aboutsummaryrefslogtreecommitdiff
path: root/lib/flow.c
blob: 5f52004834a511c37364e2182b3e0186ca09135c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
/*
 * Copyright (c) 2008, 2009, 2010, 2011, 2012 Nicira, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include <config.h>
#include <sys/types.h>
#include "flow.h"
#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <netinet/in.h>
#include <netinet/icmp6.h>
#include <netinet/ip6.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "byte-order.h"
#include "coverage.h"
#include "csum.h"
#include "dynamic-string.h"
#include "hash.h"
#include "match.h"
#include "ofpbuf.h"
#include "openflow/openflow.h"
#include "packets.h"
#include "unaligned.h"
#include "vlog.h"

VLOG_DEFINE_THIS_MODULE(flow);

COVERAGE_DEFINE(flow_extract);
COVERAGE_DEFINE(miniflow_malloc);

static struct arp_eth_header *
pull_arp(struct ofpbuf *packet)
{
    return ofpbuf_try_pull(packet, ARP_ETH_HEADER_LEN);
}

static struct ip_header *
pull_ip(struct ofpbuf *packet)
{
    if (packet->size >= IP_HEADER_LEN) {
        struct ip_header *ip = packet->data;
        int ip_len = IP_IHL(ip->ip_ihl_ver) * 4;
        if (ip_len >= IP_HEADER_LEN && packet->size >= ip_len) {
            return ofpbuf_pull(packet, ip_len);
        }
    }
    return NULL;
}

static struct tcp_header *
pull_tcp(struct ofpbuf *packet)
{
    if (packet->size >= TCP_HEADER_LEN) {
        struct tcp_header *tcp = packet->data;
        int tcp_len = TCP_OFFSET(tcp->tcp_ctl) * 4;
        if (tcp_len >= TCP_HEADER_LEN && packet->size >= tcp_len) {
            return ofpbuf_pull(packet, tcp_len);
        }
    }
    return NULL;
}

static struct udp_header *
pull_udp(struct ofpbuf *packet)
{
    return ofpbuf_try_pull(packet, UDP_HEADER_LEN);
}

static struct icmp_header *
pull_icmp(struct ofpbuf *packet)
{
    return ofpbuf_try_pull(packet, ICMP_HEADER_LEN);
}

static struct icmp6_hdr *
pull_icmpv6(struct ofpbuf *packet)
{
    return ofpbuf_try_pull(packet, sizeof(struct icmp6_hdr));
}

static void
parse_vlan(struct ofpbuf *b, struct flow *flow)
{
    struct qtag_prefix {
        ovs_be16 eth_type;      /* ETH_TYPE_VLAN */
        ovs_be16 tci;
    };

    if (b->size >= sizeof(struct qtag_prefix) + sizeof(ovs_be16)) {
        struct qtag_prefix *qp = ofpbuf_pull(b, sizeof *qp);
        flow->vlan_tci = qp->tci | htons(VLAN_CFI);
    }
}

static ovs_be16
parse_ethertype(struct ofpbuf *b)
{
    struct llc_snap_header *llc;
    ovs_be16 proto;

    proto = *(ovs_be16 *) ofpbuf_pull(b, sizeof proto);
    if (ntohs(proto) >= ETH_TYPE_MIN) {
        return proto;
    }

    if (b->size < sizeof *llc) {
        return htons(FLOW_DL_TYPE_NONE);
    }

    llc = b->data;
    if (llc->llc.llc_dsap != LLC_DSAP_SNAP
        || llc->llc.llc_ssap != LLC_SSAP_SNAP
        || llc->llc.llc_cntl != LLC_CNTL_SNAP
        || memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET,
                  sizeof llc->snap.snap_org)) {
        return htons(FLOW_DL_TYPE_NONE);
    }

    ofpbuf_pull(b, sizeof *llc);
    return llc->snap.snap_type;
}

static int
parse_ipv6(struct ofpbuf *packet, struct flow *flow)
{
    const struct ip6_hdr *nh;
    ovs_be32 tc_flow;
    int nexthdr;

    nh = ofpbuf_try_pull(packet, sizeof *nh);
    if (!nh) {
        return EINVAL;
    }

    nexthdr = nh->ip6_nxt;

    flow->ipv6_src = nh->ip6_src;
    flow->ipv6_dst = nh->ip6_dst;

    tc_flow = get_unaligned_be32(&nh->ip6_flow);
    flow->nw_tos = ntohl(tc_flow) >> 20;
    flow->ipv6_label = tc_flow & htonl(IPV6_LABEL_MASK);
    flow->nw_ttl = nh->ip6_hlim;
    flow->nw_proto = IPPROTO_NONE;

    while (1) {
        if ((nexthdr != IPPROTO_HOPOPTS)
                && (nexthdr != IPPROTO_ROUTING)
                && (nexthdr != IPPROTO_DSTOPTS)
                && (nexthdr != IPPROTO_AH)
                && (nexthdr != IPPROTO_FRAGMENT)) {
            /* It's either a terminal header (e.g., TCP, UDP) or one we
             * don't understand.  In either case, we're done with the
             * packet, so use it to fill in 'nw_proto'. */
            break;
        }

