aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/libgnat/s-bituti.adb
blob: 28e41f36b14f408104e1e30d5039669162079e6c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT RUN-TIME COMPONENTS                         --
--                                                                          --
--                 S Y S T E M . B I T F I E L D _ U T I L S                --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--               Copyright (C) 2019-2023, Free Software Foundation, Inc.    --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with System.Storage_Elements; use System.Storage_Elements;

package body System.Bitfield_Utils is

   package body G is

      Val_Bytes : constant Storage_Count := Val'Size / Storage_Unit;

      --  A Val_2 can cross a memory page boundary (e.g. an 8-byte Val_2 that
      --  starts 4 bytes before the end of a page). If the bit field also
      --  crosses that boundary, then the second page is known to exist, and we
      --  can safely load or store the Val_2. On the other hand, if the bit
      --  field is entirely within the first half of the Val_2, then it is
      --  possible (albeit highly unlikely) that the second page does not
      --  exist, so we must load or store only the first half of the Val_2.
      --  Get_Val_2 and Set_Val_2 take care of all this.

      function Get_Val_2
        (Src_Address : Address;
         Src_Offset : Bit_Offset;
         Size : Small_Size)
        return Val_2;
      --  Get the Val_2, taking care to only load the first half when
      --  necessary.

      procedure Set_Val_2
        (Dest_Address : Address;
         Dest_Offset : Bit_Offset;
         V : Val_2;
         Size : Small_Size);
      --  Set the Val_2, taking care to only store the first half when
      --  necessary.

      --  Get_Bitfield and Set_Bitfield are helper functions that get/set small
      --  bit fields -- the value fits in Val, and the bit field is placed
      --  starting at some offset within the first half of a Val_2.
      --  Copy_Bitfield, on the other hand, supports arbitrarily large bit
      --  fields. All operations require bit offsets to point within the first
      --  Val pointed to by the address.

      function Get_Bitfield
        (Src : Val_2; Src_Offset : Bit_Offset; Size : Small_Size)
         return Val with Inline;
      --  Returns the bit field in Src starting at Src_Offset, of the given
      --  Size. If Size < Small_Size'Last, then high order bits are zero.

      function Set_Bitfield
        (Src_Value : Val;
         Dest : Val_2;
         Dest_Offset : Bit_Offset;
         Size : Small_Size)
        return Val_2 with Inline;
      --  The bit field in Dest starting at Dest_Offset, of the given Size, is
      --  set to Src_Value. Src_Value must have high order bits (Size and
      --  above) zero. The result is returned as the function result.

      procedure Set_Bitfield
        (Src_Value : Val;
         Dest_Address : Address;
         Dest_Offset : Bit_Offset;
         Size : Small_Size);
      --  This version takes the bit address and size of the destination.

      procedure Copy_Small_Bitfield
        (Src_Address  : Address;
         Src_Offset   : Bit_Offset;
         Dest_Address : Address;
         Dest_Offset  : Bit_Offset;
         Size         : Small_Size);
      --  Copy_Bitfield in the case where Size <= Val'Size.
      --  The Address values must be aligned as for Val and Val_2.
      --  This works for overlapping bit fields.

      procedure Copy_Large_Bitfield
        (Src_Address  : Address;
         Src_Offset   : Bit_Offset;
         Dest_Address : Address;
         Dest_Offset  : Bit_Offset;
         Size         : Bit_Size);
      --  Copy_Bitfield in the case where Size > Val'Size.
      --  The Address values must be aligned as for Val and Val_2.
      --  This works for overlapping bit fields only if the source
      --  bit address is greater than or equal to the destination
      --  bit address, because it copies forward (from lower to higher
      --  bit addresses).

      function Get_Val_2
        (Src_Address : Address;
         Src_Offset : Bit_Offset;
         Size : Small_Size)
        return Val_2 is
      begin
         pragma Assert (Src_Address mod Storage_Count'(Val'Alignment) = 0);

         --  Bit field fits in first half; fetch just one Val. On little
         --  endian, we want that in the low half, but on big endian, we
         --  want it in the high half.

         if Src_Offset + Size <= Val'Size then
            declare
               Result : aliased constant Val with
                 Import, Address => Src_Address;
            begin
               return (case Endian is
                  when Little => Val_2 (Result),
                  when Big => Shift_Left (Val_2 (Result), Val'Size));
            end;

         --  Bit field crosses into the second half, so it's safe to fetch the
         --  whole Val_2.

         else
            declare
               Result : aliased constant Val_2 with
                 Import, Address => Src_Address;
            begin
               return Result;
            end;
         end if;
      end Get_Val_2;

      procedure Set_Val_2
        (Dest_Address : Address;
         Dest_Offset : Bit_Offset;
         V : Val_2;
         Size : Small_Size) is
      begin
         pragma Assert (Dest_Address mod Storage_Count'(Val'Alignment) = 0);

         --  Comments in Get_Val_2 apply, except we're storing instead of
         --  fetching.

