aboutsummaryrefslogtreecommitdiff
path: root/gcc/ada/libgnat/a-nbnbre.adb
blob: 3c7208215c426bf0135f4abc1640571bc29995d9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
------------------------------------------------------------------------------
--                                                                          --
--                         GNAT RUN-TIME COMPONENTS                         --
--                                                                          --
--                   ADA.NUMERICS.BIG_NUMBERS.BIG_REALS                     --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--             Copyright (C) 2019-2023, Free Software Foundation, Inc.      --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------

with System.Unsigned_Types; use System.Unsigned_Types;

package body Ada.Numerics.Big_Numbers.Big_Reals is

   use Big_Integers;

   procedure Normalize (Arg : in out Big_Real);
   --  Normalize Arg by ensuring that Arg.Den is always positive and that
   --  Arg.Num and Arg.Den always have a GCD of 1.

   --------------
   -- Is_Valid --
   --------------

   function Is_Valid (Arg : Big_Real) return Boolean is
     (Is_Valid (Arg.Num) and Is_Valid (Arg.Den));

   ---------
   -- "/" --
   ---------

   function "/" (Num, Den : Valid_Big_Integer) return Valid_Big_Real is
      Result : Big_Real;
   begin
      if Den = To_Big_Integer (0) then
         raise Constraint_Error with "divide by zero";
      end if;

      Result.Num := Num;
      Result.Den := Den;
      Normalize (Result);
      return Result;
   end "/";

   ---------------
   -- Numerator --
   ---------------

   function Numerator (Arg : Valid_Big_Real) return Valid_Big_Integer is
     (Arg.Num);

   -----------------
   -- Denominator --
   -----------------

   function Denominator (Arg : Valid_Big_Real) return Big_Positive is
     (Arg.Den);

   ---------
   -- "=" --
   ---------

   function "=" (L, R : Valid_Big_Real) return Boolean is
     (L.Num = R.Num and then L.Den = R.Den);

   ---------
   -- "<" --
   ---------

   function "<" (L, R : Valid_Big_Real) return Boolean is
     (L.Num * R.Den < R.Num * L.Den);
   --  The denominator is guaranteed to be positive since Normalized is
   --  always called when constructing a Valid_Big_Real

   ----------
   -- "<=" --
   ----------

   function "<=" (L, R : Valid_Big_Real) return Boolean is (not (R < L));

   ---------
   -- ">" --
   ---------

   function ">" (L, R : Valid_Big_Real) return Boolean is (R < L);

   ----------
   -- ">=" --
   ----------

   function ">=" (L, R : Valid_Big_Real) return Boolean is (not (L < R));

   -----------------------
   -- Float_Conversions --
   -----------------------

   package body Float_Conversions is

      package Conv is new
        Big_Integers.Unsigned_Conversions (Long_Long_Unsigned);

      -----------------
      -- To_Big_Real --
      -----------------

      --  We get the fractional representation of the floating-point number by
      --  multiplying Num'Fraction by 2.0**M, with M the size of the mantissa,
      --  which gives zero or a number in the range [2.0**(M-1)..2.0**M), which
      --  means that it is an integer N of M bits. The floating-point number is
      --  thus equal to N / 2**(M-E) where E is its Num'Exponent.

      function To_Big_Real (Arg : Num) return Valid_Big_Real is

         A : constant Num'Base := abs (Arg);
         E : constant Integer  := Num'Exponent (A);
         F : constant Num'Base := Num'Fraction (A);
         M : constant Natural  := Num'Machine_Mantissa;

         N, D : Big_Integer;

      begin
         pragma Assert (Num'Machine_Radix = 2);
         --  This implementation does not handle radix 16

         pragma Assert (M <= 64);
         --  This implementation handles only 80-bit IEEE Extended or smaller

         N := Conv.To_Big_Integer (Long_Long_Unsigned (F * 2.0**M));

         --  If E is smaller than M, the denominator is 2**(M-E)

         if E < M then
            D := To_Big_Integer (2) ** (M - E);

         --  Or else, if E is larger than M, multiply the numerator by 2**(E-M)

         elsif E > M then
            N := N * To_Big_Integer (2) ** (E - M);
            D := To_Big_Integer (1);