        /* We only verify that at least 8 bytes of the next header are
         * available, but many of these headers are longer.  Ensure that
         * accesses within the extension header are within those first 8
         * bytes. All extension headers are required to be at least 8
         * bytes. */
        if (packet->size < 8) {
            return EINVAL;
        }

        if ((nexthdr == IPPROTO_HOPOPTS)
                || (nexthdr == IPPROTO_ROUTING)
                || (nexthdr == IPPROTO_DSTOPTS)) {
            /* These headers, while different, have the fields we care about
             * in the same location and with the same interpretation. */
            const struct ip6_ext *ext_hdr = packet->data;
            nexthdr = ext_hdr->ip6e_nxt;
            if (!ofpbuf_try_pull(packet, (ext_hdr->ip6e_len + 1) * 8)) {
                return EINVAL;
            }
        } else if (nexthdr == IPPROTO_AH) {
            /* A standard AH definition isn't available, but the fields
             * we care about are in the same location as the generic
             * option header--only the header length is calculated
             * differently. */
            const struct ip6_ext *ext_hdr = packet->data;
            nexthdr = ext_hdr->ip6e_nxt;
            if (!ofpbuf_try_pull(packet, (ext_hdr->ip6e_len + 2) * 4)) {
               return EINVAL;
            }
        } else if (nexthdr == IPPROTO_FRAGMENT) {
            const struct ip6_frag *frag_hdr = packet->data;

            nexthdr = frag_hdr->ip6f_nxt;
            if (!ofpbuf_try_pull(packet, sizeof *frag_hdr)) {
                return EINVAL;
            }

            /* We only process the first fragment. */
            if (frag_hdr->ip6f_offlg != htons(0)) {
                if ((frag_hdr->ip6f_offlg & IP6F_OFF_MASK) == htons(0)) {
                    flow->nw_frag = FLOW_NW_FRAG_ANY;
                } else {
                    flow->nw_frag |= FLOW_NW_FRAG_LATER;
                    nexthdr = IPPROTO_FRAGMENT;
                    break;
                }
            }
        }
    }

    flow->nw_proto = nexthdr;
    return 0;
}

static void
parse_tcp(struct ofpbuf *packet, struct ofpbuf *b, struct flow *flow)
{
    const struct tcp_header *tcp = pull_tcp(b);
    if (tcp) {
        flow->tp_src = tcp->tcp_src;
        flow->tp_dst = tcp->tcp_dst;
        packet->l7 = b->data;
    }
}

static void
parse_udp(struct ofpbuf *packet, struct ofpbuf *b, struct flow *flow)
{
    const struct udp_header *udp = pull_udp(b);
    if (udp) {
        flow->tp_src = udp->udp_src;
        flow->tp_dst = udp->udp_dst;
        packet->l7 = b->data;
    }
}

static bool
parse_icmpv6(struct ofpbuf *b, struct flow *flow)
{
    const struct icmp6_hdr *icmp = pull_icmpv6(b);

    if (!icmp) {
        return false;
    }

    /* The ICMPv6 type and code fields use the 16-bit transport port
     * fields, so we need to store them in 16-bit network byte order. */
    flow->tp_src = htons(icmp->icmp6_type);
    flow->tp_dst = htons(icmp->icmp6_code);

    if (icmp->icmp6_code == 0 &&
        (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
         icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
        const struct in6_addr *nd_target;

        nd_target = ofpbuf_try_pull(b, sizeof *nd_target);
        if (!nd_target) {
            return false;
        }
        flow->nd_target = *nd_target;

        while (b->size >= 8) {
            /* The minimum size of an option is 8 bytes, which also is
             * the size of Ethernet link-layer options. */
            const struct nd_opt_hdr *nd_opt = b->data;
            int opt_len = nd_opt->nd_opt_len * 8;

            if (!opt_len || opt_len > b->size) {
                goto invalid;
            }

            /* Store the link layer address if the appropriate option is
             * provided.  It is considered an error if the same link
             * layer option is specified twice. */
            if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LINKADDR
                    && opt_len == 8) {
                if (eth_addr_is_zero(flow->arp_sha)) {
                    memcpy(flow->arp_sha, nd_opt + 1, ETH_ADDR_LEN);
                } else {
                    goto invalid;
                }
            } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LINKADDR
                    && opt_len == 8) {
                if (eth_addr_is_zero(flow->arp_tha)) {
                    memcpy(flow->arp_tha, nd_opt + 1, ETH_ADDR_LEN);
                } else {
                    goto invalid;
                }
            }

            if (!ofpbuf_try_pull(b, opt_len)) {
                goto invalid;
            }
        }
    }

    return true;

invalid:
    memset(&flow->nd_target, 0, sizeof(flow->nd_target));
    memset(flow->arp_sha, 0, sizeof(flow->arp_sha));
    memset(flow->arp_tha, 0, sizeof(flow->arp_tha));

    return false;