         if Dest_Offset + Size <= Val'Size then
            declare
               Dest : aliased Val with Import, Address => Dest_Address;
            begin
               Dest := (case Endian is
                  when Little => Val'Mod (V),
                  when Big => Val (Shift_Right (V, Val'Size)));
            end;
         else
            declare
               Dest : aliased Val_2 with Import, Address => Dest_Address;
            begin
               Dest := V;
            end;
         end if;
      end Set_Val_2;

      function Get_Bitfield
        (Src : Val_2; Src_Offset : Bit_Offset; Size : Small_Size)
         return Val
      is
         L_Shift_Amount : constant Natural :=
           (case Endian is
              when Little => Val_2'Size - (Src_Offset + Size),
              when Big => Src_Offset);
         Temp1 : constant Val_2 :=
           Shift_Left (Src, L_Shift_Amount);
         Temp2 : constant Val_2 :=
           Shift_Right (Temp1, Val_2'Size - Size);
      begin
         return Val (Temp2);
      end Get_Bitfield;

      function Set_Bitfield
        (Src_Value : Val;
         Dest : Val_2;
         Dest_Offset : Bit_Offset;
         Size : Small_Size)
        return Val_2
      is
         pragma Assert (Size = Val'Size or else Src_Value < 2**Size);
         L_Shift_Amount : constant Natural :=
           (case Endian is
              when Little => Dest_Offset,
              when Big => Val_2'Size - (Dest_Offset + Size));
         Mask : constant Val_2 :=
           Shift_Left (Shift_Left (1, Size) - 1, L_Shift_Amount);
         Temp1 : constant Val_2 := Dest and not Mask;
         Temp2 : constant Val_2 :=
           Shift_Left (Val_2 (Src_Value), L_Shift_Amount);
         Result : constant Val_2 := Temp1 or Temp2;
      begin
         return Result;
      end Set_Bitfield;

      procedure Set_Bitfield
        (Src_Value : Val;
         Dest_Address : Address;
         Dest_Offset : Bit_Offset;
         Size : Small_Size)
      is
         Old_Dest : constant Val_2 :=
           Get_Val_2 (Dest_Address, Dest_Offset, Size);
         New_Dest : constant Val_2 :=
           Set_Bitfield (Src_Value, Old_Dest, Dest_Offset, Size);
      begin
         Set_Val_2 (Dest_Address, Dest_Offset, New_Dest, Size);
      end Set_Bitfield;

      procedure Copy_Small_Bitfield
        (Src_Address  : Address;
         Src_Offset   : Bit_Offset;
         Dest_Address : Address;
         Dest_Offset  : Bit_Offset;
         Size         : Small_Size)
      is
         Src : constant Val_2 := Get_Val_2 (Src_Address, Src_Offset, Size);
         V : constant Val := Get_Bitfield (Src, Src_Offset, Size);
      begin
         Set_Bitfield (V, Dest_Address, Dest_Offset, Size);
      end Copy_Small_Bitfield;

      --  Copy_Large_Bitfield does the main work. Copying aligned Vals is more
      --  efficient than fiddling with shifting and whatnot. But we can't align
      --  both source and destination. We choose to align the destination,
      --  because that's more efficient -- Set_Bitfield needs to read, then
      --  modify, then write, whereas Get_Bitfield does not.
      --
      --  So the method is:
      --
      --      Step 1:
      --      If the destination is not already aligned, copy Initial_Size
      --      bits, and increment the bit addresses. Initial_Size is chosen to
      --      be the smallest size that will cause the destination bit address
      --      to be aligned (i.e. have zero bit offset from the already-aligned
      --      Address). Get_Bitfield and Set_Bitfield are used here.
      --
      --      Step 2:
      --      Loop, copying Vals. Get_Bitfield is used to fetch a Val-sized
      --      bit field, but Set_Bitfield is not needed -- we can set the
      --      aligned Val with an array indexing.
      --
      --      Step 3:
      --      Copy remaining smaller-than-Val bits, if any

      procedure Copy_Large_Bitfield
        (Src_Address  : Address;
         Src_Offset   : Bit_Offset;
         Dest_Address : Address;
         Dest_Offset  : Bit_Offset;
         Size         : Bit_Size)
      is
         Sz : Bit_Size := Size;
         S_Addr : Address := Src_Address;
         S_Off : Bit_Offset := Src_Offset;
         D_Addr : Address := Dest_Address;
         D_Off : Bit_Offset := Dest_Offset;
      begin
         if S_Addr < D_Addr or else (S_Addr = D_Addr and then S_Off < D_Off)
         then
            --  Here, the source bit address is less than the destination bit
            --  address. Assert that there is no overlap.

