aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/libgnat/s-imageu.adb
blob: c45dd5d1753955e1180f01dcb71ccd0955a8cb32 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT RUN-TIME COMPONENTS                         --
--                                                                          --
--                       S Y S T E M . I M A G E _ U                        --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2024, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with Ada.Numerics.Big_Numbers.Big_Integers_Ghost;
use Ada.Numerics.Big_Numbers.Big_Integers_Ghost;
with System.Val_Spec;

package body System.Image_U is

   --  Ghost code, loop invariants and assertions in this unit are meant for
   --  analysis only, not for run-time checking, as it would be too costly
   --  otherwise. This is enforced by setting the assertion policy to Ignore.

   pragma Assertion_Policy (Ghost              => Ignore,
                            Loop_Invariant     => Ignore,
                            Assert             => Ignore,
                            Assert_And_Cut     => Ignore,
                            Subprogram_Variant => Ignore);

   package Unsigned_Conversion is new Unsigned_Conversions (Int => Uns);

   function Big (Arg : Uns) return Big_Integer renames
     Unsigned_Conversion.To_Big_Integer;

   function From_Big (Arg : Big_Integer) return Uns renames
     Unsigned_Conversion.From_Big_Integer;

   Big_10 : constant Big_Integer := Big (10) with Ghost;

   ------------------
   -- Local Lemmas --
   ------------------

   procedure Lemma_Non_Zero (X : Uns)
   with
     Ghost,
     Pre  => X /= 0,
     Post => Big (X) /= 0;

   procedure Lemma_Div_Commutation (X, Y : Uns)
   with
     Ghost,
     Pre  => Y /= 0,
     Post => Big (X) / Big (Y) = Big (X / Y);

   procedure Lemma_Div_Twice (X : Big_Natural; Y, Z : Big_Positive)
   with
     Ghost,
     Post => X / Y / Z = X / (Y * Z);

   ---------------------------
   -- Lemma_Div_Commutation --
   ---------------------------

   procedure Lemma_Non_Zero (X : Uns) is null;
   procedure Lemma_Div_Commutation (X, Y : Uns) is null;

   ---------------------
   -- Lemma_Div_Twice --
   ---------------------

   procedure Lemma_Div_Twice (X : Big_Natural; Y, Z : Big_Positive) is
      XY  : constant Big_Natural := X / Y;
      YZ  : constant Big_Natural := Y * Z;
      XYZ : constant Big_Natural := X / Y / Z;
      R   : constant Big_Natural := (XY rem Z) * Y + (X rem Y);
   begin
      pragma Assert (X = XY * Y + (X rem Y));
      pragma Assert (XY = XY / Z * Z + (XY rem Z));
      pragma Assert (X = XYZ * YZ + R);
      pragma Assert ((XY rem Z) * Y <= (Z - 1) * Y);
      pragma Assert (R <= YZ - 1);
      pragma Assert (X / YZ = (XYZ * YZ + R) / YZ);
      pragma Assert (X / YZ = XYZ + R / YZ);
   end Lemma_Div_Twice;

   --------------------
   -- Image_Unsigned --
   --------------------

   procedure Image_Unsigned
     (V : Uns;
      S : in out String;
      P : out Natural)
   is
      pragma Assert (S'First = 1);

      procedure Prove_Value_Unsigned
      with
        Ghost,
        Pre => S'First = 1
          and then S'Last < Integer'Last
          and then P in 2 .. S'Last
          and then S (1) = ' '
          and then U_Spec.Only_Decimal_Ghost (S, From => 2, To => P)
          and then U_Spec.Scan_Based_Number_Ghost (S, From => 2, To => P)
            = U_Spec.Wrap_Option (V),
        Post => not System.Val_Spec.Only_Space_Ghost (S, 1, P)
          and then U_Spec.Is_Unsigned_Ghost (S (1 .. P))
          and then U_Spec.Is_Value_Unsigned_Ghost (S (1 .. P), V);
      --  Ghost lemma to prove the value of Value_Unsigned from the value of
      --  Scan_Based_Number_Ghost on a decimal string.

