aboutsummaryrefslogtreecommitdiff
path: root/gdb/gdbarch.sh
diff options
context:
space:
mode:
authorSimon Marchi <simon.marchi@polymtl.ca>2017-05-02 13:30:07 -0400
committerSimon Marchi <simon.marchi@ericsson.com>2017-05-02 13:30:07 -0400
commitea480a306d46efe3dd1839618137f0e73a80e9b3 (patch)
tree9ff5a3970ce3de345d2c4d962fd050cb524b6516 /gdb/gdbarch.sh
parent1395c6ce47510babad3dcb9892f6f2517a3f2b59 (diff)
Change field separator in gdbarch.sh
The fields in the description of the gdbarch interface are separated using colons. That becomes a problem if we want to use things like std::vector in it. This patch changes the field separator to use semicolons instead. I think there's very little chance we'll ever want to use a semicolon in one of the fields, but if you think another character would be more appropriate, let me know. gdb/ChangeLog: * gdbarch.sh: Use semi-colon as field separator instead of colon. * gdbarch.h: Re-generate.
Diffstat (limited to 'gdb/gdbarch.sh')
-rwxr-xr-xgdb/gdbarch.sh386
1 files changed, 193 insertions, 193 deletions
diff --git a/gdb/gdbarch.sh b/gdb/gdbarch.sh
index fa85f7cc91..170aae3a3f 100755
--- a/gdb/gdbarch.sh
+++ b/gdb/gdbarch.sh
@@ -65,11 +65,11 @@ ${line}"
else
# The semantics of IFS varies between different SH's. Some
- # treat ``::' as three fields while some treat it as just too.
- # Work around this by eliminating ``::'' ....
- line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
+ # treat ``;;' as three fields while some treat it as just two.
+ # Work around this by eliminating ``;;'' ....
+ line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
- OFS="${IFS}" ; IFS="[:]"
+ OFS="${IFS}" ; IFS="[;]"
eval read ${read} <<EOF
${line}
EOF
@@ -338,35 +338,35 @@ function_list ()
{
# See below (DOCO) for description of each field
cat <<EOF
-i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
+i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
#
-i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
-i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
+i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
+i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
#
-i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
+i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
#
-i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
+i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
# The bit byte-order has to do just with numbering of bits in debugging symbols
# and such. Conceptually, it's quite separate from byte/word byte order.
-v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
+v;int;bits_big_endian;;;1;(gdbarch->byte_order == BFD_ENDIAN_BIG);;0
# Number of bits in a char or unsigned char for the target machine.
# Just like CHAR_BIT in <limits.h> but describes the target machine.
-# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
+# v;TARGET_CHAR_BIT;int;char_bit;;;;8 * sizeof (char);8;;0;