            declare
               Temp_Off : constant Bit_Offset'Base := S_Off + Size;
               After_S_Addr : constant Address :=
                 S_Addr + Address (Temp_Off / Storage_Unit);
               After_S_Off : constant Bit_Offset_In_Byte :=
                 Temp_Off mod Storage_Unit;
               --  (After_S_Addr, After_S_Off) is the bit address of the bit
               --  just after the source bit field. Assert that it's less than
               --  or equal to the destination bit address.
               Overlap_OK : constant Boolean :=
                 After_S_Addr < D_Addr
                   or else
                 (After_S_Addr = D_Addr and then After_S_Off <= D_Off);
            begin
               pragma Assert (Overlap_OK);
            end;
         end if;

         if D_Off /= 0 then
            --  Step 1:

            declare
               Initial_Size : constant Small_Size := Val'Size - D_Off;
               Initial_Val_2 : constant Val_2 :=
                 Get_Val_2 (S_Addr, S_Off, Initial_Size);
               Initial_Val : constant Val :=
                 Get_Bitfield (Initial_Val_2, S_Off, Initial_Size);

            begin
               Set_Bitfield
                 (Initial_Val, D_Addr, D_Off, Initial_Size);

               Sz := Sz - Initial_Size;
               declare
                  New_S_Off : constant Bit_Offset'Base := S_Off + Initial_Size;
               begin
                  if New_S_Off > Bit_Offset'Last then
                     S_Addr := S_Addr + Val_Bytes;
                     S_Off := New_S_Off - Small_Size'Last;
                  else
                     S_Off := New_S_Off;
                  end if;
               end;
               D_Addr := D_Addr + Val_Bytes;
               pragma Assert (D_Off + Initial_Size = Val'Size);
               D_Off := 0;
            end;
         end if;

         --  Step 2:

         declare
            Dest_Arr : Val_Array (1 .. Sz / Val'Size) with Import,
              Address => D_Addr;
         begin
            for Dest_Comp of Dest_Arr loop
               declare
                  pragma Warnings (Off);
                  pragma Assert (Dest_Comp in Val);
                  pragma Warnings (On);
                  pragma Assert (Dest_Comp'Valid);
                  Src_V_2 : constant Val_2 :=
                    Get_Val_2 (S_Addr, S_Off, Val'Size);
                  Full_V : constant Val :=
                    Get_Bitfield (Src_V_2, S_Off, Val'Size);
               begin
                  Dest_Comp := Full_V;
                  S_Addr := S_Addr + Val_Bytes;
                  --  S_Off remains the same
               end;
            end loop;

            Sz := Sz mod Val'Size;
            if Sz /= 0 then
               --  Step 3:

               declare
                  Final_Val_2 : constant Val_2 :=
                    Get_Val_2 (S_Addr, S_Off, Sz);
                  Final_Val : constant Val :=
                    Get_Bitfield (Final_Val_2, S_Off, Sz);
               begin
                  Set_Bitfield
                    (Final_Val, D_Addr + Dest_Arr'Length * Val_Bytes, 0, Sz);
               end;
            end if;
         end;
      end Copy_Large_Bitfield;

      procedure Copy_Bitfield
        (Src_Address  : Address;
         Src_Offset   : Bit_Offset_In_Byte;
         Dest_Address : Address;
         Dest_Offset  : Bit_Offset_In_Byte;
         Size         : Bit_Size)
      is
         --  Align the Address values as for Val and Val_2, and adjust the
         --  Bit_Offsets accordingly.

         Src_Adjust     : constant Storage_Offset := Src_Address mod Val_Bytes;
         Al_Src_Address : constant Address := Src_Address - Src_Adjust;
         Al_Src_Offset  : constant Bit_Offset :=
           Src_Offset + Bit_Offset (Src_Adjust * Storage_Unit);

         Dest_Adjust     : constant Storage_Offset :=
           Dest_Address mod Val_Bytes;
         Al_Dest_Address : constant Address := Dest_Address - Dest_Adjust;
         Al_Dest_Offset  : constant Bit_Offset :=
           Dest_Offset + Bit_Offset (Dest_Adjust * Storage_Unit);

         pragma Assert (Al_Src_Address mod Storage_Count'(Val'Alignment) = 0);
         pragma Assert (Al_Dest_Address mod Storage_Count'(Val'Alignment) = 0);
      begin
         --  Optimized small case

         if Size in Small_Size then
            Copy_Small_Bitfield
              (Al_Src_Address, Al_Src_Offset,
               Al_Dest_Address, Al_Dest_Offset,
               Size);

         --  Do nothing for zero size. This is necessary to avoid doing invalid
         --  reads, which are detected by valgrind.

         elsif Size = 0 then
            null;

         --  Large case

         else
            Copy_Large_Bitfield
              (Al_Src_Address, Al_Src_Offset,
               Al_Dest_Address, Al_Dest_Offset,
               Size);
         end if;
      end Copy_Bitfield;

      function Fast_Copy_Bitfield
        (Src         : Val_2;
         Src_Offset  : Bit_Offset;
         Dest        : Val_2;
         Dest_Offset : Bit_Offset;
         Size        : Small_Size)
        return Val_2 is
         Result : constant Val_2 := Set_Bitfield
           (Get_Bitfield (Src, Src_Offset, Size), Dest, Dest_Offset, Size);
      begin
         --  No need to explicitly do nothing for zero size case, because Size
         --  cannot be zero.

         return Result;
      end Fast_Copy_Bitfield;

   end G;

end System.Bitfield_Utils;