      --------------------------
      -- Prove_Value_Unsigned --
      --------------------------

      procedure Prove_Value_Unsigned is
         Str : constant String := S (1 .. P);
      begin
         pragma Assert (Str'First = 1);
         pragma Assert (S (2) /= ' ');
         pragma Assert
           (U_Spec.Only_Decimal_Ghost (Str, From => 2, To => P));
         U_Spec.Prove_Scan_Based_Number_Ghost_Eq
           (S, Str, From => 2, To => P);
         pragma Assert
           (U_Spec.Scan_Based_Number_Ghost (Str, From => 2, To => P)
            = U_Spec.Wrap_Option (V));
         U_Spec.Prove_Scan_Only_Decimal_Ghost (Str, V);
      end Prove_Value_Unsigned;

   --  Start of processing for Image_Unsigned

   begin
      S (1) := ' ';
      P := 1;
      Set_Image_Unsigned (V, S, P);

      Prove_Value_Unsigned;
   end Image_Unsigned;

   ------------------------
   -- Set_Image_Unsigned --
   ------------------------

   procedure Set_Image_Unsigned
     (V : Uns;
      S : in out String;
      P : in out Natural)
   is
      Nb_Digits : Natural := 0;
      Value     : Uns := V;

      --  Local ghost variables

      Pow        : Big_Positive := 1 with Ghost;
      S_Init     : constant String := S with Ghost;
      Prev_Value : Uns with Ghost;
      Prev_S     : String := S with Ghost;

      --  Local ghost lemmas

      procedure Prove_Character_Val (R : Uns)
      with
        Ghost,
        Post => R rem 10 in 0 .. 9
          and then Character'Val (48 + R rem 10) in '0' .. '9';
      --  Ghost lemma to prove the value of a character corresponding to the
      --  next figure.

      procedure Prove_Euclidian (Val, Quot, Rest : Uns)
      with
        Ghost,
        Pre  => Quot = Val / 10
          and then Rest = Val rem 10,
        Post => Uns'Last - Rest >= 10 * Quot and then Val = 10 * Quot + Rest;
      --  Ghost lemma to prove the relation between the quotient/remainder of
      --  division by 10 and the initial value.

      procedure Prove_Hexa_To_Unsigned_Ghost (R : Uns)
      with
        Ghost,
        Pre  => R in 0 .. 9,
        Post => U_Spec.Hexa_To_Unsigned_Ghost (Character'Val (48 + R)) = R;
      --  Ghost lemma to prove that Hexa_To_Unsigned_Ghost returns the source
      --  figure when applied to the corresponding character.

      procedure Prove_Scan_Iter
        (S, Prev_S      : String;
         V, Prev_V, Res : Uns;
         P, Max         : Natural)
        with
          Ghost,
          Pre =>
            S'First = Prev_S'First and then S'Last = Prev_S'Last
            and then S'Last < Natural'Last and then
            Max in S'Range and then P in S'First .. Max and then
            (for all I in P + 1 .. Max => Prev_S (I) in '0' .. '9')
            and then (for all I in P + 1 .. Max => Prev_S (I) = S (I))
            and then S (P) in '0' .. '9'
            and then V <= Uns'Last / 10
            and then Uns'Last - U_Spec.Hexa_To_Unsigned_Ghost (S (P))
              >= 10 * V
            and then Prev_V =
              V * 10 + U_Spec.Hexa_To_Unsigned_Ghost (S (P))
            and then
              (if P = Max then Prev_V = Res
               else U_Spec.Scan_Based_Number_Ghost
                 (Str  => Prev_S,
                  From => P + 1,
                  To   => Max,
                  Base => 10,
                  Acc  => Prev_V) = U_Spec.Wrap_Option (Res)),
          Post =>
            (for all I in P .. Max => S (I) in '0' .. '9')
            and then U_Spec.Scan_Based_Number_Ghost
              (Str  => S,
               From => P,
               To   => Max,
               Base => 10,
               Acc  => V) = U_Spec.Wrap_Option (Res);
      --  Ghost lemma to prove that Scan_Based_Number_Ghost is preserved
      --  through an iteration of the loop.