}

/* Initializes 'flow' members from 'packet', 'skb_priority', 'tnl', and
 * 'ofp_in_port'.
 *
 * Initializes 'packet' header pointers as follows:
 *
 *    - packet->l2 to the start of the Ethernet header.
 *
 *    - packet->l3 to just past the Ethernet header, or just past the
 *      vlan_header if one is present, to the first byte of the payload of the
 *      Ethernet frame.
 *
 *    - packet->l4 to just past the IPv4 header, if one is present and has a
 *      correct length, and otherwise NULL.
 *
 *    - packet->l7 to just past the TCP or UDP or ICMP header, if one is
 *      present and has a correct length, and otherwise NULL.
 */
void
flow_extract(struct ofpbuf *packet, uint32_t skb_priority,
             const struct flow_tnl *tnl, uint16_t ofp_in_port,
             struct flow *flow)
{
    struct ofpbuf b = *packet;
    struct eth_header *eth;

    COVERAGE_INC(flow_extract);

    memset(flow, 0, sizeof *flow);

    if (tnl) {
        assert(tnl != &flow->tunnel);
        flow->tunnel = *tnl;
    }
    flow->in_port = ofp_in_port;
    flow->skb_priority = skb_priority;

    packet->l2 = b.data;
    packet->l3 = NULL;
    packet->l4 = NULL;
    packet->l7 = NULL;

    if (b.size < sizeof *eth) {
        return;
    }

    /* Link layer. */
    eth = b.data;
    memcpy(flow->dl_src, eth->eth_src, ETH_ADDR_LEN);
    memcpy(flow->dl_dst, eth->eth_dst, ETH_ADDR_LEN);

    /* dl_type, vlan_tci. */
    ofpbuf_pull(&b, ETH_ADDR_LEN * 2);
    if (eth->eth_type == htons(ETH_TYPE_VLAN)) {
        parse_vlan(&b, flow);
    }
    flow->dl_type = parse_ethertype(&b);

    /* Network layer. */
    packet->l3 = b.data;
    if (flow->dl_type == htons(ETH_TYPE_IP)) {
        const struct ip_header *nh = pull_ip(&b);
        if (nh) {
            packet->l4 = b.data;

            flow->nw_src = get_unaligned_be32(&nh->ip_src);
            flow->nw_dst = get_unaligned_be32(&nh->ip_dst);
            flow->nw_proto = nh->ip_proto;

            flow->nw_tos = nh->ip_tos;
            if (IP_IS_FRAGMENT(nh->ip_frag_off)) {
                flow->nw_frag = FLOW_NW_FRAG_ANY;
                if (nh->ip_frag_off & htons(IP_FRAG_OFF_MASK)) {
                    flow->nw_frag |= FLOW_NW_FRAG_LATER;
                }
            }
            flow->nw_ttl = nh->ip_ttl;

            if (!(nh->ip_frag_off & htons(IP_FRAG_OFF_MASK))) {
                if (flow->nw_proto == IPPROTO_TCP) {
                    parse_tcp(packet, &b, flow);
                } else if (flow->nw_proto == IPPROTO_UDP) {
                    parse_udp(packet, &b, flow);
                } else if (flow->nw_proto == IPPROTO_ICMP) {
                    const struct icmp_header *icmp = pull_icmp(&b);
                    if (icmp) {
                        flow->tp_src = htons(icmp->icmp_type);
                        flow->tp_dst = htons(icmp->icmp_code);
                        packet->l7 = b.data;
                    }
                }
            }
        }
    } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
        if (parse_ipv6(&b, flow)) {
            return;
        }

        packet->l4 = b.data;
        if (flow->nw_proto == IPPROTO_TCP) {
            parse_tcp(packet, &b, flow);
        } else if (flow->nw_proto == IPPROTO_UDP) {
            parse_udp(packet, &b, flow);
        } else if (flow->nw_proto == IPPROTO_ICMPV6) {
            if (parse_icmpv6(&b, flow)) {
                packet->l7 = b.data;
            }
        }
    } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
               flow->dl_type == htons(ETH_TYPE_RARP)) {
        const struct arp_eth_header *arp = pull_arp(&b);
        if (arp && arp->ar_hrd == htons(1)
            && arp->ar_pro == htons(ETH_TYPE_IP)
            && arp->ar_hln == ETH_ADDR_LEN
            && arp->ar_pln == 4) {
            /* We only match on the lower 8 bits of the opcode. */
            if (ntohs(arp->ar_op) <= 0xff) {
                flow->nw_proto = ntohs(arp->ar_op);
            }

            flow->nw_src = arp->ar_spa;
            flow->nw_dst = arp->ar_tpa;
            memcpy(flow->arp_sha, arp->ar_sha, ETH_ADDR_LEN);
            memcpy(flow->arp_tha, arp->ar_tha, ETH_ADDR_LEN);
        }
    }
}

/* For every bit of a field that is wildcarded in 'wildcards', sets the
 * corresponding bit in 'flow' to zero. */
void
flow_zero_wildcards(struct flow *flow, const struct flow_wildcards *wildcards)
{
    uint32_t *flow_u32 = (uint32_t *) flow;
    const uint32_t *wc_u32 = (const uint32_t *) &wildcards->masks;
    size_t i;

    for (i = 0; i < FLOW_U32S; i++) {
        flow_u32[i] &= wc_u32[i];
    }
}

/* Initializes 'fmd' with the metadata found in 'flow'. */
void
flow_get_metadata(const struct flow *flow, struct flow_metadata *fmd)
{
    BUILD_ASSERT_DECL(FLOW_WC_SEQ == 17);

    fmd->tun_id = flow->tunnel.tun_id;
    fmd->metadata = flow->metadata;
    memcpy(fmd->regs, flow->regs, sizeof fmd->regs);
    fmd->in_port = flow->in_port;
}

char *
flow_to_string(const struct flow *flow)
{
    struct ds ds = DS_EMPTY_INITIALIZER;
    flow_format(&ds, flow);
    return ds_cstr(&ds);
}

void
flow_format(struct ds *ds, const struct flow *flow)
{
    struct match match;

    match_wc_init(&match, flow);
    match_format(&match, ds, flow->skb_priority);
}

void
flow_print(FILE *stream, const struct flow *flow)
{
    char *s = flow_to_string(flow);
    fputs(s, stream);
    free(s);
}

