aboutsummaryrefslogtreecommitdiff
path: root/core/drivers/crypto/caam/acipher/caam_prime.c
diff options
context:
space:
mode:
Diffstat (limited to 'core/drivers/crypto/caam/acipher/caam_prime.c')
-rw-r--r--core/drivers/crypto/caam/acipher/caam_prime.c853
1 files changed, 853 insertions, 0 deletions
diff --git a/core/drivers/crypto/caam/acipher/caam_prime.c b/core/drivers/crypto/caam/acipher/caam_prime.c
new file mode 100644
index 00000000..686680c3
--- /dev/null
+++ b/core/drivers/crypto/caam/acipher/caam_prime.c
@@ -0,0 +1,853 @@
+// SPDX-License-Identifier: BSD-2-Clause
+/*
+ * Copyright 2018-2020 NXP
+ *
+ * CAAM Prime Numbering.
+ * Implementation of Prime Number functions
+ */
+#include <caam_common.h>
+#include <caam_desc_ccb_defines.h>
+#include <caam_jr.h>
+#include <caam_utils_mem.h>
+#include <kernel/panic.h>
+#include <mm/core_memprot.h>
+#include <string.h>
+#include <tee_api_types.h>
+#include <tee/cache.h>
+
+#include "local.h"
+
+#define RSA_TRY_FAIL 0x42
+#define RETRY_TOO_SMALL 0x2A
+
+#define STATUS_GOOD_Q 0xCA
+
+#define MR_PRIME_SIZE 1536
+
+#define MAX_RETRY_PRIME_GEN 5000
+
+#ifdef CFG_CAAM_64BIT
+#define SETUP_RSA_DESC_ENTRIES 20
+#define GEN_RSA_DESC_ENTRIES 62
+#define CHECK_P_Q_DESC_ENTRIES 32
+#else
+#define SETUP_RSA_DESC_ENTRIES 17
+#define GEN_RSA_DESC_ENTRIES 58
+#define CHECK_P_Q_DESC_ENTRIES 29
+#endif
+
+/*
+ * Predefined const value corresponding to the
+ * operation sqrt(2) * (2 ^ ((nlen / 2) - 1))
+ * Used at step 4.4
+ */
+static const uint8_t sqrt_value[] = {
+ 0xb5, 0x04, 0xf3, 0x33, 0xf9, 0xde, 0x64, 0x84, 0x59, 0x7d, 0x89, 0xb3,
+ 0x75, 0x4a, 0xbe, 0x9f, 0x1d, 0x6f, 0x60, 0xba, 0x89, 0x3b, 0xa8, 0x4c,
+ 0xed, 0x17, 0xac, 0x85, 0x83, 0x33, 0x99, 0x15, 0x4a, 0xfc, 0x83, 0x04,
+ 0x3a, 0xb8, 0xa2, 0xc3, 0xa8, 0xb1, 0xfe, 0x6f, 0xdc, 0x83, 0xdb, 0x39,
+ 0x0f, 0x74, 0xa8, 0x5e, 0x43, 0x9c, 0x7b, 0x4a, 0x78, 0x04, 0x87, 0x36,
+ 0x3d, 0xfa, 0x27, 0x68, 0xd2, 0x20, 0x2e, 0x87, 0x42, 0xaf, 0x1f, 0x4e,
+ 0x53, 0x05, 0x9c, 0x60, 0x11, 0xbc, 0x33, 0x7b, 0xca, 0xb1, 0xbc, 0x91,
+ 0x16, 0x88, 0x45, 0x8a, 0x46, 0x0a, 0xbc, 0x72, 0x2f, 0x7c, 0x4e, 0x33,
+ 0xc6, 0xd5, 0xa8, 0xa3, 0x8b, 0xb7, 0xe9, 0xdc, 0xcb, 0x2a, 0x63, 0x43,
+ 0x31, 0xf3, 0xc8, 0x4d, 0xf5, 0x2f, 0x12, 0x0f, 0x83, 0x6e, 0x58, 0x2e,
+ 0xea, 0xa4, 0xa0, 0x89, 0x90, 0x40, 0xca, 0x4a, 0x81, 0x39, 0x4a, 0xb6,
+ 0xd8, 0xfd, 0x0e, 0xfd, 0xf4, 0xd3, 0xa0, 0x2c, 0xeb, 0xc9, 0x3e, 0x0c,
+ 0x42, 0x64, 0xda, 0xbc, 0xd5, 0x28, 0xb6, 0x51, 0xb8, 0xcf, 0x34, 0x1b,
+ 0x6f, 0x82, 0x36, 0xc7, 0x01, 0x04, 0xdc, 0x01, 0xfe, 0x32, 0x35, 0x2f,
+ 0x33, 0x2a, 0x5e, 0x9f, 0x7b, 0xda, 0x1e, 0xbf, 0xf6, 0xa1, 0xbe, 0x3f,
+ 0xca, 0x22, 0x13, 0x07, 0xde, 0xa0, 0x62, 0x41, 0xf7, 0xaa, 0x81, 0xc2,
+ 0xc1, 0xfc, 0xbd, 0xde, 0xa2, 0xf7, 0xdc, 0x33, 0x18, 0x83, 0x8a, 0x2e,
+ 0xaf, 0xf5, 0xf3, 0xb2, 0xd2, 0x4f, 0x4a, 0x76, 0x3f, 0xac, 0xb8, 0x82,
+ 0xfd, 0xfe, 0x17, 0x0f, 0xd3, 0xb1, 0xf7, 0x80, 0xf9, 0xac, 0xce, 0x41,
+ 0x79, 0x7f, 0x28, 0x05, 0xc2, 0x46, 0x78, 0x5e, 0x92, 0x95, 0x70, 0x23,
+ 0x5f, 0xcf, 0x8f, 0x7b, 0xca, 0x3e, 0xa3, 0x3b, 0x4d, 0x7c, 0x60, 0xa5,
+ 0xe6, 0x33, 0xe3, 0xe1
+};
+
+/*
+ * Speedups for prime searching
+ *
+ * These values are products of small primes. Information about the product
+ * preceeds it. These values have been pre-computed by the CAAM design team.
+ *
+ * Per Handbook of Applied Cryptography, Menezes et al, 4.4.1, one can compute
+ * the percentage of non-primes weeded out by checking for small prime factors
+ * in the candidates. In the table below, "highest prime" is used for B, and
+ * "%weeded" is the number of candidates which get through this
+ * sieve. As you can see, even with relatively few primes, there are
+ * diminishing returns to using larger numbers of primes.
+ *
+ * Percentage weeded: 1 - 1.12/ln B
+ *
+ * These can be used to compute GCD(prime, smallprime) before the Miller
+ * Rabin; this will weed out those candidates with 'small' primes before doing
+ * the costly modular exponentation inside of Miller-Rabin. (If the result is
+ * not one, then the candidate has as a factor at least one of the small primes
+ * in the product).
+ *
+ * So, where is the sweet spot for the size of the product versus the size of
+ * the candidate? Does it depend upon the size of the PKHA multiplier? Hunt
+ * time for primes takes a long time to actually compute, and what are the
+ * stats for percentage of candidates that might be weeded out? If not many,
+ * then there is an extra computation.