         --  Otherwise E is equal to M and the result is just N

         else
            D := To_Big_Integer (1);
         end if;

         return (if Arg >= 0.0 then N / D else -N / D);
      end To_Big_Real;

      -------------------
      -- From_Big_Real --
      -------------------

      --  We get the (Frac, Exp) representation of the real number by finding
      --  the exponent E such that it lies in the range [2.0**(E-1)..2.0**E),
      --  multiplying the number by 2.0**(M-E) with M the size of the mantissa,
      --  and converting the result to integer N in the range [2**(M-1)..2**M)
      --  with rounding to nearest, ties to even, and finally call Num'Compose.
      --  This does not apply to the zero, for which we return 0.0 early.

      function From_Big_Real (Arg : Big_Real) return Num is

         M    : constant Natural     := Num'Machine_Mantissa;
         One  : constant Big_Real    := To_Real (1);
         Two  : constant Big_Real    := To_Real (2);
         Half : constant Big_Real    := One / Two;
         TwoI : constant Big_Integer := To_Big_Integer (2);

         function Log2_Estimate (V : Big_Real) return Natural;
         --  Return an integer not larger than Log2 (V) for V >= 1.0

         function Minus_Log2_Estimate (V : Big_Real) return Natural;
         --  Return an integer not larger than -Log2 (V) for V < 1.0

         -------------------
         -- Log2_Estimate --
         -------------------

         function Log2_Estimate (V : Big_Real) return Natural is
            Log : Natural  := 1;
            Pow : Big_Real := Two;

         begin
            while V >= Pow loop
               Pow := Pow * Pow;
               Log := Log + Log;
            end loop;

            return Log / 2;
         end Log2_Estimate;

         -------------------------
         -- Minus_Log2_Estimate --
         -------------------------

         function Minus_Log2_Estimate (V : Big_Real) return Natural is
            Log : Natural  := 1;
            Pow : Big_Real := Half;

         begin
            while V <= Pow loop
               Pow := Pow * Pow;
               Log := Log + Log;
            end loop;

            return Log / 2;
         end Minus_Log2_Estimate;

         --  Local variables

         V : Big_Real := abs (Arg);
         E : Integer  := 0;
         L : Integer;

         A, B, Q, X : Big_Integer;
         N          : Long_Long_Unsigned;
         R          : Num'Base;

      begin
         pragma Assert (Num'Machine_Radix = 2);
         --  This implementation does not handle radix 16

         pragma Assert (M <= 64);
         --  This implementation handles only 80-bit IEEE Extended or smaller

         --  Protect from degenerate case

         if Numerator (V) = To_Big_Integer (0) then
            return 0.0;
         end if;

         --  Use a binary search to compute exponent E

         while V < Half loop
            L := Minus_Log2_Estimate (V);
            V := V * (Two ** L);
            E := E - L;
         end loop;

         --  The dissymetry with above is expected since we go below 2

         while V >= One loop
            L := Log2_Estimate (V) + 1;
            V := V / (Two ** L);
            E := E + L;
         end loop;

         --  The multiplication by 2.0**(-E) has already been done in the loops

         V := V * To_Big_Real (TwoI ** M);

         --  Now go into the integer domain and divide

         A := Numerator (V);
         B := Denominator (V);

         Q := A / B;
         N := Conv.From_Big_Integer (Q);

         --  Round to nearest, ties to even, by comparing twice the remainder

         X := (A - Q * B) * TwoI;

         if X > B or else (X = B and then (N mod 2) = 1) then
            N := N + 1;

            --  If the adjusted quotient overflows the mantissa, scale up

            if N = 2**M then
               N := 1;
               E := E + 1;
            end if;
         end if;

         R := Num'Compose (Num'Base (N), E);

         return (if Numerator (Arg) >= To_Big_Integer (0) then R else -R);
      end From_Big_Real;

   end Float_Conversions;

   -----------------------
   -- Fixed_Conversions --
   -----------------------

   package body Fixed_Conversions is

      package Float_Aux is new Float_Conversions (Long_Float);

      subtype LLLI is Long_Long_Long_Integer;
      subtype LLLU is Long_Long_Long_Unsigned;