#
# Number of bits in a short or unsigned short for the target machine.
-v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
+v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
# Number of bits in an int or unsigned int for the target machine.
-v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
+v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
# Number of bits in a long or unsigned long for the target machine.
-v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
+v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
# Number of bits in a long long or unsigned long long for the target
# machine.
-v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
+v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
# Alignment of a long long or unsigned long long for the target
# machine.
-v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
+v;int;long_long_align_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
# The ABI default bit-size and format for "half", "float", "double", and
# "long double". These bit/format pairs should eventually be combined
@@ -374,25 +374,25 @@ v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
# Each format describes both the big and little endian layouts (if
# useful).
-v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
-v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
-v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
-v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
-v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
-v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
-v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
-v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
+v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
+v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
+v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
+v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
+v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
+v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
+v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
+v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
# The ABI default bit-size for "wchar_t". wchar_t is a built-in type
# starting with C++11.
-v:int:wchar_bit:::8 * sizeof (wchar_t):4*TARGET_CHAR_BIT::0
+v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
# One if \`wchar_t' is signed, zero if unsigned.
-v:int:wchar_signed:::1:-1:1
+v;int;wchar_signed;;;1;-1;1
# Returns the floating-point format to be used for values of length LENGTH.
# NAME, if non-NULL, is the type name, which may be used to distinguish
# different target formats of the same length.
-m:const struct floatformat **:floatformat_for_type:const char *name, int length:name, length:0:default_floatformat_for_type::0
+m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
# For most targets, a pointer on the target and its representation as an
# address in GDB have the same size and "look the same". For such a
@@ -404,9 +404,9 @@ m:const struct floatformat **:floatformat_for_type:const char *name, int length:
# gdbarch_address_to_pointer as well.
#
# ptr_bit is the size of a pointer on the target
-v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
+v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
# addr_bit is the size of a target address as represented in gdb
-v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
+v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
#
# dwarf2_addr_size is the target address size as used in the Dwarf debug
# info. For .debug_frame FDEs, this is supposed to be the target address
@@ -421,114 +421,114 @@ v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
# Note that dwarf2_addr_size only needs to be redefined by a target if the
# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
# and if Dwarf versions < 4 need to be supported.
-v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
+v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
#
# One if \`char' acts like \`signed char', zero if \`unsigned char'.
-v:int:char_signed:::1:-1:1
+v;int;char_signed;;;1;-1;1
#
-F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
-F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
+F;CORE_ADDR;read_pc;struct regcache *regcache;regcache
+F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
# Function for getting target's idea of a frame pointer. FIXME: GDB's
# whole scheme for dealing with "frames" and "frame pointers" needs a
# serious shakedown.
-m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
+m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
#
-M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
+M;enum register_status;pseudo_register_read;struct regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
# Read a register into a new struct value. If the register is wholly
# or partly unavailable, this should call mark_value_bytes_unavailable
# as appropriate. If this is defined, then pseudo_register_read will
# never be called.
-M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
-M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
+M;struct value *;pseudo_register_read_value;struct regcache *regcache, int cookednum;regcache, cookednum