+ */
+struct smallprime {
+ const size_t length;
+ const uint8_t *data;
+};
+
+/* sizes | #primes | highest prime | %weeded */
+/* bits / bytes | | */
+/* 64 / 8 | 15 | 53 | 72 */
+static const uint8_t smallprime_8[] = {
+ 0xe2, 0x21, 0xf9, 0x7c, 0x30, 0xe9, 0x4e, 0x1d,
+};
+
+/* 128 / 16 | 25 | 101 | 76 */
+static const uint8_t smallprime_16[] = {
+ 0x57, 0x97, 0xd4, 0x7c, 0x51, 0x68, 0x15, 0x49, 0xd7, 0x34, 0xe4, 0xfc,
+ 0x4c, 0x3e, 0xaf, 0x7f,
+};
+
+/* 256 / 32 | 43 | 193 | 79 */
+static const uint8_t smallprime_32[] = {
+ 0xdb, 0xf0, 0x5b, 0x6f, 0x56, 0x54, 0xb3, 0xc0, 0xf5, 0x24, 0x35, 0x51,
+ 0x43, 0x95, 0x86, 0x88, 0x9f, 0x15, 0x58, 0x87, 0x81, 0x9a, 0xed, 0x2a,
+ 0xc0, 0x5b, 0x93, 0x35, 0x2b, 0xe9, 0x86, 0x77,
+};
+
+/* 384 / 48 | 59 | 281 | 80 */
+static const uint8_t smallprime_48[] = {
+ 0x50, 0x12, 0x01, 0xcc, 0x51, 0xa4, 0x92, 0xa5, 0x44, 0xd3, 0x90, 0x0a,
+ 0xd4, 0xf8, 0xb3, 0x2a, 0x20, 0x3c, 0x85, 0x84, 0x06, 0xa4, 0x45, 0x7c,
+ 0xab, 0x0b, 0x4f, 0x80, 0x5a, 0xb1, 0x8a, 0xc6, 0xeb, 0x95, 0x72, 0xac,
+ 0x6e, 0x93, 0x94, 0xfa, 0x52, 0x2b, 0xff, 0xb6, 0xf4, 0x4a, 0xf2, 0xf3,
+};
+
+/* 512 / 64 | 74 | 379 | 81 */
+static const uint8_t smallprime_64[] = {
+ 0x10, 0x6a, 0xa9, 0xfb, 0x76, 0x46, 0xfa, 0x6e, 0xb0, 0x81, 0x3c, 0x28,
+ 0xc5, 0xd5, 0xf0, 0x9f, 0x07, 0x7e, 0xc3, 0xba, 0x23, 0x8b, 0xfb, 0x99,
+ 0xc1, 0xb6, 0x31, 0xa2, 0x03, 0xe8, 0x11, 0x87, 0x23, 0x3d, 0xb1, 0x17,
+ 0xcb, 0xc3, 0x84, 0x05, 0x6e, 0xf0, 0x46, 0x59, 0xa4, 0xa1, 0x1d, 0xe4,
+ 0x9f, 0x7e, 0xcb, 0x29, 0xba, 0xda, 0x8f, 0x98, 0x0d, 0xec, 0xec, 0xe9,
+ 0x2e, 0x30, 0xc4, 0x8f,
+};
+
+/* 576 / 72 | 81 | 421 | 82 */
+static const uint8_t smallprime_72[] = {
+ 0x01, 0x85, 0xdb, 0xeb, 0x2b, 0x8b, 0x11, 0xd3, 0x76, 0x33, 0xe9, 0xdc,
+ 0x1e, 0xec, 0x54, 0x15, 0x65, 0xc6, 0xce, 0x84, 0x31, 0xd2, 0x27, 0xee,
+ 0x28, 0xf0, 0x32, 0x8a, 0x60, 0xc9, 0x01, 0x18, 0xae, 0x03, 0x1c, 0xc5,
+ 0xa7, 0x81, 0xc8, 0x24, 0xd1, 0xf1, 0x6d, 0x25, 0xf4, 0xf0, 0xcc, 0xcf,
+ 0xf3, 0x5e, 0x97, 0x45, 0x79, 0x07, 0x2e, 0xc8, 0xca, 0xf1, 0xac, 0x8e,
+ 0xef, 0xd5, 0x56, 0x6f, 0xa1, 0x5f, 0xb9, 0x4f, 0xe3, 0x4f, 0x5d, 0x37,
+};
+
+/* 768 / 96 | 103 | 569 | 82 */
+static const uint8_t smallprime_96[] = {
+ 0x25, 0xea, 0xc8, 0x9f, 0x8d, 0x4d, 0xa3, 0x38, 0x33, 0x7b, 0x49, 0x85,
+ 0x0d, 0x2d, 0x14, 0x89, 0x26, 0x63, 0x17, 0x7b, 0x40, 0x10, 0xaf, 0x3d,
+ 0xd2, 0x3e, 0xeb, 0x0b, 0x22, 0x8f, 0x38, 0x32, 0xff, 0xce, 0xe2, 0xe5,
+ 0xcb, 0xd1, 0xac, 0xc9, 0x8f, 0x47, 0xf2, 0x51, 0x87, 0x33, 0x80, 0xae,
+ 0x10, 0xf0, 0xff, 0xdd, 0x8e, 0x60, 0x2f, 0xfa, 0x21, 0x0f, 0x41, 0xf6,
+ 0x69, 0xa1, 0x57, 0x0a, 0x93, 0xc1, 0x58, 0xc1, 0xa9, 0xa8, 0x22, 0x7f,
+ 0xf8, 0x1a, 0x90, 0xc5, 0x63, 0x0e, 0x9c, 0x44, 0x84, 0x5c, 0x75, 0x5c,
+ 0x7d, 0xf3, 0x5a, 0x7d, 0x43, 0x0c, 0x67, 0x9a, 0x11, 0x57, 0x56, 0x55,
+};
+
+/* 1024 / 128 | 130 | 739 | 83 */
+static const uint8_t smallprime_128[] = {
+ 0x02, 0xc8, 0x5f, 0xf8, 0x70, 0xf2, 0x4b, 0xe8, 0x0f, 0x62, 0xb1, 0xba,
+ 0x6c, 0x20, 0xbd, 0x72, 0xb8, 0x37, 0xef, 0xdf, 0x12, 0x12, 0x06, 0xd8,
+ 0x7d, 0xb5, 0x6b, 0x7d, 0x69, 0xfa, 0x4c, 0x02, 0x1c, 0x10, 0x7c, 0x3c,
+ 0xa2, 0x06, 0xfe, 0x8f, 0xa7, 0x08, 0x0e, 0xf5, 0x76, 0xef, 0xfc, 0x82,
+ 0xf9, 0xb1, 0x0f, 0x57, 0x50, 0x65, 0x6b, 0x77, 0x94, 0xb1, 0x6a, 0xfd,
+ 0x70, 0x99, 0x6e, 0x91, 0xae, 0xf6, 0xe0, 0xad, 0x15, 0xe9, 0x1b, 0x07,
+ 0x1a, 0xc9, 0xb2, 0x4d, 0x98, 0xb2, 0x33, 0xad, 0x86, 0xee, 0x05, 0x55,
+ 0x18, 0xe5, 0x8e, 0x56, 0x63, 0x8e, 0xf1, 0x8b, 0xac, 0x5c, 0x74, 0xcb,
+ 0x35, 0xbb, 0xb6, 0xe5, 0xda, 0xe2, 0x78, 0x3d, 0xd1, 0xc0, 0xce, 0x7d,
+ 0xec, 0x4f, 0xc7, 0x0e, 0x51, 0x86, 0xd4, 0x11, 0xdf, 0x36, 0x36, 0x8f,
+ 0x06, 0x1a, 0xa3, 0x60, 0x11, 0xf3, 0x01, 0x79,
+};
+
+/* 1088 / 184 | 136 | 787 | 83 */
+static const uint8_t smallprime_184[] = {
+ 0x16, 0xaf, 0x5c, 0x18, 0xa2, 0xbe, 0xf8, 0xef, 0xf2, 0x27, 0x83, 0x32,
+ 0x18, 0x2d, 0x0f, 0xbf, 0x00, 0x38, 0xcc, 0x20, 0x51, 0x48, 0xb8, 0x3d,
+ 0x06, 0xe3, 0xd7, 0xd9, 0x32, 0x82, 0x8b, 0x18, 0xe1, 0x1e, 0x09, 0x40,
+ 0x28, 0xc7, 0xea, 0xed, 0xa3, 0x39, 0x50, 0x17, 0xe0, 0x7d, 0x8a, 0xe9,
+ 0xb5, 0x94, 0x06, 0x04, 0x51, 0xd0, 0x5f, 0x93, 0x08, 0x4c, 0xb4, 0x81,
+ 0x66, 0x3c, 0x94, 0xc6, 0xff, 0x98, 0x0d, 0xde, 0xcc, 0xdb, 0x42, 0xad,
