

         if Memory_Size'Last - Algn_MS < Size_MS then
            raise Storage_Error with "secondary stack exhausted";
         end if;

         return ((Size_MS + Algn_MS - 1) / Algn_MS) * Algn_MS;
      end Round_Up;

      --  Local variables

      Stack    : constant SS_Stack_Ptr := Get_Sec_Stack.all;
      Mem_Size : Memory_Size;

      Over_Aligning : constant Boolean :=
        Alignment > Standard'Maximum_Alignment;

      Padding : SSE.Storage_Count := 0;

   --  Start of processing for SS_Allocate

   begin
      --  Alignment must be a power of two and can be:

      --  - lower than or equal to Maximum_Alignment, in which case the result
      --    will be aligned on Maximum_Alignment;
      --  - higher than Maximum_Alignment, in which case the result will be
      --    dynamically realigned.

      if Over_Aligning then
         Padding := Alignment;
      end if;

      --  Round the requested size (plus the needed padding in case of
      --  over-alignment) up to the nearest multiple of the default
      --  alignment to ensure efficient access and that the next available
      --  Byte is always aligned on the default alignement value.

      --  It should not be possible to request an allocation of negative
      --  size.

      pragma Assert (Storage_Size >= 0);
      Mem_Size := Round_Up (Storage_Size + Padding);

      if Sec_Stack_Dynamic then
         Allocate_Dynamic (Stack, Mem_Size, Addr);
      else
         Allocate_Static  (Stack, Mem_Size, Addr);
      end if;

      if Over_Aligning then
         Addr := Align_Addr (Addr);
      end if;

   end SS_Allocate;

   -------------
   -- SS_Free --
   -------------

   procedure SS_Free (Stack : in out SS_Stack_Ptr) is
      Static_Chunk : constant SS_Chunk_Ptr := Stack.Static_Chunk'Access;
      Next_Chunk   : SS_Chunk_Ptr;

   begin
      --  Free all dynamically allocated chunks. The first dynamic chunk is
      --  found immediately after the static chunk of the stack.

      while Static_Chunk.Next /= null loop
         Next_Chunk := Static_Chunk.Next.Next;
         Free (Static_Chunk.Next);
         Static_Chunk.Next := Next_Chunk;
      end loop;

      --  At this point one of the following outcomes has taken place:
      --
      --    * The stack lacks any dynamic chunks
      --
      --    * The stack had dynamic chunks which were all freed
      --
      --  Either way, there should be nothing hanging off the static chunk

      pragma Assert (Static_Chunk.Next = null);

      --  Free the stack only when it was dynamically allocated

      if Stack.Freeable then
         Free (Stack);
      end if;
   end SS_Free;

   ----------------
   -- SS_Get_Max --
   ----------------

   function SS_Get_Max return Long_Long_Integer is
      Stack : constant SS_Stack_Ptr := Get_Sec_Stack.all;

   begin
      return Long_Long_Integer (Stack.High_Water_Mark);
   end SS_Get_Max;

   -------------
   -- SS_Info --
   -------------

   procedure SS_Info is
      procedure SS_Info_Dynamic (Stack : SS_Stack_Ptr);
      pragma Inline (SS_Info_Dynamic);
      --  Output relevant information concerning dynamic secondary stack Stack

      function Total_Memory_Size (Stack : SS_Stack_Ptr) return Memory_Size;
      pragma Inline (Total_Memory_Size);
      --  Calculate the size of stack Stack's total memory usage. This includes
      --  the following kinds of memory:
      --
      --    * Free memory in used chunks due to alignment holes
      --    * Free memory in the topmost chunk due to partial usage
      --    * Free memory in unused chunks following the chunk indicated by the
      --      stack pointer.
      --    * Memory occupied by allocations
      --
      --  This is a linear-time operation on the number of chunks.

      ---------------------
      -- SS_Info_Dynamic --
      ---------------------

      procedure SS_Info_Dynamic (Stack : SS_Stack_Ptr) is
      begin
         Put_Line
           ("  Number of Chunks        : " & Number_Of_Chunks (Stack)'Img);

         Put_Line
           ("  Default size of Chunks  : " & Stack.Default_Chunk_Size'Img);
      end SS_Info_Dynamic;

      -----------------------
      -- Total_Memory_Size --
      -----------------------

      function Total_Memory_Size (Stack : SS_Stack_Ptr) return Memory_Size is
         Chunk : SS_Chunk_Ptr;
         Total : Memory_Size;

      begin
         --  The total size of the stack is equal to the size of the stack up
         --  to the chunk indicated by the stack pointer, plus the size of the
         --  indicated chunk, plus the size of any subsequent chunks.