      Too_Large : constant Boolean :=
                    Num'Small_Numerator > LLLU'Last
                      or else Num'Small_Denominator > LLLU'Last;
      --  True if the Small is too large for Long_Long_Long_Unsigned, in which
      --  case we convert to/from Long_Float as an intermediate step.

      package Conv_I is new Big_Integers.Signed_Conversions (LLLI);
      package Conv_U is new Big_Integers.Unsigned_Conversions (LLLU);

      -----------------
      -- To_Big_Real --
      -----------------

      --  We just compute V * N / D where V is the mantissa value of the fixed
      --  point number, and N resp. D is the numerator resp. the denominator of
      --  the Small of the fixed-point type.

      function To_Big_Real (Arg : Num) return Valid_Big_Real is
         N, D, V : Big_Integer;

      begin
         if Too_Large then
            return Float_Aux.To_Big_Real (Long_Float (Arg));
         end if;

         N := Conv_U.To_Big_Integer (Num'Small_Numerator);
         D := Conv_U.To_Big_Integer (Num'Small_Denominator);
         V := Conv_I.To_Big_Integer (LLLI'Integer_Value (Arg));

         return V * N / D;
      end To_Big_Real;

      -------------------
      -- From_Big_Real --
      -------------------

      --  We first compute A / B = Arg * D / N where N resp. D is the numerator
      --  resp. the denominator of the Small of the fixed-point type. Then we
      --  divide A by B and convert the result to the mantissa value.

      function From_Big_Real (Arg : Big_Real) return Num is
         N, D, A, B, Q, X : Big_Integer;

      begin
         if Too_Large then
            return Num (Float_Aux.From_Big_Real (Arg));
         end if;

         N := Conv_U.To_Big_Integer (Num'Small_Numerator);
         D := Conv_U.To_Big_Integer (Num'Small_Denominator);
         A := Numerator (Arg) * D;
         B := Denominator (Arg) * N;

         Q := A / B;

         --  Round to nearest, ties to away, by comparing twice the remainder

         X := (A - Q * B) * To_Big_Integer (2);

         if X >= B then
            Q := Q + To_Big_Integer (1);

         elsif X <= -B then
            Q := Q - To_Big_Integer (1);
         end if;

         return Num'Fixed_Value (Conv_I.From_Big_Integer (Q));
      end From_Big_Real;

   end Fixed_Conversions;

   ---------------
   -- To_String --
   ---------------

   function To_String
     (Arg  : Valid_Big_Real;
      Fore : Field := 2;
      Aft  : Field := 3;
      Exp  : Field := 0) return String
   is
      Zero : constant Big_Integer := To_Big_Integer (0);
      Ten  : constant Big_Integer := To_Big_Integer (10);

      function Leading_Padding
        (Str        : String;
         Min_Length : Field;
         Char       : Character := ' ') return String;
      --  Return padding of Char concatenated with Str so that the resulting
      --  string is at least Min_Length long.

      function Trailing_Padding
        (Str    : String;
         Length : Field;
         Char   : Character := '0') return String;
      --  Return Str with trailing Char removed, and if needed either
      --  truncated or concatenated with padding of Char so that the resulting
      --  string is Length long.

      function Image (N : Natural) return String;
      --  Return image of N, with no leading space.

      function Numerator_Image
        (Num   : Big_Integer;
         After : Natural) return String;
      --  Return image of Num as a float value with After digits after the "."
      --  and taking Fore, Aft, Exp into account.

      -----------
      -- Image --
      -----------

      function Image (N : Natural) return String is
         S : constant String := Natural'Image (N);
      begin
         return S (2 .. S'Last);
      end Image;

      ---------------------
      -- Leading_Padding --
      ---------------------

      function Leading_Padding
        (Str        : String;
         Min_Length : Field;
         Char       : Character := ' ') return String is
      begin
         if Str = "" then
            return Leading_Padding ("0", Min_Length, Char);
         else
            return [1 .. Integer'Max (Integer (Min_Length) - Str'Length, 0)
                           => Char] & Str;
         end if;
      end Leading_Padding;