+ 0x37, 0x09, 0x7f, 0x41, 0xa7, 0x83, 0x7f, 0xc9, 0x5a, 0xfe, 0x3f, 0x18,
+ 0xad, 0x76, 0xf2, 0x34, 0x83, 0xae, 0x94, 0x2e, 0x0f, 0x0c, 0x0b, 0xc6,
+ 0xe4, 0x00, 0x16, 0x12, 0x31, 0x89, 0x87, 0x2b, 0xe5, 0x8f, 0x6d, 0xfc,
+ 0x23, 0x9c, 0xa2, 0x8f, 0xb0, 0xcf, 0xbf, 0x96, 0x4c, 0x8f, 0x27, 0xce,
+ 0x05, 0xd6, 0xc7, 0x7a, 0x01, 0xf9, 0xd3, 0x32, 0x36, 0xc9, 0xd4, 0x42,
+ 0xad, 0x69, 0xed, 0x33,
+};
+
+/* 1536 / 192 | 182 | 1093 | 84 */
+static const uint8_t smallprime_192[] = {
+ 0x02, 0x1b, 0xf9, 0x49, 0x70, 0x91, 0xb8, 0xc3, 0x68, 0xcc, 0x7c, 0x8e,
+ 0x00, 0xc1, 0x99, 0x0c, 0x60, 0x27, 0x48, 0x1b, 0x79, 0x21, 0x5a, 0xc8,
+ 0xa7, 0x51, 0x77, 0x49, 0xa2, 0x15, 0x13, 0x77, 0x9a, 0x99, 0x3d, 0x29,
+ 0x58, 0xfc, 0xb4, 0x9a, 0x73, 0x68, 0x02, 0x92, 0x68, 0x52, 0x79, 0x94,
+ 0xc6, 0xcc, 0x19, 0x28, 0xad, 0xd4, 0x12, 0x95, 0x96, 0x76, 0x5f, 0x4c,
+ 0xc3, 0x14, 0x1a, 0x04, 0x4e, 0xb1, 0xd6, 0x15, 0x78, 0x88, 0x16, 0x67,
+ 0x57, 0xd8, 0x61, 0x87, 0x81, 0x81, 0x30, 0x62, 0x03, 0x22, 0x67, 0x98,
+ 0x7d, 0xf0, 0xd4, 0x71, 0x9c, 0xd3, 0x8f, 0x1b, 0x70, 0x85, 0xfc, 0xa5,
+ 0x33, 0x4b, 0xe3, 0xa6, 0x00, 0x3a, 0x3c, 0xe7, 0xe1, 0x9a, 0xba, 0x55,
+ 0x3e, 0x80, 0xcc, 0x5a, 0xe4, 0x06, 0x0e, 0xff, 0x6e, 0x18, 0x06, 0x66,
+ 0x1d, 0xa5, 0xee, 0xb7, 0xd1, 0x42, 0xd3, 0xb2, 0xe4, 0x07, 0x39, 0xf1,
+ 0x44, 0x3d, 0xee, 0x3a, 0x19, 0x86, 0x37, 0xf0, 0x3c, 0x06, 0x28, 0x45,
+ 0xea, 0xff, 0x3f, 0xf2, 0x7e, 0xa3, 0x8d, 0x93, 0x44, 0xd8, 0xa9, 0x02,
+ 0x22, 0x47, 0x2d, 0xf0, 0x7d, 0xfb, 0x5c, 0x9c, 0x8a, 0xda, 0x77, 0xcd,
+ 0x0d, 0x5b, 0x94, 0xef, 0xf0, 0x21, 0xe0, 0x2e, 0x30, 0x7d, 0x08, 0x01,
+ 0x03, 0x12, 0xd5, 0x7c, 0xb5, 0xd9, 0x75, 0x76, 0x46, 0x97, 0x84, 0x2d,
+};
+
+/* 2048 / 256 | 232 | 1471 | 85 */
+static const uint8_t smallprime_256[] = {
+ 0x24, 0x65, 0xa7, 0xbd, 0x85, 0x01, 0x1e, 0x1c, 0x9e, 0x05, 0x27, 0x92,
+ 0x9f, 0xff, 0x26, 0x8c, 0x82, 0xef, 0x7e, 0xfa, 0x41, 0x68, 0x63, 0xba,
+ 0xa5, 0xac, 0xdb, 0x09, 0x71, 0xdb, 0xa0, 0xcc, 0xac, 0x3e, 0xe4, 0x99,
+ 0x93, 0x45, 0x02, 0x9f, 0x2c, 0xf8, 0x10, 0xb9, 0x9e, 0x40, 0x6a, 0xac,
+ 0x5f, 0xce, 0x5d, 0xd6, 0x9d, 0x1c, 0x71, 0x7d, 0xae, 0xa5, 0xd1, 0x8a,
+ 0xb9, 0x13, 0xf4, 0x56, 0x50, 0x56, 0x79, 0xbc, 0x91, 0xc5, 0x7d, 0x46,
+ 0xd9, 0x88, 0x88, 0x57, 0x86, 0x2b, 0x36, 0xe2, 0xed, 0xe2, 0xe4, 0x73,
+ 0xc1, 0xf0, 0xab, 0x35, 0x9d, 0xa2, 0x52, 0x71, 0xaf, 0xfe, 0x15, 0xff,
+ 0x24, 0x0e, 0x29, 0x9d, 0x0b, 0x04, 0xf4, 0xcd, 0x0e, 0x4d, 0x7c, 0x0e,
+ 0x47, 0xb1, 0xa7, 0xba, 0x00, 0x7d, 0xe8, 0x9a, 0xae, 0x84, 0x8f, 0xd5,
+ 0xbd, 0xcd, 0x7f, 0x98, 0x15, 0x56, 0x4e, 0xb0, 0x60, 0xae, 0x14, 0xf1,
+ 0x9c, 0xb5, 0x0c, 0x29, 0x1f, 0x0b, 0xbd, 0x8e, 0xd1, 0xc4, 0xc7, 0xf8,
+ 0xfc, 0x5f, 0xba, 0x51, 0x66, 0x20, 0x01, 0x93, 0x9b, 0x53, 0x2d, 0x92,
+ 0xda, 0xc8, 0x44, 0xa8, 0x43, 0x1d, 0x40, 0x0c, 0x83, 0x2d, 0x03, 0x9f,
+ 0x5f, 0x90, 0x0b, 0x27, 0x8a, 0x75, 0x21, 0x9c, 0x29, 0x86, 0x14, 0x0c,
+ 0x79, 0x04, 0x5d, 0x77, 0x59, 0x54, 0x08, 0x54, 0xc3, 0x15, 0x04, 0xdc,
+ 0x56, 0xf1, 0xdf, 0x5e, 0xeb, 0xe7, 0xbe, 0xe4, 0x47, 0x65, 0x8b, 0x91,
+ 0x7b, 0xf6, 0x96, 0xd6, 0x92, 0x7f, 0x2e, 0x24, 0x28, 0xfb, 0xeb, 0x34,
+ 0x0e, 0x51, 0x5c, 0xb9, 0x83, 0x5d, 0x63, 0x87, 0x1b, 0xe8, 0xbb, 0xe0,
+ 0x9c, 0xf1, 0x34, 0x45, 0x79, 0x9f, 0x2e, 0x67, 0x78, 0x81, 0x51, 0x57,
+ 0x1a, 0x93, 0xb4, 0xc1, 0xee, 0xe5, 0x5d, 0x1b, 0x90, 0x72, 0xe0, 0xb2,
+ 0xf5, 0xc4, 0x60, 0x7f,
+};
+
+/* 3072 / 384 | 326 | 2179 | 85 */
+static const uint8_t smallprime_384[] = {
+ 0x00, 0x4d, 0xc2, 0x0e, 0x27, 0x31, 0x51, 0x23, 0xfd, 0xab, 0xcd, 0x18,
+ 0xca, 0x81, 0x2e, 0xe0, 0xee, 0x44, 0x49, 0x23, 0x87, 0x38, 0x9e, 0xd6,
+ 0xc9, 0x16, 0x97, 0x95, 0x89, 0x65, 0xed, 0xc5, 0x3d, 0x89, 0x13, 0xa8,
+ 0xe6, 0xec, 0x7f, 0x83, 0x6a, 0x8b, 0xd6, 0x03, 0x7e, 0x57, 0xed, 0x0c,
+ 0x69, 0x30, 0xef, 0x26, 0x49, 0x0d, 0xc3, 0x5d, 0x05, 0xd0, 0x98, 0xa4,
+ 0x66, 0xad, 0xf8, 0x17, 0x9f, 0x82, 0x99, 0x69, 0xd1, 0x39, 0x55, 0x8f,
+ 0x16, 0xe9, 0x8b, 0x3f, 0x76, 0xfc, 0x90, 0x62, 0xc1, 0x57, 0x25, 0xce,
+ 0x09, 0x88, 0xfa, 0xed, 0xca, 0x96, 0x6a, 0x6b, 0x92, 0x5f, 0x9b, 0x9c,
+ 0x67, 0x03, 0x43, 0xea, 0x7e, 0x84, 0x20, 0x65, 0xbd, 0x26, 0xf2, 0xbf,
+ 0x29, 0x90, 0x4f, 0xa7, 0xf4, 0x9f, 0x33, 0x49, 0x28, 0x96, 0x33, 0x73,
+ 0xba, 0x08, 0x95, 0x96, 0x51, 0x3d, 0xac, 0xa7, 0x39, 0x28, 0xcf, 0x30,