         Total := Size_Up_To_And_Including (Stack.Top.Chunk);

         Chunk := Stack.Top.Chunk.Next;
         while Chunk /= null loop
            Total := Total + Chunk.Size;
            Chunk := Chunk.Next;
         end loop;

         return Total;
      end Total_Memory_Size;

      --  Local variables

      Stack : constant SS_Stack_Ptr := Get_Sec_Stack.all;

   --  Start of processing for SS_Info

   begin
      Put_Line ("Secondary Stack information:");

      Put_Line
        ("  Total size              : "
         & Total_Memory_Size (Stack)'Img
         & " bytes");

      Put_Line
        ("  Current allocated space : "
         & Used_Memory_Size (Stack)'Img
         & " bytes");

      if Sec_Stack_Dynamic then
         SS_Info_Dynamic (Stack);
      end if;
   end SS_Info;

   -------------
   -- SS_Init --
   -------------

   procedure SS_Init
     (Stack : in out SS_Stack_Ptr;
      Size  : Size_Type := Unspecified_Size)
   is
      function Next_Available_Binder_Sec_Stack return SS_Stack_Ptr;
      pragma Inline (Next_Available_Binder_Sec_Stack);
      --  Return a pointer to the next available stack from the pool created by
      --  the binder. This routine updates global Default_Sec_Stack_Pool_Index.

      -------------------------------------
      -- Next_Available_Binder_Sec_Stack --
      -------------------------------------

      function Next_Available_Binder_Sec_Stack return SS_Stack_Ptr is

         --  The default-sized secondary stack pool generated by the binder
         --  is passed to this unit as an Address because it is not possible
         --  to define a pointer to an array of unconstrained components. The
         --  pointer is instead obtained using an unchecked conversion to a
         --  constrained array of secondary stacks with the same size as that
         --  specified by the binder.

         --  WARNING: The following data structure must be synchronized with
         --  the one created in Bindgen.Gen_Output_File_Ada. The version in
         --  bindgen is called Sec_Default_Sized_Stacks.

         type SS_Pool is
           array (1 .. Binder_SS_Count)
             of aliased SS_Stack (Binder_Default_SS_Size);

         type SS_Pool_Ptr is access SS_Pool;
         --  A reference to the secondary stack pool

         function To_SS_Pool_Ptr is
           new Ada.Unchecked_Conversion (Address, SS_Pool_Ptr);

         --  Use an unchecked conversion to obtain a pointer to one of the
         --  secondary stacks from the pool generated by the binder. There
         --  are several reasons for using the conversion:
         --
         --    * Accessibility checks prevent a value of a local pointer to be
         --      stored outside this scope. The conversion is safe because the
         --      pool is global to the whole application.
         --
         --    * Unchecked_Access may circumvent the accessibility checks, but
         --      it is incompatible with restriction No_Unchecked_Access.
         --
         --    * Unrestricted_Access may circumvent the accessibility checks,
         --      but it is incompatible with pure Ada constructs.
         --      ??? cannot find the restriction or switch

         pragma Warnings (Off);
         function To_SS_Stack_Ptr is
           new Ada.Unchecked_Conversion (Address, SS_Stack_Ptr);
         pragma Warnings (On);

         Pool : SS_Pool_Ptr;

      begin
         --  Obtain a typed view of the pool

         Pool := To_SS_Pool_Ptr (Binder_Default_SS_Pool);

         --  Advance the stack index to the next available stack

         Binder_Default_SS_Pool_Index := Binder_Default_SS_Pool_Index + 1;

         --  Return a pointer to the next available stack

         return To_SS_Stack_Ptr (Pool (Binder_Default_SS_Pool_Index)'Address);
      end Next_Available_Binder_Sec_Stack;

      --  Local variables

      Stack_Size : Memory_Size_With_Invalid;

   --  Start of processing for SS_Init

   begin
      --  Allocate a new stack on the heap or use one from the pool created by
      --  the binder.