+M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
#
-v:int:num_regs:::0:-1
+v;int;num_regs;;;0;-1
# This macro gives the number of pseudo-registers that live in the
# register namespace but do not get fetched or stored on the target.
# These pseudo-registers may be aliases for other registers,
# combinations of other registers, or they may be computed by GDB.
-v:int:num_pseudo_regs:::0:0::0
+v;int;num_pseudo_regs;;;0;0;;0
# Assemble agent expression bytecode to collect pseudo-register REG.
# Return -1 if something goes wrong, 0 otherwise.
-M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
+M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
# Assemble agent expression bytecode to push the value of pseudo-register
# REG on the interpreter stack.
# Return -1 if something goes wrong, 0 otherwise.
-M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
+M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
# Some targets/architectures can do extra processing/display of
# segmentation faults. E.g., Intel MPX boundary faults.
# Call the architecture dependent function to handle the fault.
# UIOUT is the output stream where the handler will place information.
-M:void:handle_segmentation_fault:struct ui_out *uiout:uiout
+M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
# GDB's standard (or well known) register numbers. These can map onto
# a real register or a pseudo (computed) register or not be defined at
# all (-1).
# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
-v:int:sp_regnum:::-1:-1::0
-v:int:pc_regnum:::-1:-1::0
-v:int:ps_regnum:::-1:-1::0
-v:int:fp0_regnum:::0:-1::0
+v;int;sp_regnum;;;-1;-1;;0
+v;int;pc_regnum;;;-1;-1;;0
+v;int;ps_regnum;;;-1;-1;;0
+v;int;fp0_regnum;;;0;-1;;0
# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
-m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
+m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
# Provide a default mapping from a ecoff register number to a gdb REGNUM.
-m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
+m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
# Convert from an sdb register number to an internal gdb register number.
-m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
+m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
# Return -1 for bad REGNUM. Note: Several targets get this wrong.
-m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
-m:const char *:register_name:int regnr:regnr::0
+m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
+m;const char *;register_name;int regnr;regnr;;0
# Return the type of a register specified by the architecture. Only
# the register cache should call this function directly; others should
# use "register_type".
-M:struct type *:register_type:int reg_nr:reg_nr
+M;struct type *;register_type;int reg_nr;reg_nr
-M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
+M;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame
# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
# deprecated_fp_regnum.
-v:int:deprecated_fp_regnum:::-1:-1::0
+v;int;deprecated_fp_regnum;;;-1;-1;;0
-M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
-v:int:call_dummy_location::::AT_ENTRY_POINT::0
-M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
+M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
+v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
+M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
# Return true if the code of FRAME is writable.
-m:int:code_of_frame_writable:struct frame_info *frame:frame::default_code_of_frame_writable::0
+m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
-m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
-m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
-M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
+m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
+m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
+M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
# MAP a GDB RAW register number onto a simulator register number. See
# also include/...-sim.h.
-m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
-m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
-m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
+m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
+m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
+m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
# Determine the address where a longjmp will land and save this address
# in PC. Return nonzero on success.
#
# FRAME corresponds to the longjmp frame.
-F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
+F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
#
-v:int:believe_pcc_promotion:::::::
+v;int;believe_pcc_promotion;;;;;;;
#
-m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
-f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
-f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
+m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
+f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
+f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
# Construct a value representing the contents of register REGNUM in
# frame FRAME_ID, interpreted as type TYPE. The routine needs to
# allocate and return a struct value with all value attributes
# (but not the value contents) filled in.
-m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
+m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
#
-m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
-m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
-M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
+m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
+m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
+M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
# Return the return-value convention that will be used by FUNCTION
# to return a value of type VALTYPE. FUNCTION may be NULL in which
@@ -540,17 +540,17 @@ M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
# stored into the appropriate register. This can be used when we want
# to force the value returned by a function (see the "return" command
# for instance).
-M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
+M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
# Return true if the return value of function is stored in the first hidden
# parameter. In theory, this feature should be language-dependent, specified
# by language and its ABI, such as C++. Unfortunately, compiler may
# implement it to a target-dependent feature. So that we need such hook here
# to be aware of this in GDB.
-m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
+m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
-m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
-M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
+m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
+M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
# On some platforms, a single function may provide multiple entry points,
# e.g. one that is used for function-pointer calls and a different one
# that is used for direct function calls.
@@ -562,28 +562,28 @@ M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
# actual breakpoint needs to be set. Note that skip_entrypoint is used
# by GDB common code even when debugging optimized code, where skip_prologue
# is not used.
-M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
+M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
-f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
-m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:0:default_breakpoint_from_pc::0
+f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
+m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
# Return the breakpoint kind for this target based on *PCPTR.
-m:int:breakpoint_kind_from_pc:CORE_ADDR *pcptr:pcptr::0:
+m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
# Return the software breakpoint from KIND. KIND can have target
# specific meaning like the Z0 kind parameter.
# SIZE is set to the software breakpoint's length in memory.
-m:const gdb_byte *:sw_breakpoint_from_kind:int kind, int *size:kind, size::NULL::0
+m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
# Return the breakpoint kind for this target based on the current
# processor state (e.g. the current instruction mode on ARM) and the
# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
-m:int:breakpoint_kind_from_current_state:struct regcache *regcache, CORE_ADDR *pcptr:regcache, pcptr:0:default_breakpoint_kind_from_current_state::0