+ 0x5a, 0xdf, 0x8c, 0x24, 0x6e, 0x1d, 0x99, 0xa2, 0x42, 0xd9, 0x23, 0x56,
+ 0x23, 0xc4, 0x9a, 0xf2, 0x91, 0x45, 0x06, 0xc9, 0x11, 0x21, 0x5e, 0x1e,
+ 0x49, 0xaf, 0x84, 0x80, 0x3e, 0xd9, 0xa2, 0xca, 0x05, 0x51, 0x72, 0x1f,
+ 0xe6, 0x31, 0x9b, 0xf2, 0x38, 0xc0, 0x8a, 0xae, 0x6f, 0xd5, 0x01, 0x54,
+ 0x03, 0xd9, 0xe5, 0x55, 0x09, 0xee, 0x31, 0xc9, 0x60, 0x12, 0xf9, 0x08,
+ 0x35, 0x18, 0x5f, 0x31, 0xcb, 0xd2, 0xe4, 0x89, 0x83, 0x3c, 0x1d, 0x54,
+ 0x62, 0xfa, 0x80, 0x53, 0x59, 0x04, 0x86, 0x7b, 0x2c, 0x94, 0x5e, 0x9a,
+ 0x0c, 0x2f, 0x7a, 0xa3, 0x6e, 0x0a, 0xc0, 0xeb, 0x9b, 0xb4, 0xc1, 0x1b,
+ 0xf5, 0x80, 0xcf, 0x0d, 0x6d, 0x2a, 0x49, 0xed, 0x1a, 0x2d, 0x74, 0xca,
+ 0xe0, 0xf4, 0xc3, 0xad, 0xff, 0x61, 0xd6, 0x48, 0xca, 0x6a, 0x12, 0x08,
+ 0x58, 0xf4, 0xab, 0xb3, 0xb3, 0x12, 0x07, 0xcf, 0x9b, 0x7c, 0x2f, 0xda,
+ 0x74, 0xf7, 0x72, 0x2b, 0x14, 0x99, 0x17, 0x87, 0x5a, 0xac, 0x9d, 0x61,
+ 0x53, 0xc9, 0x71, 0x13, 0xfc, 0xd3, 0x74, 0xaf, 0x93, 0xdd, 0x3f, 0xa2,
+ 0x1a, 0x7d, 0xe5, 0x1f, 0x1a, 0x70, 0xc6, 0x31, 0xba, 0x6c, 0x92, 0x26,
+ 0x1e, 0x89, 0x54, 0x1a, 0xa4, 0x71, 0x41, 0xf4, 0x4e, 0x07, 0x5a, 0x1c,
+ 0x52, 0x2a, 0xe5, 0x81, 0x60, 0xda, 0xc8, 0x70, 0xdf, 0xbd, 0x86, 0x06,
+ 0xe4, 0xec, 0xa0, 0x89, 0x2a, 0xe5, 0x1c, 0x87, 0x34, 0xf5, 0xb7, 0x71,
+ 0x2b, 0xcd, 0x3d, 0xe3, 0x32, 0x5e, 0xc2, 0x5f, 0x07, 0xd4, 0xef, 0x94,
+ 0x33, 0x94, 0xd5, 0xe7, 0xb3, 0x84, 0x10, 0x05, 0xa3, 0xbd, 0x1a, 0x3e,
+ 0x4d, 0x27, 0x06, 0x1d, 0x54, 0xd2, 0x44, 0x58, 0x24, 0xf8, 0x51, 0x17,
+ 0xd0, 0xf6, 0x97, 0x12, 0x84, 0xa8, 0xc9, 0x7a, 0x42, 0x50, 0xb9, 0x9b,
+};
+
+/* 4096 / 512 | 417 | 2887 | 86 */
+static const uint8_t smallprime_512[] = {
+ 0x09, 0x62, 0x07, 0xfc, 0xcb, 0x19, 0xd6, 0x75, 0x8e, 0x37, 0x4b, 0xee,
+ 0x6c, 0x37, 0x09, 0xaf, 0x0a, 0x54, 0xa9, 0x82, 0xbf, 0x90, 0x14, 0xe4,
+ 0x50, 0xb7, 0x48, 0x18, 0x13, 0xb7, 0x30, 0x5b, 0x4c, 0x25, 0xf0, 0xe2,
+ 0xea, 0x6e, 0x2b, 0x56, 0xf9, 0x1e, 0x59, 0x92, 0x14, 0x2d, 0x21, 0x6e,
+ 0xae, 0xb2, 0xec, 0xe0, 0x05, 0xfa, 0x0d, 0x18, 0xef, 0xeb, 0x78, 0xef,
+ 0xc3, 0x41, 0xf3, 0x1f, 0x78, 0x3e, 0xe4, 0x4a, 0xc5, 0xef, 0x5d, 0xfe,
+ 0x35, 0x57, 0x91, 0x28, 0x21, 0x06, 0x15, 0x6c, 0x64, 0xd1, 0x67, 0xa5,
+ 0x42, 0x1c, 0xfe, 0xc3, 0x3c, 0xbb, 0xd3, 0x88, 0x38, 0x0b, 0xe8, 0x54,
+ 0x14, 0x9f, 0xb6, 0x5c, 0x08, 0xe7, 0x9c, 0xd0, 0x4e, 0xc4, 0x8b, 0x45,
+ 0x62, 0x8e, 0xe6, 0x7f, 0x5c, 0x6f, 0xb0, 0x18, 0x18, 0xfa, 0x1f, 0xf7,
+ 0x32, 0x24, 0x0c, 0x0b, 0xb1, 0xc7, 0xfe, 0xc1, 0x4c, 0x48, 0x23, 0x4c,
+ 0x6f, 0xc3, 0xe0, 0x75, 0x76, 0x4f, 0x63, 0xc0, 0x26, 0x83, 0x61, 0x83,
+ 0x1d, 0x89, 0x60, 0xf2, 0x4b, 0x23, 0x7e, 0x96, 0xc2, 0xca, 0xba, 0x4c,
+ 0x1a, 0x21, 0x23, 0xff, 0x33, 0xa4, 0x9b, 0xca, 0x39, 0x49, 0xe8, 0xab,
+ 0xad, 0xde, 0x06, 0xda, 0xc5, 0x70, 0x3d, 0x16, 0xdb, 0x76, 0x77, 0xdf,
+ 0x2b, 0x0c, 0xe2, 0xc7, 0x84, 0x85, 0xeb, 0xd5, 0xe6, 0x9b, 0xd8, 0x0a,
+ 0x18, 0x48, 0xa9, 0xfe, 0x28, 0x9c, 0xa2, 0xba, 0x66, 0x4a, 0x68, 0x7b,
+ 0x3f, 0x05, 0x40, 0x15, 0x6e, 0x67, 0xae, 0x67, 0x69, 0xc0, 0x9e, 0x11,
+ 0xce, 0x56, 0x73, 0x57, 0xf5, 0xa5, 0x76, 0xa4, 0x8e, 0xed, 0xd9, 0x63,
+ 0x35, 0xe6, 0x28, 0x77, 0xc7, 0x3a, 0x65, 0x40, 0x8b, 0x71, 0x48, 0x4e,
+ 0xd0, 0xf1, 0x1d, 0x20, 0xd5, 0x1e, 0x8e, 0x54, 0x67, 0xa1, 0xe4, 0xc0,
+ 0x9b, 0xf7, 0x29, 0xba, 0x16, 0x9f, 0xcf, 0xdb, 0xa8, 0xb5, 0x5c, 0x4c,
+ 0x5b, 0x68, 0x2f, 0xaa, 0x28, 0x71, 0x9b, 0x9f, 0x49, 0xbf, 0x36, 0x2d,
+ 0x9f, 0x03, 0xee, 0x6b, 0xde, 0x79, 0x01, 0xe9, 0x40, 0xe2, 0x49, 0xb4,
+ 0x1c, 0x93, 0xb9, 0xab, 0x05, 0x4a, 0xbc, 0xab, 0x10, 0x9a, 0xf1, 0x2a,
+ 0xa6, 0x53, 0x5e, 0xd8, 0xf6, 0x23, 0xab, 0xfd, 0x31, 0x2a, 0xaa, 0x08,
+ 0x4a, 0x74, 0x8f, 0x86, 0x53, 0x83, 0xbc, 0xe3, 0x15, 0xdc, 0x0d, 0x45,
+ 0xcb, 0x89, 0x50, 0x8d, 0xec, 0xa9, 0x3b, 0xda, 0x22, 0xf0, 0xe7, 0x7a,
+ 0x4f, 0xea, 0xa2, 0xa7, 0x90, 0xe0, 0x0e, 0x5a, 0xda, 0x9b, 0xbb, 0x9a,
+ 0xe7, 0xd5, 0xfb, 0x63, 0x54, 0xa2, 0x52, 0xda, 0x7d, 0xc2, 0x6e, 0x6a,
+ 0xc2, 0xd7, 0xa6, 0x42, 0xea, 0xbf, 0x48, 0x12, 0xe6, 0x4a, 0xe1, 0x95,
+ 0xbf, 0x29, 0xcc, 0x9e, 0xe0, 0x25, 0x84, 0xb7, 0x74, 0xdc, 0xb1, 0x12,
+ 0x91, 0x57, 0xbf, 0x52, 0x43, 0x8f, 0xb7, 0xb7, 0xcd, 0x6a, 0x78, 0x24,
+ 0xa7, 0x41, 0x8b, 0xcc, 0x65, 0x83, 0x05, 0x8e, 0xc2, 0xf0, 0x69, 0x28,
+ 0xe4, 0x42, 0x62, 0x37, 0x98, 0xb5, 0x03, 0xf6, 0x75, 0x1d, 0xce, 0xe2,
