aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/libgnat/a-tifiio__128.adb
blob: f445a4b5656cb9b881ebc05027a238a73203d333 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT RUN-TIME COMPONENTS                         --
--                                                                          --
--                 A D A . T E X T _ I O . F I X E D _ I O                  --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--            Copyright (C) 2020-2023, Free Software Foundation, Inc.       --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

--  -------------------
--  - Fixed point I/O -
--  -------------------

--  The following text documents implementation details of the fixed point
--  input/output routines in the GNAT runtime. The first part describes the
--  general properties of fixed point types as defined by the Ada standard,
--  including the Information Systems Annex.

--  Subsequently these are reduced to implementation constraints and the impact
--  of these constraints on a few possible approaches to input/output is given.
--  Based on this analysis, a specific implementation is selected for use in
--  the GNAT runtime. Finally the chosen algorithms are analyzed numerically in
--  order to provide user-level documentation on limits for range and precision
--  of fixed point types as well as accuracy of input/output conversions.

--  -------------------------------------------
--  - General Properties of Fixed Point Types -
--  -------------------------------------------

--  Operations on fixed point types, other than input/output, are not important
--  for the purpose of this document. Only the set of values that a fixed point
--  type can represent and the input/output operations are significant.

--  Values
--  ------

--  The set of values of a fixed point type comprise the integral multiples of
--  a number called the small of the type. The small can be either a power of
--  two, a power of ten or (if the implementation allows) an arbitrary strictly
--  positive real value.

--  Implementations need to support ordinary fixed point types with a precision
--  of at least 24 bits, and (in order to comply with the Information Systems
--  Annex) decimal fixed point types with at least 18 digits. For the rest, no
--  requirements exist for the minimal small and range that must be supported.

--  Operations
--  ----------

--  [Wide_[Wide_]]Image attribute (see RM 3.5(27.1/2))

--          These attributes return a decimal real literal best approximating
--          the value (rounded away from zero if halfway between) with a
--          single leading character that is either a minus sign or a space,
--          one or more digits before the decimal point (with no redundant
--          leading zeros), a decimal point, and N digits after the decimal
--          point. For a subtype S, the value of N is S'Aft, the smallest
--          positive integer such that (10**N)*S'Delta is greater or equal to
--          one, see RM 3.5.10(5).

--          For an arbitrary small, this means large number arithmetic needs
--          to be performed.

--  Put (see RM A.10.9(22-26))

--          The requirements for Put add no extra constraints over the image
--          attributes, although it would be nice to be able to output more
--          than S'Aft digits after the decimal point for values of subtype S.

--  [Wide_[Wide_]]Value attribute (RM 3.5(39.1/2))

--          Since the input can be given in any base in the range 2..16,
--          accurate conversion to a fixed point number may require
--          arbitrary precision arithmetic if there is no limit on the
--          magnitude of the small of the fixed point type.

--  Get (see RM A.10.9(12-21))

--          The requirements for Get are identical to those of the Value
--          attribute.

--  ------------------------------
--  - Implementation Constraints -
--  ------------------------------

--  The requirements listed above for the input/output operations lead to
--  significant complexity, if no constraints are put on supported smalls.

--  Implementation Strategies
--  -------------------------

--  * Floating point arithmetic
--  * Arbitrary-precision integer arithmetic
--  * Fixed-precision integer arithmetic

--  Although it seems convenient to convert fixed point numbers to floating
--  point and then print them, this leads to a number of restrictions.
--  The first one is precision. The widest floating-point type generally
--  available has 53 bits of mantissa. This means that Fine_Delta cannot
--  be less than 2.0**(-53).

--  In GNAT, Fine_Delta is 2.0**(-127), and Duration for example is a 64-bit
--  type. This means that a floating-point type with 128 bits of mantissa needs
--  to be used, which currently does not exist in any common architecture. It
--  would still be possible to use multi-precision floating point to perform
--  calculations using longer mantissas, but this is a much harder approach.

--  The base conversions needed for input/output of (non-decimal) fixed point
--  types can be seen as pairs of integer multiplications and divisions.