      ----------------------
      -- Trailing_Padding --
      ----------------------

      function Trailing_Padding
        (Str    : String;
         Length : Field;
         Char   : Character := '0') return String is
      begin
         if Str'Length > 0 and then Str (Str'Last) = Char then
            for J in reverse Str'Range loop
               if Str (J) /= '0' then
                  return Trailing_Padding
                    (Str (Str'First .. J), Length, Char);
               end if;
            end loop;
         end if;

         if Str'Length >= Length then
            return Str (Str'First .. Str'First + Length - 1);
         else
            return Str &
              [1 .. Integer'Max (Integer (Length) - Str'Length, 0)
                      => Char];
         end if;
      end Trailing_Padding;

      ---------------------
      -- Numerator_Image --
      ---------------------

      function Numerator_Image
        (Num   : Big_Integer;
         After : Natural) return String
      is
         Tmp   : constant String := To_String (Num);
         Str   : constant String (1 .. Tmp'Last - 1) := Tmp (2 .. Tmp'Last);
         Index : Integer;

      begin
         if After = 0 then
            return Leading_Padding (Str, Fore) & "."
                   & Trailing_Padding ("0", Aft);
         else
            Index := Str'Last - After;

            if Index < 0 then
               return Leading_Padding ("0", Fore)
                 & "."
                 & Trailing_Padding ([1 .. -Index => '0'] & Str, Aft)
                 & (if Exp = 0 then "" else "E+" & Image (Natural (Exp)));
            else
               return Leading_Padding (Str (Str'First .. Index), Fore)
                 & "."
                 & Trailing_Padding (Str (Index + 1 .. Str'Last), Aft)
                 & (if Exp = 0 then "" else "E+" & Image (Natural (Exp)));
            end if;
         end if;
      end Numerator_Image;

   begin
      if Arg.Num < Zero then
         declare
            Str : String := To_String (-Arg, Fore, Aft, Exp);
         begin
            if Str (1) = ' ' then
               for J in 1 .. Str'Last - 1 loop
                  if Str (J + 1) /= ' ' then
                     Str (J) := '-';
                     exit;
                  end if;
               end loop;

               return Str;
            else
               return '-' & Str;
            end if;
         end;
      else
         --  Compute Num * 10^Aft so that we get Aft significant digits
         --  in the integer part (rounded) to display.

         return Numerator_Image
           ((Arg.Num * Ten ** Aft) / Arg.Den, After => Exp + Aft);
      end if;
   end To_String;

   -----------------
   -- From_String --
   -----------------

   function From_String (Arg : String) return Valid_Big_Real is
      Ten   : constant Big_Integer := To_Big_Integer (10);
      Frac  : Big_Integer;
      Exp   : Integer := 0;
      Pow   : Natural := 0;
      Index : Natural := 0;
      Last  : Natural := Arg'Last;

   begin
      for J in reverse Arg'Range loop
         if Arg (J) in 'e' | 'E' then
            if Last /= Arg'Last then
               raise Constraint_Error with "multiple exponents specified";
            end if;

            Last := J - 1;
            Exp := Integer'Value (Arg (J + 1 .. Arg'Last));
            Pow := 0;

         elsif Arg (J) = '.' then
            Index := J - 1;
            exit;
         elsif Arg (J) /= '_' then
            Pow := Pow + 1;
         end if;
      end loop;

      if Index = 0 then
         raise Constraint_Error with "invalid real value";
      end if;

      declare
         Result : Big_Real;
      begin
         Result.Den := Ten ** Pow;
         Result.Num := From_String (Arg (Arg'First .. Index)) * Result.Den;
         Frac := From_String (Arg (Index + 2 .. Last));

         if Result.Num < To_Big_Integer (0) then
            Result.Num := Result.Num - Frac;
         else
            Result.Num := Result.Num + Frac;
         end if;

         if Exp > 0 then
            Result.Num := Result.Num * Ten ** Exp;
         elsif Exp < 0 then
            Result.Den := Result.Den * Ten ** (-Exp);
         end if;

         Normalize (Result);
         return Result;
      end;
   end From_String;

   --------------------------
   -- From_Quotient_String --
   --------------------------

   function From_Quotient_String (Arg : String) return Valid_Big_Real is
      Index : Natural := 0;
   begin
      for J in Arg'First + 1 .. Arg'Last - 1 loop
         if Arg (J) = '/' then
            Index := J;
            exit;
         end if;
      end loop;

      if Index = 0 then
         raise Constraint_Error with "no quotient found";
      end if;

      return Big_Integers.From_String (Arg (Arg'First .. Index - 1)) /
        Big_Integers.From_String (Arg (Index + 1 .. Arg'Last));
   end From_Quotient_String;