+ 0xc0, 0x1f, 0x39, 0xac, 0xb0, 0xfb, 0x47, 0x8f, 0x6e, 0x8b, 0x16, 0xa3,
+ 0x0f, 0xe8, 0x21, 0x9b, 0x8e, 0x67, 0x04, 0xc7, 0x26, 0xb6, 0x03, 0xe1,
+ 0x00, 0x09, 0xf6, 0x77, 0x76, 0x46, 0x51, 0x41, 0x57, 0x0d, 0x4b, 0x4c,
+ 0x2a, 0x30, 0xdb, 0x84, 0x02, 0x6f, 0x93, 0x4b, 0x81, 0xf0, 0xd5, 0xe9,
+ 0x85, 0xc9, 0x75, 0xd6, 0xa9, 0x07, 0x5a, 0x41, 0xd4, 0x17, 0xc6, 0xd9,
+ 0x93, 0xcb, 0x49, 0x73, 0xcb, 0xe5, 0x12, 0xa6, 0x7d, 0xb3, 0x1f, 0x6a,
+ 0xec, 0x8c, 0xc3, 0xe9, 0xe5, 0xeb, 0xdc, 0x1e, 0xb7, 0xb4, 0x74, 0x54,
+ 0x51, 0x52, 0xa1, 0x56, 0xd5, 0xac, 0x58, 0x7d,
+};
+
+static const struct smallprime smallprimes[] = {
+ { .data = smallprime_8, .length = sizeof(smallprime_8) },
+ { .data = smallprime_16, .length = sizeof(smallprime_16) },
+ { .data = smallprime_32, .length = sizeof(smallprime_32) },
+ { .data = smallprime_48, .length = sizeof(smallprime_48) },
+ { .data = smallprime_64, .length = sizeof(smallprime_64) },
+ { .data = smallprime_72, .length = sizeof(smallprime_72) },
+ { .data = smallprime_96, .length = sizeof(smallprime_96) },
+ { .data = smallprime_128, .length = sizeof(smallprime_128) },
+ { .data = smallprime_184, .length = sizeof(smallprime_184) },
+ { .data = smallprime_192, .length = sizeof(smallprime_192) },
+ { .data = smallprime_256, .length = sizeof(smallprime_256) },
+ { .data = smallprime_384, .length = sizeof(smallprime_384) },
+ { .data = smallprime_512, .length = sizeof(smallprime_512) },
+};
+
+/*
+ * Search the small prime closed to the given input bytes size
+ *
+ * @size Size in bytes
+ * @prime [out] Output predefined small prime
+ */
+static void search_smallprime(size_t size, struct caambuf *prime)
+{
+ size_t nb_elem = ARRAY_SIZE(smallprimes);
+ size_t idx = 0;
+ size_t psize = 0;
+
+ for (; idx < nb_elem; idx++) {
+ psize = smallprimes[idx].length;
+
+ if (psize == size) {
+ /* Found a predefined prime */
+ RSA_TRACE("Found prime idx %zu", idx);
+ prime->data = (uint8_t *)smallprimes[idx].data;
+ prime->length = psize;
+ prime->paddr = virt_to_phys(prime->data);
+ break;
+ }
+ }
+}
+
+/*
+ * Build the descriptor preparing the CAAM global variables used during the
+ * prime generation
+ *
+ * @desc [out] Descriptor built
+ * @data Prime generation data
+ * @small_prime Pre-generated small prime value
+ * @desc_prime Physical address of the prime generator descriptor
+ */
+static enum caam_status do_desc_setup(uint32_t *desc, struct prime_data *data,
+ const struct caambuf *small_prime,
+ const paddr_t desc_prime)
+{
+ /*
+ * Referring to FIPS.186-4, B.3.3 (step 4.7)
+ * Maximum tries = 5 * (nlen / 2)
+ * Where nlen is the RSA security length in bit
+ */
+ caam_desc_init(desc);
+ caam_desc_add_word(desc, DESC_HEADER(0));
+
+ caam_desc_add_word(desc, MATH(ADD, IMM_DATA, ZERO, SOL, 4));
+ caam_desc_add_word(desc, 5 * (data->key_size / 2));
+
+ /*
+ * Referring to FIPS.186-4, Table C.2
+ * Get the number Miller-Rabin test interation function
+ * of the prime number size
+ */
+ caam_desc_add_word(desc, MATH(ADD, IMM_DATA, ZERO, SIL, 4));
+ if (data->p->length > (MR_PRIME_SIZE / 8))
+ caam_desc_add_word(desc, 0x4);
+ else
+ caam_desc_add_word(desc, 0x5);
+
+ /*
+ * Preload PKHA A2 with the sqrt_value array (step 4.4)
+ * Do it once, not at each loop
+ */
+ caam_desc_add_word(desc, FIFO_LD(CLASS_1, PKHA_A2, NOACTION,
+ data->p->length));
+ caam_desc_add_ptr(desc, virt_to_phys((void *)sqrt_value));
+
+ if (data->era >= 8 && small_prime->paddr) {
+ /*
+ * Preload PKHA B2 with small prime predefined
+ * (preload only prime size requested)
+ *
+ * Before Era 8, the PRIME TEST function overwrites PKHA B2
+ * hence PKHA B2 must be reloaded if new prime tentative after
+ * PRIME TEST on Era < 8
+ */
+ caam_desc_add_word(desc, FIFO_LD(CLASS_1, PKHA_B2, NOACTION,
+ small_prime->length));
+ caam_desc_add_ptr(desc, small_prime->paddr);
+ }
+
+ /* Set the High order bit used to turn on MSB in prime candidate */
+ caam_desc_add_word(desc, MATHI_OP1(SHIFT_L, ONE, 0x3F, REG2, 8));
+
+ /* Load PKHA N Size with the prime size */
+ caam_desc_add_word(desc, LD_IMM(CLASS_1, REG_PKHA_N_SIZE, 4));
+ caam_desc_add_word(desc, data->p->length);
+
+ /*
+ * Set the number of maximum tries because of generated value