--  Arbitrary-precision integer arithmetic would be suitable for the job at
--  hand, but has the drawback that it is very heavy implementation-wise.
--  Especially in embedded systems, where fixed point types are often used,
--  it may not be desirable to require large amounts of storage and time
--  for fixed I/O operations.

--  Fixed-precision integer arithmetic has the advantage of simplicity and
--  speed. For the most common fixed point types this would be a perfect
--  solution. The downside however may be a restricted set of acceptable
--  fixed point types.

--  Implementation Choices
--  ----------------------

--  The current implementation in the GNAT runtime uses fixed-precision integer
--  arithmetic for fixed point types whose Small is the ratio of two integers
--  whose magnitude is bounded relatively to the size of the mantissa, with a
--  three-tiered approach for 32-bit, 64-bit and 128-bit fixed point types. For
--  other fixed point types, the implementation uses floating-point arithmetic.

--  The exact requirements of the algorithms are analyzed and documented along
--  with the implementation in their respective units.

with Interfaces;
with Ada.Text_IO.Fixed_Aux;
with Ada.Text_IO.Float_Aux;
with System.Img_Fixed_32;  use System.Img_Fixed_32;
with System.Img_Fixed_64;  use System.Img_Fixed_64;
with System.Img_Fixed_128; use System.Img_Fixed_128;
with System.Img_LFlt;      use System.Img_LFlt;
with System.Val_Fixed_32;  use System.Val_Fixed_32;
with System.Val_Fixed_64;  use System.Val_Fixed_64;
with System.Val_Fixed_128; use System.Val_Fixed_128;
with System.Val_LFlt;      use System.Val_LFlt;

package body Ada.Text_IO.Fixed_IO with SPARK_Mode => Off is

   --  Note: we still use the floating-point I/O routines for types whose small
   --  is not the ratio of two sufficiently small integers. This will result in
   --  inaccuracies for fixed point types that require more precision than is
   --  available in Long_Float.

   subtype Int32  is Interfaces.Integer_32;  use type Int32;
   subtype Int64  is Interfaces.Integer_64;  use type Int64;
   subtype Int128 is Interfaces.Integer_128; use type Int128;

   package Aux32 is new
     Ada.Text_IO.Fixed_Aux (Int32, Scan_Fixed32, Set_Image_Fixed32);

   package Aux64 is new
     Ada.Text_IO.Fixed_Aux (Int64, Scan_Fixed64, Set_Image_Fixed64);

   package Aux128 is new
     Ada.Text_IO.Fixed_Aux (Int128, Scan_Fixed128, Set_Image_Fixed128);

   package Aux_Long_Float is new
     Ada.Text_IO.Float_Aux (Long_Float, Scan_Long_Float, Set_Image_Long_Float);

   --  Throughout this generic body, we distinguish between the case where type
   --  Int32 is OK, where type Int64 is OK and where type Int128 is OK. These
   --  boolean constants are used to test for this, such that only code for the
   --  relevant case is included in the instance; that's why the computation of
   --  their value must be fully static (although it is not a static expression
   --  in the RM sense).

   OK_Get_32 : constant Boolean :=
     Num'Base'Object_Size <= 32
       and then
         ((Num'Small_Numerator = 1 and then Num'Small_Denominator <= 2**31)
           or else
          (Num'Small_Denominator = 1 and then Num'Small_Numerator <= 2**31)
           or else
          (Num'Small_Numerator <= 2**27
            and then Num'Small_Denominator <= 2**27));
   --  These conditions are derived from the prerequisites of System.Value_F

   OK_Put_32 : constant Boolean :=
     Num'Base'Object_Size <= 32
       and then
         ((Num'Small_Numerator = 1 and then Num'Small_Denominator <= 2**31)
           or else
          (Num'Small_Denominator = 1 and then Num'Small_Numerator <= 2**31)
           or else
          (Num'Small_Numerator < Num'Small_Denominator
            and then Num'Small_Denominator <= 2**27)
           or else
          (Num'Small_Denominator < Num'Small_Numerator
            and then Num'Small_Numerator <= 2**25));
   --  These conditions are derived from the prerequisites of System.Image_F