+m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
-M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
-m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
-m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
-v:CORE_ADDR:decr_pc_after_break:::0:::0
+M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
+m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
+m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
+v;CORE_ADDR;decr_pc_after_break;;;0;;;0
# A function can be addressed by either it's "pointer" (possibly a
# descriptor address) or "entry point" (first executable instruction).
@@ -593,27 +593,27 @@ v:CORE_ADDR:decr_pc_after_break:::0:::0
# corresponds to the "function pointer" and the function's start
# corresponds to the "function entry point" - and hence is redundant.
-v:CORE_ADDR:deprecated_function_start_offset:::0:::0
+v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
# Return the remote protocol register number associated with this
# register. Normally the identity mapping.
-m:int:remote_register_number:int regno:regno::default_remote_register_number::0
+m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
# Fetch the target specific address used to represent a load module.
-F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
+F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
#
-v:CORE_ADDR:frame_args_skip:::0:::0
-M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
-M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
+v;CORE_ADDR;frame_args_skip;;;0;;;0
+M;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame
+M;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame
# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
# frame-base. Enable frame-base before frame-unwind.
-F:int:frame_num_args:struct frame_info *frame:frame
+F;int;frame_num_args;struct frame_info *frame;frame
#
-M:CORE_ADDR:frame_align:CORE_ADDR address:address
-m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
-v:int:frame_red_zone_size
+M;CORE_ADDR;frame_align;CORE_ADDR address;address
+m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
+v;int;frame_red_zone_size
#
-m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
+m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
# On some machines there are bits in addresses which are not really
# part of the address, but are used by the kernel, the hardware, etc.
# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
@@ -623,7 +623,7 @@ m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:a
# being a few stray bits in the PC which would mislead us, not as some
# sort of generic thing to handle alignment or segmentation (it's
# possible it should be in TARGET_READ_PC instead).
-m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
+m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
# FIXME/cagney/2001-01-18: This should be split in two. A target method that
# indicates if the target needs software single step. An ISA method to
@@ -640,23 +640,23 @@ m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
# the condition and only put the breakpoint at the branch destination if
# the condition is true, so that we ensure forward progress when stepping
# past a conditional branch to self.
-F:VEC (CORE_ADDR) *:software_single_step:struct regcache *regcache:regcache
+F;VEC (CORE_ADDR) *;software_single_step;struct regcache *regcache;regcache
# Return non-zero if the processor is executing a delay slot and a
# further single-step is needed before the instruction finishes.
-M:int:single_step_through_delay:struct frame_info *frame:frame
+M;int;single_step_through_delay;struct frame_info *frame;frame
# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
# disassembler. Perhaps objdump can handle it?
-f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
-f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
+f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;0;
+f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
# evaluates non-zero, this is the address where the debugger will place
# a step-resume breakpoint to get us past the dynamic linker.
-m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
+m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
# Some systems also have trampoline code for returning from shared libs.
-m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
+m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
# A target might have problems with watchpoints as soon as the stack
# frame of the current function has been destroyed. This mostly happens
@@ -667,7 +667,7 @@ m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generi
# already been invalidated regardless of the value of addr. Targets
# which don't suffer from that problem could just let this functionality
# untouched.
-m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
+m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
# Process an ELF symbol in the minimal symbol table in a backend-specific
# way. Normally this hook is supposed to do nothing, however if required,
# then this hook can be used to apply tranformations to symbols that are
@@ -675,8 +675,8 @@ m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroye
# to interpret \`st_other' information to mark compressed code symbols so
# that they can be treated in the appropriate manner in the processing of
# the main symbol table and DWARF-2 records.
-F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
-f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
+F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
+f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
# Process a symbol in the main symbol table in a backend-specific way.
# Normally this hook is supposed to do nothing, however if required,
# then this hook can be used to apply tranformations to symbols that
@@ -685,7 +685,7 @@ f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:
# set. This in turn is needed for symbol values seen in GDB to match
# the values used at the runtime by the program itself, for function
# and label references.
-f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
+f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
# Adjust the address retrieved from a DWARF-2 record other than a line
# entry in a backend-specific way. Normally this hook is supposed to
# return the address passed unchanged, however if that is incorrect for
@@ -694,7 +694,7 @@ f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objf
# sure addresses in FDE, range records, etc. referring to compressed
# code have the ISA bit set, matching line information and the symbol
# table.
-f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
+f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
# Adjust the address updated by a line entry in a backend-specific way.
# Normally this hook is supposed to return the address passed unchanged,
# however in the case of inconsistencies in these records, this hook can
@@ -703,23 +703,23 @@ f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
# are presented with the ISA bit set, which is not always the case. This
# in turn ensures breakpoint addresses are correctly matched against the
# stop PC.
-f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
-v:int:cannot_step_breakpoint:::0:0::0
-v:int:have_nonsteppable_watchpoint:::0:0::0
-F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
-M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
+f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
+v;int;cannot_step_breakpoint;;;0;0;;0
+v;int;have_nonsteppable_watchpoint;;;0;0;;0
+F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
+M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
# Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
# FS are passed from the generic execute_cfa_program function.
-m:bool:execute_dwarf_cfa_vendor_op:gdb_byte op, struct dwarf2_frame_state *fs:op, fs::default_execute_dwarf_cfa_vendor_op::0
+m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
# Return the appropriate type_flags for the supplied address class.
# This function should return 1 if the address class was recognized and
# type_flags was set, zero otherwise.
-M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
+M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
# Is a register in a group
-m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
+m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
# Fetch the pointer to the ith function argument.
-F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
+F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
# Iterate over all supported register notes in a core file. For each
# supported register note section, the iterator must call CB and pass
@@ -727,55 +727,55 @@ F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct ty
# the supported register note sections based on the current register
# values. Otherwise it should enumerate all supported register note
# sections.
-M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
+M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
# Create core file notes
-M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
+M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
# The elfcore writer hook to use to write Linux prpsinfo notes to core
# files. Most Linux architectures use the same prpsinfo32 or
# prpsinfo64 layouts, and so won't need to provide this hook, as we
# call the Linux generic routines in bfd to write prpsinfo notes by
# default.
-F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
+F;char *;elfcore_write_linux_prpsinfo;bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info;obfd, note_data, note_size, info