+ * is too small. This value is used to not lock the system
+ * in prime number generation
+ */
+ caam_desc_add_word(desc, MATH(ADD, ZERO, IMM_DATA, DPOVRD, 4));
+ caam_desc_add_word(desc, MAX_RETRY_PRIME_GEN);
+
+ /* Jump to the next descriptor desc */
+ caam_desc_add_word(desc, JUMP_NOTLOCAL(CLASS_NO, ALL_COND_TRUE,
+ JMP_COND(NONE)));
+ caam_desc_add_ptr(desc, desc_prime);
+
+ RSA_DUMPDESC(desc);
+ cache_operation(TEE_CACHECLEAN, (void *)sqrt_value, data->p->length);
+
+ return CAAM_NO_ERROR;
+}
+
+/*
+ * Build the descriptor generating a prime
+ *
+ * @desc [out] Descriptor built
+ * @data Prime generation data
+ * @small_prime Pre-generated small prime value
+ * @do_prime_q Generate Prime Q
+ * @desc_next Physical address of the next descriptor (can be NULL)
+ */
+static void do_desc_prime(uint32_t *desc, struct prime_data *data,
+ const struct caambuf *small_prime, bool do_prime_q,
+ const paddr_t desc_next)
+{
+ uint32_t desclen = 0;
+ uint32_t retry_too_small = 0;
+ uint32_t retry_new_number = 0;
+ uint32_t retry_new_mr_failed = 0;
+ uint32_t retry_mr_test = 0;
+
+ caam_desc_init(desc);
+ caam_desc_add_word(desc, DESC_HEADER(0));
+
+ /* Setup the number of try counter = MAX (counting down) */
+ caam_desc_add_word(desc, MATH(ADD, SOL, ZERO, VSOL, 4));
+
+ retry_new_mr_failed = caam_desc_get_len(desc);
+ if (data->era < 8 && small_prime->paddr) {
+ /*
+ * Preload PKHA B2 with small prime predefined
+ * (preload only prime size requested)
+ */
+ caam_desc_add_word(desc, FIFO_LD(CLASS_1, PKHA_B2, NOACTION,
+ small_prime->length));
+ caam_desc_add_ptr(desc, small_prime->paddr);
+ }
+
+ retry_new_number = caam_desc_get_len(desc);
+ /* Decrement the number of try */
+ caam_desc_add_word(desc, MATH(SUB, VSOL, ONE, VSOL, 4));
+ /* Exceed retry count - exit with RSA_TRY_FAIL error */
+ caam_desc_add_word(desc,
+ HALT_USER(ALL_COND_TRUE, MATH_N, RSA_TRY_FAIL));
+
+ retry_too_small = caam_desc_get_len(desc);
+ /* Check internal limit on random value generation */
+ caam_desc_add_word(desc, MATH(SUB, DPOVRD, ONE, DPOVRD, 4));
+ caam_desc_add_word(desc,
+ HALT_USER(ALL_COND_TRUE, MATH_Z, RETRY_TOO_SMALL));
+
+ /*
+ * Step 4.2 - Obtain a string p of (nlen/2) bits
+ * Step 4.3 - if (p is not odd) then p = p + 1
+ */
+ /* Generate 16 random bytes load into DECO fifo */
+ caam_desc_add_word(desc, LD_IMM(CLASS_NO, REG_NFIFO, 4));
+ caam_desc_add_word(desc, NFIFO_PAD(DECO, NFIFO_LC1, MSG, RND, 16));
+
+ /* Get the DECO Input fifo 8 MSB and force on high bit */
+ caam_desc_add_word(desc, MATH(OR, REG2, IFIFO, REG0, 8));
+ /* Get the DECO Input fifo 8 LSB and force it be be odd */
+ caam_desc_add_word(desc, MATH(OR, ONE, IFIFO, REG1, 8));
+ /* Move the MSB and LSB into IFIFO */
+ caam_desc_add_word(desc, MOVE(MATH_REG0, IFIFO, 0, 16));
+ /* Send the 8 MSB into PKHA N */
+ caam_desc_add_word(desc, LD_IMM(CLASS_NO, REG_NFIFO, 4));
+ caam_desc_add_word(desc, NFIFO_NOPAD(C1, 0, IFIFO, PKHA_N, 8));
+
+ /*
+ * Generate the "middle" random bytes and start them
+ * on their way into PKHA N
+ */
+ caam_desc_add_word(desc, LD_IMM(CLASS_NO, REG_NFIFO, 8));
+ caam_desc_add_word(desc, NFIFO_PAD(C1, 0, PKHA_N, RND, 0));
+ caam_desc_add_word(desc, data->p->length - 16);
+
+ /* And send the 8 LSB into PKHA N */
+ caam_desc_add_word(desc, LD_IMM(CLASS_NO, REG_NFIFO, 4));
+ caam_desc_add_word(desc, NFIFO_NOPAD(C1, NFIFO_FC1, IFIFO, PKHA_N, 8));
+
+ /*
+ * Step 4.4 - if ((prime < (sqrt 2)(2^((nlen / 2) - 1))
+ * ==> retry_too_small
+ */
+ caam_desc_add_word(desc, PKHA_CPY_SSIZE(A2, B0));
+ caam_desc_add_word(desc, PKHA_CPY_SSIZE(B0, A0));
+ caam_desc_add_word(desc, PKHA_OP(MOD_AMODN, A));
+ caam_desc_add_word(desc, PKHA_CPY_SSIZE(A2, B0));
+ caam_desc_add_word(desc, PKHA_F2M_OP(MOD_ADD_A_B, B));
+
+ desclen = caam_desc_get_len(desc);
+ caam_desc_add_word(desc, JUMP_CNO_LOCAL(ANY_COND_FALSE,
+ JMP_COND(PKHA_IS_ZERO),
+ retry_too_small - desclen));
+
+ /*
+ * Step 4.5 - Compute GCD(prime-1, e) and test if = 1 else try
+ * another candidate
+ */
+ caam_desc_add_word(desc, PKHA_CPY_SSIZE(N0, A0));
+ caam_desc_add_word(desc, FIFO_LD_IMM(CLASS_1, PKHA_B, NOACTION, 1));
+ caam_desc_add_word(desc, 0x01);
+ caam_desc_add_word(desc, PKHA_F2M_OP(MOD_ADD_A_B, B));
+ caam_desc_add_word(desc, PKHA_CPY_SSIZE(B0, N0));