   OK_Get_64 : constant Boolean :=
     Num'Base'Object_Size <= 64
       and then
         ((Num'Small_Numerator = 1 and then Num'Small_Denominator <= 2**63)
           or else
          (Num'Small_Denominator = 1 and then Num'Small_Numerator <= 2**63)
           or else
          (Num'Small_Numerator <= 2**59
            and then Num'Small_Denominator <= 2**59));
   --  These conditions are derived from the prerequisites of System.Value_F

   OK_Put_64 : constant Boolean :=
     Num'Base'Object_Size <= 64
       and then
         ((Num'Small_Numerator = 1 and then Num'Small_Denominator <= 2**63)
           or else
          (Num'Small_Denominator = 1 and then Num'Small_Numerator <= 2**63)
           or else
          (Num'Small_Numerator < Num'Small_Denominator
            and then Num'Small_Denominator <= 2**59)
           or else
          (Num'Small_Denominator < Num'Small_Numerator
            and then Num'Small_Numerator <= 2**53));
   --  These conditions are derived from the prerequisites of System.Image_F

   OK_Get_128 : constant Boolean :=
     Num'Base'Object_Size <= 128
       and then
         ((Num'Small_Numerator = 1 and then Num'Small_Denominator <= 2**127)
           or else
          (Num'Small_Denominator = 1 and then Num'Small_Numerator <= 2**127)
           or else
          (Num'Small_Numerator <= 2**123
            and then Num'Small_Denominator <= 2**123));
   --  These conditions are derived from the prerequisites of System.Value_F

   OK_Put_128 : constant Boolean :=
     Num'Base'Object_Size <= 128
       and then
         ((Num'Small_Numerator = 1 and then Num'Small_Denominator <= 2**127)
           or else
          (Num'Small_Denominator = 1 and then Num'Small_Numerator <= 2**127)
           or else
          (Num'Small_Numerator < Num'Small_Denominator
            and then Num'Small_Denominator <= 2**123)
           or else
          (Num'Small_Denominator < Num'Small_Numerator
            and then Num'Small_Numerator <= 2**122));
   --  These conditions are derived from the prerequisites of System.Image_F

   E : constant Natural :=
         127 - 64 * Boolean'Pos (OK_Put_64) - 32 * Boolean'Pos (OK_Put_32);
   --  T'Size - 1 for the selected Int{32,64,128}

   F0 : constant Natural := 0;
   F1 : constant Natural :=
          F0 + 38 * Boolean'Pos (2.0**E * Num'Small * 10.0**(-F0) >= 1.0E+38);
   F2 : constant Natural :=
          F1 + 19 * Boolean'Pos (2.0**E * Num'Small * 10.0**(-F1) >= 1.0E+19);
   F3 : constant Natural :=
          F2 +  9 * Boolean'Pos (2.0**E * Num'Small * 10.0**(-F2) >= 1.0E+9);
   F4 : constant Natural :=
          F3 +  5 * Boolean'Pos (2.0**E * Num'Small * 10.0**(-F3) >= 1.0E+5);
   F5 : constant Natural :=
          F4 +  3 * Boolean'Pos (2.0**E * Num'Small * 10.0**(-F4) >= 1.0E+3);
   F6 : constant Natural :=
          F5 +  2 * Boolean'Pos (2.0**E * Num'Small * 10.0**(-F5) >= 1.0E+2);
   F7 : constant Natural :=
          F6 +  1 * Boolean'Pos (2.0**E * Num'Small * 10.0**(-F6) >= 1.0E+1);
   --  Binary search for the number of digits - 1 before the decimal point of
   --  the product 2.0**E * Num'Small.

   For0 : constant Natural := 2 + F7;
   --  Fore value for the fixed point type whose mantissa is Int{32,64,128} and
   --  whose small is Num'Small.