# Find core file memory regions
-M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
+M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
# core file into buffer READBUF with length LEN. Return the number of bytes read
# (zero indicates failure).
# failed, otherwise, return the red length of READBUF.
-M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
+M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
# libraries list from core file into buffer READBUF with length LEN.
# Return the number of bytes read (zero indicates failure).
-M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
+M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
# How the core target converts a PTID from a core file to a string.
-M:const char *:core_pid_to_str:ptid_t ptid:ptid
+M;const char *;core_pid_to_str;ptid_t ptid;ptid
# How the core target extracts the name of a thread from a core file.
-M:const char *:core_thread_name:struct thread_info *thr:thr
+M;const char *;core_thread_name;struct thread_info *thr;thr
# BFD target to use when generating a core file.
-V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
+V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
# If the elements of C++ vtables are in-place function descriptors rather
# than normal function pointers (which may point to code or a descriptor),
# set this to one.
-v:int:vtable_function_descriptors:::0:0::0
+v;int;vtable_function_descriptors;;;0;0;;0
# Set if the least significant bit of the delta is used instead of the least
# significant bit of the pfn for pointers to virtual member functions.
-v:int:vbit_in_delta:::0:0::0
+v;int;vbit_in_delta;;;0;0;;0
# Advance PC to next instruction in order to skip a permanent breakpoint.
-f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
+f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
# The maximum length of an instruction on this architecture in bytes.
-V:ULONGEST:max_insn_length:::0:0
+V;ULONGEST;max_insn_length;;;0;0
# Copy the instruction at FROM to TO, and make any adjustments
# necessary to single-step it at that address.
@@ -806,7 +806,7 @@ V:ULONGEST:max_insn_length:::0:0
# If the instruction cannot execute out of line, return NULL. The
# core falls back to stepping past the instruction in-line instead in
# that case.
-M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
+M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
# Return true if GDB should use hardware single-stepping to execute
# the displaced instruction identified by CLOSURE. If false,
@@ -817,7 +817,7 @@ M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_
#
# The default implementation returns false on all targets that
# provide a gdbarch_software_single_step routine, and true otherwise.
-m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
+m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
# Fix up the state resulting from successfully single-stepping a
# displaced instruction, to give the result we would have gotten from
@@ -835,7 +835,7 @@ m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closur
#
# For a general explanation of displaced stepping and how GDB uses it,
# see the comments in infrun.c.
-M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
+M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
# Free a closure returned by gdbarch_displaced_step_copy_insn.
#
@@ -847,7 +847,7 @@ M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR fr
#
# For a general explanation of displaced stepping and how GDB uses it,
# see the comments in infrun.c.
-m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
+m;void;displaced_step_free_closure;struct displaced_step_closure *closure;closure;;NULL;;(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
# Return the address of an appropriate place to put displaced
# instructions while we step over them. There need only be one such
@@ -856,7 +856,7 @@ m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closur
#
# For a general explanation of displaced stepping and how GDB uses it,
# see the comments in infrun.c.
-m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
+m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
# Relocate an instruction to execute at a different address. OLDLOC
# is the address in the inferior memory where the instruction to
@@ -869,27 +869,27 @@ m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_loca
# should be adjusted to return to the instruction after OLDLOC;
# relative branches, and other PC-relative instructions need the
# offset adjusted; etc.
-M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
+M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
# Refresh overlay mapped state for section OSECT.
-F:void:overlay_update:struct obj_section *osect:osect
+F;void;overlay_update;struct obj_section *osect;osect
-M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
+M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
# Handle special encoding of static variables in stabs debug info.
-F:const char *:static_transform_name:const char *name:name
+F;const char *;static_transform_name;const char *name;name
# Set if the address in N_SO or N_FUN stabs may be zero.
-v:int:sofun_address_maybe_missing:::0:0::0
+v;int;sofun_address_maybe_missing;;;0;0;;0
# Parse the instruction at ADDR storing in the record execution log
# the registers REGCACHE and memory ranges that will be affected when
# the instruction executes, along with their current values.
# Return -1 if something goes wrong, 0 otherwise.
-M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
+M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
# Save process state after a signal.
# Return -1 if something goes wrong, 0 otherwise.
-M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
+M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
# Signal translation: translate inferior's signal (target's) number
# into GDB's representation. The implementation of this method must
@@ -898,7 +898,7 @@ M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:re
# headers. This is mainly used when cross-debugging core files ---
# "Live" targets hide the translation behind the target interface
# (target_wait, target_resume, etc.).
-M:enum gdb_signal:gdb_signal_from_target:int signo:signo
+M;enum gdb_signal;gdb_signal_from_target;int signo;signo
# Signal translation: translate the GDB's internal signal number into
# the inferior's signal (target's) representation. The implementation
@@ -907,26 +907,26 @@ M:enum gdb_signal:gdb_signal_from_target:int signo:signo
# header, or similar headers.
# Return the target signal number if found, or -1 if the GDB internal
# signal number is invalid.
-M:int:gdb_signal_to_target:enum gdb_signal signal:signal
+M;int;gdb_signal_to_target;enum gdb_signal signal;signal
# Extra signal info inspection.
#
# Return a type suitable to inspect extra signal information.
-M:struct type *:get_siginfo_type:void:
+M;struct type *;get_siginfo_type;void;