/* flow_wildcards functions. */

/* Initializes 'wc' as a set of wildcards that matches every packet. */
void
flow_wildcards_init_catchall(struct flow_wildcards *wc)
{
    memset(&wc->masks, 0, sizeof wc->masks);
}

/* Initializes 'wc' as an exact-match set of wildcards; that is, 'wc' does not
 * wildcard any bits or fields. */
void
flow_wildcards_init_exact(struct flow_wildcards *wc)
{
    memset(&wc->masks, 0xff, sizeof wc->masks);
    memset(wc->masks.zeros, 0, sizeof wc->masks.zeros);
}

/* Returns true if 'wc' matches every packet, false if 'wc' fixes any bits or
 * fields. */
bool
flow_wildcards_is_catchall(const struct flow_wildcards *wc)
{
    const uint32_t *wc_u32 = (const uint32_t *) &wc->masks;
    size_t i;

    for (i = 0; i < FLOW_U32S; i++) {
        if (wc_u32[i]) {
            return false;
        }
    }
    return true;
}

/* Initializes 'dst' as the combination of wildcards in 'src1' and 'src2'.
 * That is, a bit or a field is wildcarded in 'dst' if it is wildcarded in
 * 'src1' or 'src2' or both.  */
void
flow_wildcards_combine(struct flow_wildcards *dst,
                       const struct flow_wildcards *src1,
                       const struct flow_wildcards *src2)
{
    uint32_t *dst_u32 = (uint32_t *) &dst->masks;
    const uint32_t *src1_u32 = (const uint32_t *) &src1->masks;
    const uint32_t *src2_u32 = (const uint32_t *) &src2->masks;
    size_t i;

    for (i = 0; i < FLOW_U32S; i++) {
        dst_u32[i] = src1_u32[i] & src2_u32[i];
    }
}

/* Returns a hash of the wildcards in 'wc'. */
uint32_t
flow_wildcards_hash(const struct flow_wildcards *wc, uint32_t basis)
{
    return flow_hash(&wc->masks, basis);;
}

/* Returns true if 'a' and 'b' represent the same wildcards, false if they are
 * different. */
bool
flow_wildcards_equal(const struct flow_wildcards *a,
                     const struct flow_wildcards *b)
{
    return flow_equal(&a->masks, &b->masks);
}

/* Returns true if at least one bit or field is wildcarded in 'a' but not in
 * 'b', false otherwise. */
bool
flow_wildcards_has_extra(const struct flow_wildcards *a,
                         const struct flow_wildcards *b)
{
    const uint32_t *a_u32 = (const uint32_t *) &a->masks;
    const uint32_t *b_u32 = (const uint32_t *) &b->masks;
    size_t i;

    for (i = 0; i < FLOW_U32S; i++) {
        if ((a_u32[i] & b_u32[i]) != b_u32[i]) {
            return true;
        }
    }
    return false;
}

/* Returns true if 'a' and 'b' are equal, except that 0-bits (wildcarded bits)
 * in 'wc' do not need to be equal in 'a' and 'b'. */
bool
flow_equal_except(const struct flow *a, const struct flow *b,
                  const struct flow_wildcards *wc)
{
    const uint32_t *a_u32 = (const uint32_t *) a;
    const uint32_t *b_u32 = (const uint32_t *) b;
    const uint32_t *wc_u32 = (const uint32_t *) &wc->masks;
    size_t i;

    for (i = 0; i < FLOW_U32S; i++) {
        if ((a_u32[i] ^ b_u32[i]) & wc_u32[i]) {
            return false;
        }
    }
    return true;
}

/* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
 * (A 0-bit indicates a wildcard bit.) */
void
flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask)
{
    wc->masks.regs[idx] = mask;
}

/* Hashes 'flow' based on its L2 through L4 protocol information. */
uint32_t
flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis)
{
    struct {
        union {
            ovs_be32 ipv4_addr;
            struct in6_addr ipv6_addr;
        };
        ovs_be16 eth_type;
        ovs_be16 vlan_tci;
        ovs_be16 tp_port;
        uint8_t eth_addr[ETH_ADDR_LEN];
        uint8_t ip_proto;
    } fields;

    int i;

    memset(&fields, 0, sizeof fields);
    for (i = 0; i < ETH_ADDR_LEN; i++) {
        fields.eth_addr[i] = flow->dl_src[i] ^ flow->dl_dst[i];
    }
    fields.vlan_tci = flow->vlan_tci & htons(VLAN_VID_MASK);
    fields.eth_type = flow->dl_type;