      -----------------------------
      -- Local lemma null bodies --
      -----------------------------

      procedure Prove_Character_Val (R : Uns) is null;
      procedure Prove_Euclidian (Val, Quot, Rest : Uns) is null;
      procedure Prove_Hexa_To_Unsigned_Ghost (R : Uns) is null;

      ---------------------
      -- Prove_Scan_Iter --
      ---------------------

      procedure Prove_Scan_Iter
        (S, Prev_S      : String;
         V, Prev_V, Res : Uns;
         P, Max         : Natural)
      is
         pragma Unreferenced (Res);
      begin
         U_Spec.Lemma_Scan_Based_Number_Ghost_Step
           (Str  => S,
            From => P,
            To   => Max,
            Base => 10,
            Acc  => V);
         if P < Max then
            U_Spec.Prove_Scan_Based_Number_Ghost_Eq
              (Prev_S, S, P + 1, Max, 10, Prev_V);
         else
            U_Spec.Lemma_Scan_Based_Number_Ghost_Base
              (Str  => S,
               From => P + 1,
               To   => Max,
               Base => 10,
               Acc  => Prev_V);
         end if;
      end Prove_Scan_Iter;

   --  Start of processing for Set_Image_Unsigned

   begin
      pragma Assert (P >= S'First - 1 and then P < S'Last and then
                     P < Natural'Last);
      --  No check is done since, as documented in the specification, the
      --  caller guarantees that S is long enough to hold the result.

      --  First we compute the number of characters needed for representing
      --  the number.
      loop
         Lemma_Div_Commutation (Value, 10);
         Lemma_Div_Twice (Big (V), Big_10 ** Nb_Digits, Big_10);

         Value := Value / 10;
         Nb_Digits := Nb_Digits + 1;
         Pow := Pow * 10;

         pragma Loop_Invariant (Nb_Digits in 1 .. Unsigned_Width_Ghost - 1);
         pragma Loop_Invariant (Pow = Big_10 ** Nb_Digits);
         pragma Loop_Invariant (Big (Value) = Big (V) / Pow);
         pragma Loop_Variant (Decreases => Value);

         exit when Value = 0;

         Lemma_Non_Zero (Value);
         pragma Assert (Pow <= Big (Uns'Last));
      end loop;
      pragma Assert (Big (V) / (Big_10 ** Nb_Digits) = 0);

      Value := V;
      Pow := 1;

      pragma Assert (Value = From_Big (Big (V) / Big_10 ** 0));

      --  We now populate digits from the end of the string to the beginning
      for J in reverse 1 .. Nb_Digits loop
         Lemma_Div_Commutation (Value, 10);
         Lemma_Div_Twice (Big (V), Big_10 ** (Nb_Digits - J), Big_10);
         Prove_Character_Val (Value);
         Prove_Hexa_To_Unsigned_Ghost (Value rem 10);

         Prev_Value := Value;
         Prev_S := S;
         Pow := Pow * 10;
         S (P + J) := Character'Val (48 + (Value rem 10));
         Value := Value / 10;

         Prove_Euclidian
           (Val  => Prev_Value,
            Quot => Value,
            Rest => U_Spec.Hexa_To_Unsigned_Ghost (S (P + J)));

         Prove_Scan_Iter
           (S, Prev_S, Value, Prev_Value, V, P + J, P + Nb_Digits);

         pragma Loop_Invariant (Value <= Uns'Last / 10);
         pragma Loop_Invariant
           (for all K in S'First .. P => S (K) = S_Init (K));
         pragma Loop_Invariant
           (U_Spec.Only_Decimal_Ghost
              (S, From => P + J, To => P + Nb_Digits));
         pragma Loop_Invariant (Pow = Big_10 ** (Nb_Digits - J + 1));
         pragma Loop_Invariant (Big (Value) = Big (V) / Pow);
         pragma Loop_Invariant
           (U_Spec.Scan_Based_Number_Ghost
              (Str  => S,
               From => P + J,
               To   => P + Nb_Digits,
               Base => 10,
               Acc  => Value)
              = U_Spec.Wrap_Option (V));
      end loop;
      pragma Assert (Big (Value) = Big (V) / (Big_10 ** Nb_Digits));
      pragma Assert (Value = 0);

      P := P + Nb_Digits;
   end Set_Image_Unsigned;

end System.Image_U;