   ---------------
   -- Put_Image --
   ---------------

   procedure Put_Image (S : in out Root_Buffer_Type'Class; V : Big_Real) is
      --  This is implemented in terms of To_String. It might be more elegant
      --  and more efficient to do it the other way around, but this is the
      --  most expedient implementation for now.
   begin
      Strings.Text_Buffers.Put_UTF_8 (S, To_String (V));
   end Put_Image;

   ---------
   -- "+" --
   ---------

   function "+" (L : Valid_Big_Real) return Valid_Big_Real is
      Result : Big_Real;
   begin
      Result.Num := L.Num;
      Result.Den := L.Den;
      return Result;
   end "+";

   ---------
   -- "-" --
   ---------

   function "-" (L : Valid_Big_Real) return Valid_Big_Real is
     (Num => -L.Num, Den => L.Den);

   -----------
   -- "abs" --
   -----------

   function "abs" (L : Valid_Big_Real) return Valid_Big_Real is
     (Num => abs L.Num, Den => L.Den);

   ---------
   -- "+" --
   ---------

   function "+" (L, R : Valid_Big_Real) return Valid_Big_Real is
      Result : Big_Real;
   begin
      Result.Num := L.Num * R.Den + R.Num * L.Den;
      Result.Den := L.Den * R.Den;
      Normalize (Result);
      return Result;
   end "+";

   ---------
   -- "-" --
   ---------

   function "-" (L, R : Valid_Big_Real) return Valid_Big_Real is
      Result : Big_Real;
   begin
      Result.Num := L.Num * R.Den - R.Num * L.Den;
      Result.Den := L.Den * R.Den;
      Normalize (Result);
      return Result;
   end "-";

   ---------
   -- "*" --
   ---------

   function "*" (L, R : Valid_Big_Real) return Valid_Big_Real is
      Result : Big_Real;
   begin
      Result.Num := L.Num * R.Num;
      Result.Den := L.Den * R.Den;
      Normalize (Result);
      return Result;
   end "*";

   ---------
   -- "/" --
   ---------

   function "/" (L, R : Valid_Big_Real) return Valid_Big_Real is
      Result : Big_Real;
   begin
      Result.Num := L.Num * R.Den;
      Result.Den := L.Den * R.Num;
      Normalize (Result);
      return Result;
   end "/";

   ----------
   -- "**" --
   ----------

   function "**" (L : Valid_Big_Real; R : Integer) return Valid_Big_Real is
      Result : Big_Real;
   begin
      if R = 0 then
         Result.Num := To_Big_Integer (1);
         Result.Den := To_Big_Integer (1);
      else
         if R < 0 then
            Result.Num := L.Den ** (-R);
            Result.Den := L.Num ** (-R);
         else
            Result.Num := L.Num ** R;
            Result.Den := L.Den ** R;
         end if;

         Normalize (Result);
      end if;

      return Result;
   end "**";

   ---------
   -- Min --
   ---------

   function Min (L, R : Valid_Big_Real) return Valid_Big_Real is
     (if L < R then L else R);

   ---------
   -- Max --
   ---------

   function Max (L, R : Valid_Big_Real) return Valid_Big_Real is
     (if L > R then L else R);

   ---------------
   -- Normalize --
   ---------------

   procedure Normalize (Arg : in out Big_Real) is
      Zero : constant Big_Integer := To_Big_Integer (0);
   begin
      if Arg.Den < Zero then
         Arg.Num := -Arg.Num;
         Arg.Den := -Arg.Den;
      end if;

      if Arg.Num = Zero then
         Arg.Den := To_Big_Integer (1);
      else
         declare
            GCD : constant Big_Integer :=
              Greatest_Common_Divisor (Arg.Num, Arg.Den);
         begin
            Arg.Num := Arg.Num / GCD;
            Arg.Den := Arg.Den / GCD;
         end;
      end if;
   end Normalize;

end Ada.Numerics.Big_Numbers.Big_Reals;