+
+ caam_desc_add_word(desc,
+ FIFO_LD(CLASS_1, PKHA_A, NOACTION, data->e->length));
+ caam_desc_add_ptr(desc, data->e->paddr);
+ caam_desc_add_word(desc, PKHA_OP(GCD_A_N, B));
+
+ desclen = caam_desc_get_len(desc);
+ caam_desc_add_word(desc,
+ JUMP_CNO_LOCAL(ANY_COND_FALSE, JMP_COND(PKHA_GCD_1),
+ retry_new_number - desclen));
+
+ caam_desc_add_word(desc, PKHA_CPY_SSIZE(N0, A0));
+ caam_desc_add_word(desc, FIFO_LD_IMM(CLASS_1, PKHA_B, NOACTION, 1));
+ caam_desc_add_word(desc, 0x01);
+ caam_desc_add_word(desc, PKHA_F2M_OP(MOD_ADD_A_B, B));
+ caam_desc_add_word(desc, PKHA_CPY_SSIZE(B0, N0));
+
+ /*
+ * Step 4.5.1 - test primality
+ */
+ if (small_prime->paddr) {
+ caam_desc_add_word(desc, PKHA_CPY_SSIZE(B2, A0));
+ caam_desc_add_word(desc, PKHA_OP(GCD_A_N, B));
+ desclen = caam_desc_get_len(desc);
+ caam_desc_add_word(desc,
+ JUMP_CNO_LOCAL(ANY_COND_FALSE,
+ JMP_COND(PKHA_GCD_1),
+ retry_new_number - desclen));
+ }
+
+ /* Generate 8 random bytes 'miller-rabin seed' */
+ /* Load the number of Miller-Rabin test iteration */
+ caam_desc_add_word(desc, MATH(ADD, SIL, ZERO, VSIL, 4));
+ retry_mr_test = caam_desc_get_len(desc);
+ caam_desc_add_word(desc, LD_IMM(CLASS_NO, REG_NFIFO, 8));
+ caam_desc_add_word(desc, NFIFO_PAD(C1, NFIFO_FC1, PKHA_A, RND, 0));
+ caam_desc_add_word(desc, data->p->length);
+ caam_desc_add_word(desc, FIFO_LD_IMM(CLASS_1, PKHA_B, NOACTION, 1));
+ caam_desc_add_word(desc, 0x01);
+ caam_desc_add_word(desc, PKHA_OP(MR_PRIMER_TEST, B));
+
+ desclen = caam_desc_get_len(desc);
+ caam_desc_add_word(desc, JUMP_CNO_LOCAL(ANY_COND_FALSE,
+ JMP_COND(PKHA_IS_PRIME),
+ retry_new_mr_failed - desclen));
+ caam_desc_add_word(desc, MATH(SUB, VSIL, ONE, VSIL, 4));
+
+ desclen = caam_desc_get_len(desc);
+ caam_desc_add_word(desc,
+ JUMP_CNO_LOCAL(ALL_COND_FALSE,
+ JMP_COND(MATH_N) | JMP_COND(MATH_Z),
+ retry_mr_test - desclen));
+
+ /* Save prime generated */
+ caam_desc_add_word(desc, FIFO_ST(PKHA_N, data->p->length));
+
+ if (do_prime_q)
+ caam_desc_add_ptr(desc, data->q->paddr);
+ else
+ caam_desc_add_ptr(desc, data->p->paddr);
+
+ if (desc_next) {
+ /* Jump to the next descriptor desc */
+ caam_desc_add_word(desc, JUMP_NOTLOCAL(CLASS_NO, ALL_COND_TRUE,
+ JMP_COND(NONE)));
+ caam_desc_add_ptr(desc, desc_next);
+ }
+
+ RSA_DUMPDESC(desc);
+}
+
+/*
+ * Build the descriptor to check primes p and q not too closed.
+ * Check the upper 100 bits with operation:
+ * |p - q| <= 2^(nlen/2-100)
+ *
+ * @desc [out] Descriptor built
+ * @p Prime P
+ * @max_n Max N built with 0xFFFF...
+ * @desc_new_q Physical address to generate a new Q value
+ */
+static void do_checks_primes(uint32_t *desc, const struct caambuf *p,
+ const struct caambuf *max_n,
+ const paddr_t desc_new_q)
+{
+ const uint8_t check_len = 16; /* Check 128 bits */
+
+ caam_desc_init(desc);
+ caam_desc_add_word(desc, DESC_HEADER(0));
+
+ /* Load prime p */
+ caam_desc_add_word(desc, FIFO_LD(CLASS_1, PKHA_B, NOACTION, p->length));
+ caam_desc_add_ptr(desc, p->paddr);
+
+ /* Retrieve Q from PKHA N, previously computed */
+ caam_desc_add_word(desc, PKHA_CPY_SSIZE(N0, A0));
+
+ /* Calculate p - q, need a modulus of size prime p filled with 0xFF */
+ caam_desc_add_word(desc,
+ FIFO_LD(CLASS_1, PKHA_N, NOACTION, max_n->length));
+ caam_desc_add_ptr(desc, max_n->paddr);
+
+ /* PKHA_B = p - q */
+ caam_desc_add_word(desc, PKHA_OP(MOD_SUB_A_B, B));
+
+ /* Unload PKHA register B to output Data FIFO */
+ caam_desc_add_word(desc, LD_NOCLASS_IMM(REG_CHA_CTRL, 4));
+ caam_desc_add_word(desc, CCTRL_ULOAD_PKHA_B);
+
+ /* Get the first 128 bits in MATH 0 */
+ caam_desc_add_word(desc, MOVE_WAIT(OFIFO, MATH_REG0, 0, check_len));
+
+ /*
+ * We now need to trash the rest of the result.
+ * We started with 128, 192, or 256 bytes in the OFIFO before we moved
+ * check_len bytes into MATH registers.
+ */
+ if (p->length > 128 + check_len) {
+ caam_desc_add_word(desc, MOVE(OFIFO, C1_CTX_REG, 0, check_len));
+ caam_desc_add_word(desc, MOVE(OFIFO, C1_CTX_REG, 0,
+ (p->length - 128 - check_len)));
+ } else if (p->length > check_len) {
+ caam_desc_add_word(desc, MOVE(OFIFO, C1_CTX_REG, 0,
+ (p->length - check_len)));
+ }
+
+ /*
+ * In MATH registers we have the p - q value modulo 0xFFFFF...