# Record architecture-specific information from the symbol table.
-M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
+M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
# Function for the 'catch syscall' feature.
# Get architecture-specific system calls information from registers.
-M:LONGEST:get_syscall_number:ptid_t ptid:ptid
+M;LONGEST;get_syscall_number;ptid_t ptid;ptid
# The filename of the XML syscall for this architecture.
-v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
+v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
# Information about system calls from this architecture
-v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
+v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
# SystemTap related fields and functions.
@@ -937,11 +937,11 @@ v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch-
# \$10 ;; integer constant 10
#
# in this case, this prefix would be the character \`\$\'.
-v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
+v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
# A NULL-terminated array of suffixes used to mark an integer constant
# on the architecture's assembly.
-v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
+v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
# A NULL-terminated array of prefixes used to mark a register name on
# the architecture's assembly.
@@ -950,11 +950,11 @@ v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap
# \%eax ;; register eax
#
# in this case, this prefix would be the character \`\%\'.
-v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
+v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
# A NULL-terminated array of suffixes used to mark a register name on
# the architecture's assembly.
-v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
+v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
# A NULL-terminated array of prefixes used to mark a register
# indirection on the architecture's assembly.
@@ -966,7 +966,7 @@ v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->sta
#
# Please note that we use the indirection prefix also for register
# displacement, e.g., \`4\(\%eax\)\' on x86.
-v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
+v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
# A NULL-terminated array of suffixes used to mark a register
# indirection on the architecture's assembly.
@@ -978,7 +978,7 @@ v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (
#
# Please note that we use the indirection suffix also for register
# displacement, e.g., \`4\(\%eax\)\' on x86.
-v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
+v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
# Prefix(es) used to name a register using GDB's nomenclature.
#
@@ -986,10 +986,10 @@ v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (
# language (e.g., \`10\' is the 10th general-purpose register). However,
# inside GDB this same register has an \`r\' appended to its name, so the 10th
# register would be represented as \`r10\' internally.
-v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
+v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
# Suffix used to name a register using GDB's nomenclature.
-v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
+v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
# Check if S is a single operand.
#
@@ -1003,7 +1003,7 @@ v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_regi
# and return 1 if some were found, or zero otherwise. Please try to match
# as much info as you can from the string, i.e., if you have to match
# something like \`\(\%\', do not match just the \`\(\'.
-M:int:stap_is_single_operand:const char *s:s
+M;int;stap_is_single_operand;const char *s;s
# Function used to handle a "special case" in the parser.
#
@@ -1026,53 +1026,53 @@ M:int:stap_is_single_operand:const char *s:s
# if the token was not recognized as a special token (in this case, returning
# zero means that the special parser is deferring the parsing to the generic
# parser), and should advance the buffer pointer (p->arg).
-M:int:stap_parse_special_token:struct stap_parse_info *p:p
+M;int;stap_parse_special_token;struct stap_parse_info *p;p
# DTrace related functions.
# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
# NARG must be >= 0.
-M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
+M;void;dtrace_parse_probe_argument;struct parser_state *pstate, int narg;pstate, narg
# True if the given ADDR does not contain the instruction sequence
# corresponding to a disabled DTrace is-enabled probe.
-M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
+M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
# Enable a DTrace is-enabled probe at ADDR.
-M:void:dtrace_enable_probe:CORE_ADDR addr:addr
+M;void;dtrace_enable_probe;CORE_ADDR addr;addr
# Disable a DTrace is-enabled probe at ADDR.
-M:void:dtrace_disable_probe:CORE_ADDR addr:addr
+M;void;dtrace_disable_probe;CORE_ADDR addr;addr
# True if the list of shared libraries is one and only for all
# processes, as opposed to a list of shared libraries per inferior.
# This usually means that all processes, although may or may not share
# an address space, will see the same set of symbols at the same
# addresses.
-v:int:has_global_solist:::0:0::0
+v;int;has_global_solist;;;0;0;;0
# On some targets, even though each inferior has its own private
# address space, the debug interface takes care of making breakpoints
# visible to all address spaces automatically. For such cases,
# this property should be set to true.
-v:int:has_global_breakpoints:::0:0::0
+v;int;has_global_breakpoints;;;0;0;;0
# True if inferiors share an address space (e.g., uClinux).
-m:int:has_shared_address_space:void:::default_has_shared_address_space::0
+m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
# True if a fast tracepoint can be set at an address.
-m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0
+m;int;fast_tracepoint_valid_at;CORE_ADDR addr, char **msg;addr, msg;;default_fast_tracepoint_valid_at;;0
# Guess register state based on tracepoint location. Used for tracepoints
# where no registers have been collected, but there's only one location,
# allowing us to guess the PC value, and perhaps some other registers.
# On entry, regcache has all registers marked as unavailable.
-m:void:guess_tracepoint_registers:struct regcache *regcache, CORE_ADDR addr:regcache, addr::default_guess_tracepoint_registers::0