    /* UDP source and destination port are not taken into account because they
     * will not necessarily be symmetric in a bidirectional flow. */
    if (fields.eth_type == htons(ETH_TYPE_IP)) {
        fields.ipv4_addr = flow->nw_src ^ flow->nw_dst;
        fields.ip_proto = flow->nw_proto;
        if (fields.ip_proto == IPPROTO_TCP) {
            fields.tp_port = flow->tp_src ^ flow->tp_dst;
        }
    } else if (fields.eth_type == htons(ETH_TYPE_IPV6)) {
        const uint8_t *a = &flow->ipv6_src.s6_addr[0];
        const uint8_t *b = &flow->ipv6_dst.s6_addr[0];
        uint8_t *ipv6_addr = &fields.ipv6_addr.s6_addr[0];

        for (i=0; i<16; i++) {
            ipv6_addr[i] = a[i] ^ b[i];
        }
        fields.ip_proto = flow->nw_proto;
        if (fields.ip_proto == IPPROTO_TCP) {
            fields.tp_port = flow->tp_src ^ flow->tp_dst;
        }
    }
    return hash_bytes(&fields, sizeof fields, basis);
}

/* Hashes the portions of 'flow' designated by 'fields'. */
uint32_t
flow_hash_fields(const struct flow *flow, enum nx_hash_fields fields,
                 uint16_t basis)
{
    switch (fields) {

    case NX_HASH_FIELDS_ETH_SRC:
        return hash_bytes(flow->dl_src, sizeof flow->dl_src, basis);

    case NX_HASH_FIELDS_SYMMETRIC_L4:
        return flow_hash_symmetric_l4(flow, basis);
    }

    NOT_REACHED();
}

/* Returns a string representation of 'fields'. */
const char *
flow_hash_fields_to_str(enum nx_hash_fields fields)
{
    switch (fields) {
    case NX_HASH_FIELDS_ETH_SRC: return "eth_src";
    case NX_HASH_FIELDS_SYMMETRIC_L4: return "symmetric_l4";
    default: return "<unknown>";
    }
}

/* Returns true if the value of 'fields' is supported. Otherwise false. */
bool
flow_hash_fields_valid(enum nx_hash_fields fields)
{
    return fields == NX_HASH_FIELDS_ETH_SRC
        || fields == NX_HASH_FIELDS_SYMMETRIC_L4;
}

/* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
 * OpenFlow 1.0 "dl_vlan" value:
 *
 *      - If it is in the range 0...4095, 'flow->vlan_tci' is set to match
 *        that VLAN.  Any existing PCP match is unchanged (it becomes 0 if
 *        'flow' previously matched packets without a VLAN header).
 *
 *      - If it is OFP_VLAN_NONE, 'flow->vlan_tci' is set to match a packet
 *        without a VLAN tag.
 *
 *      - Other values of 'vid' should not be used. */
void
flow_set_dl_vlan(struct flow *flow, ovs_be16 vid)
{
    if (vid == htons(OFP10_VLAN_NONE)) {
        flow->vlan_tci = htons(0);
    } else {
        vid &= htons(VLAN_VID_MASK);
        flow->vlan_tci &= ~htons(VLAN_VID_MASK);
        flow->vlan_tci |= htons(VLAN_CFI) | vid;
    }
}

/* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
 * OpenFlow 1.2 "vlan_vid" value, that is, the low 13 bits of 'vlan_tci' (VID
 * plus CFI). */
void
flow_set_vlan_vid(struct flow *flow, ovs_be16 vid)
{
    ovs_be16 mask = htons(VLAN_VID_MASK | VLAN_CFI);
    flow->vlan_tci &= ~mask;
    flow->vlan_tci |= vid & mask;
}

/* Sets the VLAN PCP that 'flow' matches to 'pcp', which should be in the
 * range 0...7.
 *
 * This function has no effect on the VLAN ID that 'flow' matches.
 *
 * After calling this function, 'flow' will not match packets without a VLAN
 * header. */
void
flow_set_vlan_pcp(struct flow *flow, uint8_t pcp)
{
    pcp &= 0x07;
    flow->vlan_tci &= ~htons(VLAN_PCP_MASK);
    flow->vlan_tci |= htons((pcp << VLAN_PCP_SHIFT) | VLAN_CFI);
}

/* Puts into 'b' a packet that flow_extract() would parse as having the given
 * 'flow'.
 *
 * (This is useful only for testing, obviously, and the packet isn't really
 * valid. It hasn't got some checksums filled in, for one, and lots of fields
 * are just zeroed.) */
void
flow_compose(struct ofpbuf *b, const struct flow *flow)
{
    eth_compose(b, flow->dl_dst, flow->dl_src, ntohs(flow->dl_type), 0);
    if (flow->dl_type == htons(FLOW_DL_TYPE_NONE)) {
        struct eth_header *eth = b->l2;
        eth->eth_type = htons(b->size);
        return;
    }

    if (flow->vlan_tci & htons(VLAN_CFI)) {
        eth_push_vlan(b, flow->vlan_tci);
    }

    if (flow->dl_type == htons(ETH_TYPE_IP)) {
        struct ip_header *ip;

        b->l3 = ip = ofpbuf_put_zeros(b, sizeof *ip);
        ip->ip_ihl_ver = IP_IHL_VER(5, 4);
        ip->ip_tos = flow->nw_tos;
        ip->ip_proto = flow->nw_proto;
        ip->ip_src = flow->nw_src;
        ip->ip_dst = flow->nw_dst;