   ---------
   -- Get --
   ---------

   procedure Get
     (File  : File_Type;
      Item  : out Num;
      Width : Field := 0)
   is
      pragma Unsuppress (Range_Check);

   begin
      if OK_Get_32 then
         Item := Num'Fixed_Value
                   (Aux32.Get (File, Width,
                               -Num'Small_Numerator,
                               -Num'Small_Denominator));
      elsif OK_Get_64 then
         Item := Num'Fixed_Value
                   (Aux64.Get (File, Width,
                               -Num'Small_Numerator,
                               -Num'Small_Denominator));
      elsif OK_Get_128 then
         Item := Num'Fixed_Value
                   (Aux128.Get (File, Width,
                                -Num'Small_Numerator,
                                -Num'Small_Denominator));
      else
         Aux_Long_Float.Get (File, Long_Float (Item), Width);
      end if;

   exception
      when Constraint_Error => raise Data_Error;
   end Get;

   procedure Get
     (Item  : out Num;
      Width : Field := 0)
   is
   begin
      Get (Current_In, Item, Width);
   end Get;

   procedure Get
     (From : String;
      Item : out Num;
      Last : out Positive)
   is
      pragma Unsuppress (Range_Check);

   begin
      if OK_Get_32 then
         Item := Num'Fixed_Value
                   (Aux32.Gets (From, Last,
                                -Num'Small_Numerator,
                                -Num'Small_Denominator));
      elsif OK_Get_64 then
         Item := Num'Fixed_Value
                   (Aux64.Gets (From, Last,
                                -Num'Small_Numerator,
                                -Num'Small_Denominator));
      elsif OK_Get_128 then
         Item := Num'Fixed_Value
                   (Aux128.Gets (From, Last,
                                 -Num'Small_Numerator,
                                 -Num'Small_Denominator));
      else
         Aux_Long_Float.Gets (From, Long_Float (Item), Last);
      end if;

   exception
      when Constraint_Error => raise Data_Error;
   end Get;

   ---------
   -- Put --
   ---------

   procedure Put
     (File : File_Type;
      Item : Num;
      Fore : Field := Default_Fore;
      Aft  : Field := Default_Aft;
      Exp  : Field := Default_Exp)
   is
   begin
      if OK_Put_32 then
         Aux32.Put (File, Int32'Integer_Value (Item), Fore, Aft, Exp,
                    -Num'Small_Numerator, -Num'Small_Denominator,
                    For0, Num'Aft);
      elsif OK_Put_64 then
         Aux64.Put (File, Int64'Integer_Value (Item), Fore, Aft, Exp,
                    -Num'Small_Numerator, -Num'Small_Denominator,
                    For0, Num'Aft);
      elsif OK_Put_128 then
         Aux128.Put (File, Int128'Integer_Value (Item), Fore, Aft, Exp,
                     -Num'Small_Numerator, -Num'Small_Denominator,
                     For0, Num'Aft);
      else
         Aux_Long_Float.Put (File, Long_Float (Item), Fore, Aft, Exp);
      end if;
   end Put;

   procedure Put
     (Item : Num;
      Fore : Field := Default_Fore;
      Aft  : Field := Default_Aft;
      Exp  : Field := Default_Exp)
   is
   begin
      Put (Current_Out, Item, Fore, Aft, Exp);
   end Put;

   procedure Put
     (To   : out String;
      Item : Num;
      Aft  : Field := Default_Aft;
      Exp  : Field := Default_Exp)
   is
   begin
      if OK_Put_32 then
         Aux32.Puts (To, Int32'Integer_Value (Item), Aft, Exp,
                     -Num'Small_Numerator, -Num'Small_Denominator,
                     For0, Num'Aft);
      elsif OK_Put_64 then
         Aux64.Puts (To, Int64'Integer_Value (Item), Aft, Exp,
                     -Num'Small_Numerator, -Num'Small_Denominator,
                     For0, Num'Aft);
      elsif OK_Put_128 then
         Aux128.Puts (To, Int128'Integer_Value (Item), Aft, Exp,
                      -Num'Small_Numerator, -Num'Small_Denominator,
                      For0, Num'Aft);
      else
         Aux_Long_Float.Puts (To, Long_Float (Item), Aft, Exp);
      end if;
   end Put;

end Ada.Text_IO.Fixed_IO;