+m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
# Return the "auto" target charset.
-f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
+f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
# Return the "auto" target wide charset.
-f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
+f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
# If non-empty, this is a file extension that will be opened in place
# of the file extension reported by the shared library list.
@@ -1080,27 +1080,27 @@ f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wi
# This is most useful for toolchains that use a post-linker tool,
# where the names of the files run on the target differ in extension
# compared to the names of the files GDB should load for debug info.
-v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
+v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
# If true, the target OS has DOS-based file system semantics. That
# is, absolute paths include a drive name, and the backslash is
# considered a directory separator.
-v:int:has_dos_based_file_system:::0:0::0
+v;int;has_dos_based_file_system;;;0;0;;0
# Generate bytecodes to collect the return address in a frame.
# Since the bytecodes run on the target, possibly with GDB not even
# connected, the full unwinding machinery is not available, and
# typically this function will issue bytecodes for one or more likely
# places that the return address may be found.
-m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
+m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
# Implement the "info proc" command.
-M:void:info_proc:const char *args, enum info_proc_what what:args, what
+M;void;info_proc;const char *args, enum info_proc_what what;args, what
# Implement the "info proc" command for core files. Noe that there
# are two "info_proc"-like methods on gdbarch -- one for core files,
# one for live targets.
-M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
+M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
# Iterate over all objfiles in the order that makes the most sense
# for the architecture to make global symbol searches.
@@ -1115,66 +1115,66 @@ M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
#
# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
# inspected when the symbol search was requested.
-m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
+m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
# Ravenscar arch-dependent ops.
-v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
+v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
# Return non-zero if the instruction at ADDR is a call; zero otherwise.
-m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
+m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
# Return non-zero if the instruction at ADDR is a return; zero otherwise.
-m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
+m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
-m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
+m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
# Return 0 if *READPTR is already at the end of the buffer.
# Return -1 if there is insufficient buffer for a whole entry.
# Return 1 if an entry was read into *TYPEP and *VALP.
-M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
+M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
# Print the description of a single auxv entry described by TYPE and VAL
# to FILE.
-m:void:print_auxv_entry:struct ui_file *file, CORE_ADDR type, CORE_ADDR val:file, type, val::default_print_auxv_entry::0
+m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
# Find the address range of the current inferior's vsyscall/vDSO, and
# write it to *RANGE. If the vsyscall's length can't be determined, a
# range with zero length is returned. Returns true if the vsyscall is
# found, false otherwise.
-m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
+m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
# PROT has GDB_MMAP_PROT_* bitmask format.
# Throw an error if it is not possible. Returned address is always valid.
-f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
+f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
# Print a warning if it is not possible.
-f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
+f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
# Return string (caller has to use xfree for it) with options for GCC
# to produce code for this target, typically "-m64", "-m32" or "-m31".
# These options are put before CU's DW_AT_producer compilation options so that
# they can override it. Method may also return NULL.
-m:char *:gcc_target_options:void:::default_gcc_target_options::0
+m;char *;gcc_target_options;void;;;default_gcc_target_options;;0
# Return a regular expression that matches names used by this
# architecture in GNU configury triplets. The result is statically
# allocated and must not be freed. The default implementation simply
# returns the BFD architecture name, which is correct in nearly every
# case.
-m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
+m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
# Return the size in 8-bit bytes of an addressable memory unit on this
# architecture. This corresponds to the number of 8-bit bytes associated to
# each address in memory.
-m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
+m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
# Functions for allowing a target to modify its disassembler options.
-v:char **:disassembler_options:::0:0::0:pstring_ptr (gdbarch->disassembler_options)
-v:const disasm_options_t *:valid_disassembler_options:::0:0::0:host_address_to_string (gdbarch->valid_disassembler_options)
+v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
+v;const disasm_options_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
EOF
}
@@ -1966,7 +1966,7 @@ gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
"gdbarch_dump: GDB_NM_FILE = %s\\n",
gdb_nm_file);
EOF
-function_list | sort -t: -k 3 | while do_read
+function_list | sort '-t;' -k 3 | while do_read
do
# First the predicate
if class_is_predicate_p