        if (flow->nw_frag & FLOW_NW_FRAG_ANY) {
            ip->ip_frag_off |= htons(IP_MORE_FRAGMENTS);
            if (flow->nw_frag & FLOW_NW_FRAG_LATER) {
                ip->ip_frag_off |= htons(100);
            }
        }
        if (!(flow->nw_frag & FLOW_NW_FRAG_ANY)
            || !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
            if (flow->nw_proto == IPPROTO_TCP) {
                struct tcp_header *tcp;

                b->l4 = tcp = ofpbuf_put_zeros(b, sizeof *tcp);
                tcp->tcp_src = flow->tp_src;
                tcp->tcp_dst = flow->tp_dst;
                tcp->tcp_ctl = TCP_CTL(0, 5);
            } else if (flow->nw_proto == IPPROTO_UDP) {
                struct udp_header *udp;

                b->l4 = udp = ofpbuf_put_zeros(b, sizeof *udp);
                udp->udp_src = flow->tp_src;
                udp->udp_dst = flow->tp_dst;
            } else if (flow->nw_proto == IPPROTO_ICMP) {
                struct icmp_header *icmp;

                b->l4 = icmp = ofpbuf_put_zeros(b, sizeof *icmp);
                icmp->icmp_type = ntohs(flow->tp_src);
                icmp->icmp_code = ntohs(flow->tp_dst);
                icmp->icmp_csum = csum(icmp, ICMP_HEADER_LEN);
            }
        }

        ip = b->l3;
        ip->ip_tot_len = htons((uint8_t *) b->data + b->size
                               - (uint8_t *) b->l3);
        ip->ip_csum = csum(ip, sizeof *ip);
    } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
        /* XXX */
    } else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
               flow->dl_type == htons(ETH_TYPE_RARP)) {
        struct arp_eth_header *arp;

        b->l3 = arp = ofpbuf_put_zeros(b, sizeof *arp);
        arp->ar_hrd = htons(1);
        arp->ar_pro = htons(ETH_TYPE_IP);
        arp->ar_hln = ETH_ADDR_LEN;
        arp->ar_pln = 4;
        arp->ar_op = htons(flow->nw_proto);

        if (flow->nw_proto == ARP_OP_REQUEST ||
            flow->nw_proto == ARP_OP_REPLY) {
            arp->ar_spa = flow->nw_src;
            arp->ar_tpa = flow->nw_dst;
            memcpy(arp->ar_sha, flow->arp_sha, ETH_ADDR_LEN);
            memcpy(arp->ar_tha, flow->arp_tha, ETH_ADDR_LEN);
        }
    }
}

/* Compressed flow. */

static int
miniflow_n_values(const struct miniflow *flow)
{
    int n, i;

    n = 0;
    for (i = 0; i < MINI_N_MAPS; i++) {
        n += popcount(flow->map[i]);
    }
    return n;
}

static uint32_t *
miniflow_alloc_values(struct miniflow *flow, int n)
{
    if (n <= MINI_N_INLINE) {
        return flow->inline_values;
    } else {
        COVERAGE_INC(miniflow_malloc);
        return xmalloc(n * sizeof *flow->values);
    }
}

/* Initializes 'dst' as a copy of 'src'.  The caller must eventually free 'dst'
 * with miniflow_destroy(). */
void
miniflow_init(struct miniflow *dst, const struct flow *src)
{
    const uint32_t *src_u32 = (const uint32_t *) src;
    unsigned int ofs;
    unsigned int i;
    int n;

    /* Initialize dst->map, counting the number of nonzero elements. */
    n = 0;
    memset(dst->map, 0, sizeof dst->map);
    for (i = 0; i < FLOW_U32S; i++) {
        if (src_u32[i]) {
            dst->map[i / 32] |= 1u << (i % 32);
            n++;
        }
    }

    /* Initialize dst->values. */
    dst->values = miniflow_alloc_values(dst, n);
    ofs = 0;
    for (i = 0; i < MINI_N_MAPS; i++) {
        uint32_t map;

        for (map = dst->map[i]; map; map = zero_rightmost_1bit(map)) {
            dst->values[ofs++] = src_u32[raw_ctz(map) + i * 32];
        }
    }
}

/* Initializes 'dst' as a copy of 'src'.  The caller must eventually free 'dst'
 * with miniflow_destroy(). */
void
miniflow_clone(struct miniflow *dst, const struct miniflow *src)
{
    int n = miniflow_n_values(src);
    memcpy(dst->map, src->map, sizeof dst->map);
    dst->values = miniflow_alloc_values(dst, n);
    memcpy(dst->values, src->values, n * sizeof *dst->values);
}

/* Frees any memory owned by 'flow'.  Does not free the storage in which 'flow'
 * itself resides; the caller is responsible for that. */
void
miniflow_destroy(struct miniflow *flow)
{
    if (flow->values != flow->inline_values) {
        free(flow->values);
    }
}