      if Stack = null then

         --  The caller requested a pool-allocated stack. Determine the proper
         --  size of the stack based on input from the binder or the runtime in
         --  case the pool is exhausted.

         if Size = Unspecified_Size then

            --  Use the default secondary stack size as specified by the binder
            --  only when it has been set. This prevents a bootstrap issue with
            --  older compilers where the size is never set.

            if Binder_Default_SS_Size > 0 then
               Stack_Size := Binder_Default_SS_Size;

            --  Otherwise use the default stack size of the particular runtime

            else
               Stack_Size := Runtime_Default_Sec_Stack_Size;
            end if;

         --  Otherwise the caller requested a heap-allocated stack. Use the
         --  specified size directly.

         else
            Stack_Size := Size;
         end if;

         --  The caller requested a pool-allocated stack. Use one as long as
         --  the pool created by the binder has available stacks. This stack
         --  cannot be deallocated.

         if Size = Unspecified_Size
           and then Binder_SS_Count > 0
           and then Binder_Default_SS_Pool_Index < Binder_SS_Count
         then
            Stack := Next_Available_Binder_Sec_Stack;
            Stack.Freeable := False;

         --  Otherwise the caller requested a heap-allocated stack, or the pool
         --  created by the binder ran out of available stacks. This stack can
         --  be deallocated.

         else
            --  It should not be possible to create a stack with a negative
            --  default chunk size.

            pragma Assert (Stack_Size in Memory_Size);

            Stack := new SS_Stack (Stack_Size);
            Stack.Freeable := True;
         end if;

      --  Otherwise the stack was already created either by the compiler or by
      --  the user, and is about to be reused.

      else
         null;
      end if;

      --  The static chunk becomes the chunk indicated by the stack pointer.
      --  Note that the stack may still hold dynamic chunks, which in turn may
      --  be reused or freed.

      Stack.Top.Chunk := Stack.Static_Chunk'Access;

      --  The first free byte is the first free byte of the chunk indicated by
      --  the stack pointer.

      Stack.Top.Byte := Stack.Top.Chunk.Memory'First;

      --  Since the chunk indicated by the stack pointer is also the first
      --  chunk in the stack, there are no prior chunks, therefore the size
      --  of the stack up to the chunk is zero.

      Stack.Top.Chunk.Size_Up_To_Chunk := 0;

      --  Reset the high water mark to account for brand new allocations

      Stack.High_Water_Mark := 0;
   end SS_Init;

   -------------
   -- SS_Mark --
   -------------

   function SS_Mark return Mark_Id is
      Stack : constant SS_Stack_Ptr := Get_Sec_Stack.all;

   begin
      return (Stack => Stack, Top => Stack.Top);
   end SS_Mark;

   ----------------
   -- SS_Release --
   ----------------

   procedure SS_Release (M : Mark_Id) is
   begin
      M.Stack.Top := M.Top;
   end SS_Release;

   ------------------
   -- Top_Chunk_Id --
   ------------------

   function Top_Chunk_Id (Stack : SS_Stack_Ptr) return Chunk_Id_With_Invalid is
      Chunk : SS_Chunk_Ptr;
      Id    : Chunk_Id;

   begin
      Chunk := Stack.Static_Chunk'Access;
      Id    := 1;
      while Chunk /= null loop
         if Chunk = Stack.Top.Chunk then
            return Id;
         end if;

         Chunk := Chunk.Next;
         Id    := Id + 1;
      end loop;

      return Invalid_Chunk_Id;
   end Top_Chunk_Id;

   ----------------------
   -- Used_Memory_Size --
   ----------------------

   function Used_Memory_Size (Stack : SS_Stack_Ptr) return Memory_Size is
   begin
      --  The size of the occupied memory is equal to the size up to the chunk
      --  indicated by the stack pointer, plus the size in use by the indicated
      --  chunk itself. Top.Byte - 1 is the last occupied byte.
      --
      --                                     Top.Byte
      --                                     |
      --    . . . . . . .     +--------------|----+
      --                . ..> |##############|    |
      --    . . . . . . .     +-------------------+
      --                       |             |
      --    -------------------+-------------+
      --      Size_Up_To_Chunk   size in use

      --  ??? this calculation may overflow on 32bit targets

      return Stack.Top.Chunk.Size_Up_To_Chunk + Stack.Top.Byte - 1;
   end Used_Memory_Size;

end System.Secondary_Stack;