+ * Check the upper 100 bits are either zero or one meaning
+ * q is too close to p
+ */
+ /* Check first 64 bits if not 0's check if 1's */
+ caam_desc_add_word(desc, MATH(ADD, ZERO, REG0, REG0, 8));
+ caam_desc_add_word(desc,
+ JUMP_CNO_LOCAL(ANY_COND_FALSE, JMP_COND(MATH_Z), 6));
+ /* First 64 bits are 0's, check next 36 bits */
+ caam_desc_add_word(desc, MATH(AND, REG1, IMM_DATA, REG1, 8));
+ caam_desc_add_word(desc, UINT32_MAX);
+ caam_desc_add_word(desc, 0xF0000000);
+
+ /* Next 36 bits are 0 */
+ caam_desc_add_word(desc,
+ JUMP_CNO_LOCAL(ALL_COND_TRUE, JMP_COND(MATH_Z), 10));
+ /* Exit status GOOD Q */
+ caam_desc_add_word(desc, HALT_USER(ALL_COND_TRUE, NONE, STATUS_GOOD_Q));
+
+ /* Check if 100 bits are 1's */
+ caam_desc_add_word(desc, MATH(ADD, ONE, REG0, REG0, 8));
+ /* Not all 1's exit status GOOD Q */
+ caam_desc_add_word(desc,
+ HALT_USER(ANY_COND_FALSE, MATH_Z, STATUS_GOOD_Q));
+ /* First 64 bits are 1's, check next 36 bits */
+ caam_desc_add_word(desc, MATH(AND, REG1, IMM_DATA, REG1, 8));
+ caam_desc_add_word(desc, UINT32_MAX);
+ caam_desc_add_word(desc, SHIFT_U32(0xF, 28));
+
+ /* Use only 4 bytes of immediate data even is operation is 8 bytes */
+ caam_desc_add_word(desc, MATH(ADD, REG1, IMM_DATA, REG1, 8) | MATH_IFB);
+ caam_desc_add_word(desc, SHIFT_U32(1, 28));
+
+ /* Not all 1's exit status GOOD Q */
+ caam_desc_add_word(desc,
+ HALT_USER(ANY_COND_FALSE, MATH_Z, STATUS_GOOD_Q));
+
+ if (desc_new_q) {
+ caam_desc_add_word(desc, JUMP_NOTLOCAL(CLASS_NO, ALL_COND_TRUE,
+ JMP_COND(NONE)));
+ caam_desc_add_ptr(desc, desc_new_q);
+ }
+
+ RSA_DUMPDESC(desc);
+}
+
+enum caam_status caam_prime_gen(struct prime_data *data)
+{
+ enum caam_status retstatus = CAAM_FAILURE;
+ struct caambuf small_prime = { };
+ struct caambuf max_n = { };
+ struct caam_jobctx jobctx = { };
+ uint32_t *all_descs = NULL;
+ uint32_t *desc_p = NULL;
+ uint32_t *desc_q = NULL;
+ uint32_t *desc_check_p_q = NULL;
+ paddr_t paddr_desc_p = 0;
+ paddr_t paddr_desc_q = 0;
+ paddr_t paddr_desc_check_p_q = 0;
+ size_t size_all_descs = 0;
+
+ /* Allocate the job used to prepare the operation */
+ if (data->q) {
+ size_all_descs = SETUP_RSA_DESC_ENTRIES +
+ GEN_RSA_DESC_ENTRIES * 2 +
+ CHECK_P_Q_DESC_ENTRIES;
+
+ retstatus = caam_calloc_buf(&max_n, data->p->length + 1);
+ if (retstatus != CAAM_NO_ERROR)
+ goto end_gen_prime;
+
+ /* Set the max_n with 0xFFF... to operate the check P and Q */
+ memset(max_n.data, UINT8_MAX, max_n.length);
+ cache_operation(TEE_CACHECLEAN, max_n.data, max_n.length);
+ } else {
+ size_all_descs = SETUP_RSA_DESC_ENTRIES + GEN_RSA_DESC_ENTRIES;
+ }
+
+ all_descs = caam_calloc_desc(size_all_descs);
+ if (!all_descs) {
+ retstatus = CAAM_OUT_MEMORY;
+ goto end_gen_prime;
+ }
+
+ /* Descriptor Prime P */
+ desc_p = all_descs + SETUP_RSA_DESC_ENTRIES;
+ paddr_desc_p = virt_to_phys(desc_p);
+ if (!paddr_desc_p) {
+ retstatus = CAAM_FAILURE;
+ goto end_gen_prime;
+ }
+
+ /*
+ * Search predefined prime in the small_prime list, if the
+ * small prime is not found in the list, continue anyway
+ * but prime will be probably not so strong
+ */
+ search_smallprime(data->p->length, &small_prime);
+
+ RSA_TRACE("Do prime of %zu bytes (security len %zu bits) (ERA=%" PRId8
+ ")",
+ data->p->length, data->key_size, data->era);
+
+ retstatus = do_desc_setup(all_descs, data, &small_prime, paddr_desc_p);
+
+ if (data->q) {
+ /* Descriptor Prime Q */
+ desc_q = desc_p + GEN_RSA_DESC_ENTRIES;
+ paddr_desc_q =
+ paddr_desc_p + DESC_SZBYTES(GEN_RSA_DESC_ENTRIES);
+
+ /* Descriptor Check Primes P & Q */
+ desc_check_p_q = desc_q + GEN_RSA_DESC_ENTRIES;
+ paddr_desc_check_p_q =
+ paddr_desc_q + DESC_SZBYTES(GEN_RSA_DESC_ENTRIES);
+
+ /* Generate Prime P and Q then check Q not too close than P */
+ do_desc_prime(desc_p, data, &small_prime, false, paddr_desc_q);
+
+ do_desc_prime(desc_q, data, &small_prime, true,
+ paddr_desc_check_p_q);
+
+ do_checks_primes(desc_check_p_q, data->p, &max_n, paddr_desc_q);
+ } else {
+ do_desc_prime(desc_p, data, &small_prime, false, 0);
+ }
+
+ cache_operation(TEE_CACHECLEAN, small_prime.data, data->p->length);
+ cache_operation(TEE_CACHECLEAN, data->e->data, data->e->length);
+ cache_operation(TEE_CACHEFLUSH, data->p->data, data->p->length);
+
+ if (data->q)
+ cache_operation(TEE_CACHEFLUSH, data->q->data, data->q->length);
+
+ jobctx.desc = all_descs;
+
+ cache_operation(TEE_CACHECLEAN, (void *)all_descs,
+ DESC_SZBYTES(size_all_descs));
+
+ retstatus = caam_jr_enqueue(&jobctx, NULL);
+
+ if (data->q && retstatus == CAAM_JOB_STATUS) {
+ /*
+ * Expect to have a retstatus == CAAM_JOB_STATUS, where
+ * job status == STATUS_GOOD_Q
+ */
+ RSA_TRACE("Check Prime Q Status 0x%08" PRIx32, jobctx.status);
+
+ if (JRSTA_GET_HALT_USER(jobctx.status) == STATUS_GOOD_Q) {
+ cache_operation(TEE_CACHEINVALIDATE, data->p->data,
+ data->p->length);
+ cache_operation(TEE_CACHEINVALIDATE, data->q->data,
+ data->q->length);
+
+ RSA_DUMPBUF("Prime P", data->p->data, data->p->length);
+ RSA_DUMPBUF("Prime Q", data->q->data, data->q->length);
+ retstatus = CAAM_NO_ERROR;
+ goto end_gen_prime;
+ }
+ } else if (retstatus == CAAM_NO_ERROR && !data->q) {
+ cache_operation(TEE_CACHEINVALIDATE, data->p->data,
+ data->p->length);
+
+ RSA_DUMPBUF("Prime", data->p->data, data->p->length);
+
+ retstatus = CAAM_NO_ERROR;
+ goto end_gen_prime;
+ }
+
+ RSA_TRACE("Prime Status 0x%08" PRIx32, jobctx.status);
+ retstatus = CAAM_FAILURE;
+
+end_gen_prime:
+ caam_free_desc(&all_descs);
+ caam_free_buf(&max_n);
+
+ return retstatus;
+}