/* Initializes 'dst' as a copy of 'src'. */
void
miniflow_expand(const struct miniflow *src, struct flow *dst)
{
    uint32_t *dst_u32 = (uint32_t *) dst;
    int ofs;
    int i;

    memset(dst_u32, 0, sizeof *dst);

    ofs = 0;
    for (i = 0; i < MINI_N_MAPS; i++) {
        uint32_t map;

        for (map = src->map[i]; map; map = zero_rightmost_1bit(map)) {
            dst_u32[raw_ctz(map) + i * 32] = src->values[ofs++];
        }
    }
}

static const uint32_t *
miniflow_get__(const struct miniflow *flow, unsigned int u32_ofs)
{
    if (!(flow->map[u32_ofs / 32] & (1u << (u32_ofs % 32)))) {
        static const uint32_t zero = 0;
        return &zero;
    } else {
        const uint32_t *p = flow->values;

        BUILD_ASSERT(MINI_N_MAPS == 2);
        if (u32_ofs < 32) {
            p += popcount(flow->map[0] & ((1u << u32_ofs) - 1));
        } else {
            p += popcount(flow->map[0]);
            p += popcount(flow->map[1] & ((1u << (u32_ofs - 32)) - 1));
        }
        return p;
    }
}

/* Returns the uint32_t that would be at byte offset '4 * u32_ofs' if 'flow'
 * were expanded into a "struct flow". */
uint32_t
miniflow_get(const struct miniflow *flow, unsigned int u32_ofs)
{
    return *miniflow_get__(flow, u32_ofs);
}

/* Returns the ovs_be16 that would be at byte offset 'u8_ofs' if 'flow' were
 * expanded into a "struct flow". */
static ovs_be16
miniflow_get_be16(const struct miniflow *flow, unsigned int u8_ofs)
{
    const uint32_t *u32p = miniflow_get__(flow, u8_ofs / 4);
    const ovs_be16 *be16p = (const ovs_be16 *) u32p;
    return be16p[u8_ofs % 4 != 0];
}

/* Returns the VID within the vlan_tci member of the "struct flow" represented
 * by 'flow'. */
uint16_t
miniflow_get_vid(const struct miniflow *flow)
{
    ovs_be16 tci = miniflow_get_be16(flow, offsetof(struct flow, vlan_tci));
    return vlan_tci_to_vid(tci);
}

/* Returns true if 'a' and 'b' are the same flow, false otherwise.  */
bool
miniflow_equal(const struct miniflow *a, const struct miniflow *b)
{
    int i;

    for (i = 0; i < MINI_N_MAPS; i++) {
        if (a->map[i] != b->map[i]) {
            return false;
        }
    }

    return !memcmp(a->values, b->values,
                   miniflow_n_values(a) * sizeof *a->values);
}

/* Returns true if 'a' and 'b' are equal at the places where there are 1-bits
 * in 'mask', false if they differ. */
bool
miniflow_equal_in_minimask(const struct miniflow *a, const struct miniflow *b,
                           const struct minimask *mask)
{
    const uint32_t *p;
    int i;

    p = mask->masks.values;
    for (i = 0; i < MINI_N_MAPS; i++) {
        uint32_t map;

        for (map = mask->masks.map[i]; map; map = zero_rightmost_1bit(map)) {
            int ofs = raw_ctz(map) + i * 32;

            if ((miniflow_get(a, ofs) ^ miniflow_get(b, ofs)) & *p) {
                return false;
            }
            p++;
        }
    }

    return true;
}

/* Returns true if 'a' and 'b' are equal at the places where there are 1-bits
 * in 'mask', false if they differ. */
bool
miniflow_equal_flow_in_minimask(const struct miniflow *a, const struct flow *b,
                                const struct minimask *mask)
{
    const uint32_t *b_u32 = (const uint32_t *) b;
    const uint32_t *p;
    int i;

    p = mask->masks.values;
    for (i = 0; i < MINI_N_MAPS; i++) {
        uint32_t map;

        for (map = mask->masks.map[i]; map; map = zero_rightmost_1bit(map)) {
            int ofs = raw_ctz(map) + i * 32;

            if ((miniflow_get(a, ofs) ^ b_u32[ofs]) & *p) {
                return false;
            }
            p++;
        }
    }

    return true;
}

/* Returns a hash value for 'flow', given 'basis'. */
uint32_t
miniflow_hash(const struct miniflow *flow, uint32_t basis)
{
    BUILD_ASSERT_DECL(MINI_N_MAPS == 2);
    return hash_3words(flow->map[0], flow->map[1],
                       hash_words(flow->values, miniflow_n_values(flow),
                                  basis));
}

/* Returns a hash value for the bits of 'flow' where there are 1-bits in
 * 'mask', given 'basis'.
 *
 * The hash values returned by this function are the same as those returned by
 * flow_hash_in_minimask(), only the form of the arguments differ. */
uint32_t
miniflow_hash_in_minimask(const struct miniflow *flow,
                          const struct minimask *mask, uint32_t basis)
{
    const uint32_t *p = mask->masks.values;
    uint32_t hash;
    int i;

    hash = basis;
    for (i = 0; i < MINI_N_MAPS; i++) {
        uint32_t map;

        for (map = mask->masks.map[i]; map; map = zero_rightmost_1bit(map)) {
            int ofs = raw_ctz(map) + i * 32;

            hash = mhash_add(hash, miniflow_get(flow, ofs) & *p);
            p++;
        }
    }

    return mhash_finish(hash, p - mask->masks.values);
}

/* Returns a hash value for the bits of 'flow' where there are 1-bits in
 * 'mask', given 'basis'.
 *
 * The hash values returned by this function are the same as those returned by
 * miniflow_hash_in_minimask(), only the form of the arguments differ. */
uint32_t
flow_hash_in_minimask(const struct flow *flow, const struct minimask *mask,
                      uint32_t basis)
{
    const uint32_t *flow_u32 = (const uint32_t *) flow;
    const uint32_t *p = mask->masks.values;
    uint32_t hash;
    int i;

    hash = basis;
    for (i = 0; i < MINI_N_MAPS; i++) {
        uint32_t map;

        for (map = mask->masks.map[i]; map; map = zero_rightmost_1bit(map)) {
            int ofs = raw_ctz(map) + i * 32;

            hash = mhash_add(hash, flow_u32[ofs] & *p);
            p++;
        }
    }

    return mhash_finish(hash, p - mask->masks.values);
}

/* Initializes 'dst' as a copy of 'src'.  The caller must eventually free 'dst'
 * with minimask_destroy(). */
void
minimask_init(struct minimask *mask, const struct flow_wildcards *wc)
{
    miniflow_init(&mask->masks, &wc->masks);
}

/* Initializes 'dst' as a copy of 'src'.  The caller must eventually free 'dst'
 * with minimask_destroy(). */
void
minimask_clone(struct minimask *dst, const struct minimask *src)
{
    miniflow_clone(&dst->masks, &src->masks);
}

/* Initializes 'dst_' as the bit-wise "and" of 'a_' and 'b_'.
 *
 * The caller must provide room for FLOW_U32S "uint32_t"s in 'storage', for use
 * by 'dst_'.  The caller must *not* free 'dst_' with minimask_destroy(). */
void
minimask_combine(struct minimask *dst_,
                 const struct minimask *a_, const struct minimask *b_,
                 uint32_t storage[FLOW_U32S])
{
    struct miniflow *dst = &dst_->masks;
    const struct miniflow *a = &a_->masks;
    const struct miniflow *b = &b_->masks;
    int i, n;

    n = 0;
    dst->values = storage;
    for (i = 0; i < MINI_N_MAPS; i++) {
        uint32_t map;

        dst->map[i] = 0;
        for (map = a->map[i] & b->map[i]; map;
             map = zero_rightmost_1bit(map)) {
            int ofs = raw_ctz(map) + i * 32;
            uint32_t mask = miniflow_get(a, ofs) & miniflow_get(b, ofs);

            if (mask) {
                dst->map[i] |= rightmost_1bit(map);
                dst->values[n++] = mask;
            }
        }
    }
}

/* Frees any memory owned by 'mask'.  Does not free the storage in which 'mask'
 * itself resides; the caller is responsible for that. */
void
minimask_destroy(struct minimask *mask)
{
    miniflow_destroy(&mask->masks);
}

/* Initializes 'dst' as a copy of 'src'. */
void
minimask_expand(const struct minimask *mask, struct flow_wildcards *wc)
{
    miniflow_expand(&mask->masks, &wc->masks);
}

/* Returns the uint32_t that would be at byte offset '4 * u32_ofs' if 'mask'
 * were expanded into a "struct flow_wildcards". */
uint32_t
minimask_get(const struct minimask *mask, unsigned int u32_ofs)
{
    return miniflow_get(&mask->masks, u32_ofs);
}

/* Returns the VID mask within the vlan_tci member of the "struct
 * flow_wildcards" represented by 'mask'. */
uint16_t
minimask_get_vid_mask(const struct minimask *mask)
{
    return miniflow_get_vid(&mask->masks);
}

/* Returns true if 'a' and 'b' are the same flow mask, false otherwise.  */
bool
minimask_equal(const struct minimask *a, const struct minimask *b)
{
    return miniflow_equal(&a->masks, &b->masks);
}

/* Returns a hash value for 'mask', given 'basis'. */
uint32_t
minimask_hash(const struct minimask *mask, uint32_t basis)
{
    return miniflow_hash(&mask->masks, basis);
}

/* Returns true if at least one bit is wildcarded in 'a_' but not in 'b_',
 * false otherwise. */
bool
minimask_has_extra(const struct minimask *a_, const struct minimask *b_)
{
    const struct miniflow *a = &a_->masks;
    const struct miniflow *b = &b_->masks;
    int i;

    for (i = 0; i < MINI_N_MAPS; i++) {
        uint32_t map;

        for (map = a->map[i] | b->map[i]; map;
             map = zero_rightmost_1bit(map)) {
            int ofs = raw_ctz(map) + i * 32;
            uint32_t a_u32 = miniflow_get(a, ofs);
            uint32_t b_u32 = miniflow_get(b, ofs);

            if ((a_u32 & b_u32) != b_u32) {
                return true;
            }
        }
    }

    return false;
}

/* Returns true if 'mask' matches every packet, false if 'mask' fixes any bits
 * or fields. */
bool
minimask_is_catchall(const struct minimask *mask_)
{
    const struct miniflow *mask = &mask_->masks;

    BUILD_ASSERT(MINI_N_MAPS == 2);
    return !(mask->map[0] | mask->map[1]);
}