aboutsummaryrefslogtreecommitdiff
path: root/test/validation/api/traffic_mngr/traffic_mngr.c
blob: b7f546dcd486c69958e26b50577890f1c1c9a130 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
/* Copyright (c) 2015-2018, Linaro Limited
 * Copyright (c) 2022, Marvell
 * Copyright (c) 2022, Nokia
 * All rights reserved.
 *
 * SPDX-License-Identifier:	BSD-3-Clause
 */

#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif

#include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include <unistd.h>
#include <math.h>

#include <odp_api.h>
#include <odp/helper/odph_api.h>
#include "odp_cunit_common.h"

#define TM_DEBUG                 0

#define MAX_NUM_IFACES           2
#define MAX_TM_SYSTEMS           3
#define NUM_LEVELS               3
#define NUM_PRIORITIES           4
#define NUM_QUEUES_PER_NODE      NUM_PRIORITIES
#define FANIN_RATIO              8u
#define NUM_LEVEL0_TM_NODES      1
#define NUM_LEVEL1_TM_NODES      FANIN_RATIO
#define NUM_LEVEL2_TM_NODES      (FANIN_RATIO * FANIN_RATIO)
#define NUM_TM_QUEUES            (NUM_LEVEL2_TM_NODES * NUM_QUEUES_PER_NODE)
#define NUM_SHAPER_PROFILES      64
#define NUM_SCHED_PROFILES       64
#define NUM_THRESHOLD_PROFILES   64
#define NUM_WRED_PROFILES        64
#define NUM_SHAPER_TEST_PROFILES 8
#define NUM_SCHED_TEST_PROFILES  8
#define NUM_THRESH_TEST_PROFILES 8
#define NUM_WRED_TEST_PROFILES   8

#define ODP_NUM_PKT_COLORS       ODP_NUM_PACKET_COLORS
#define PKT_GREEN                ODP_PACKET_GREEN
#define PKT_YELLOW               ODP_PACKET_YELLOW
#define PKT_RED                  ODP_PACKET_RED

#define MIN_COMMIT_BW            (64 * 1024)
#define MIN_COMMIT_BURST         8000
#define MIN_PEAK_BW              2000000
#define MIN_PEAK_BURST           16000

#define INITIAL_RCV_GAP_DROP     10   /* This is a percent of rcvd pkts */
#define ENDING_RCV_GAP_DROP      20   /* This is a percent of rcvd pkts */

#define MIN_SHAPER_BW_RCV_GAP    80   /* Percent of expected_rcv_gap */
#define MAX_SHAPER_BW_RCV_GAP    125  /* Percent of expected_rcv_gap */

#define MIN_PKT_THRESHOLD        10
#define MIN_BYTE_THRESHOLD       2048

#define MIN_WRED_THRESH          5
#define MED_WRED_THRESH          10
#define MED_DROP_PROB            4
#define MAX_DROP_PROB            8

#define MAX_PKTS                 1000u
#define PKT_BUF_SIZE             1460
#define MAX_PAYLOAD              1400
#define USE_IPV4                 false
#define USE_IPV6                 true
#define USE_UDP                  false
#define USE_TCP                  true
#define LOW_DROP_PRECEDENCE      0x02
#define MEDIUM_DROP_PRECEDENCE   0x04
#define HIGH_DROP_PRECEDENCE     0x06
#define DROP_PRECEDENCE_MASK     0x06
#define DSCP_CLASS1              0x08
#define DSCP_CLASS2              0x10
#define DSCP_CLASS3              0x18
#define DSCP_CLASS4              0x20
#define DEFAULT_DSCP             (DSCP_CLASS2 | LOW_DROP_PRECEDENCE)
#define DEFAULT_ECN              ODPH_IP_ECN_ECT0
#define DEFAULT_TOS              ((DEFAULT_DSCP << ODPH_IP_TOS_DSCP_SHIFT) | \
					DEFAULT_ECN)
#define DEFAULT_TTL              128
#define DEFAULT_UDP_SRC_PORT     12049
#define DEFAULT_UDP_DST_PORT     12050
#define DEFAULT_TCP_SRC_PORT     0xDEAD
#define DEFAULT_TCP_DST_PORT     0xBABE
#define DEFAULT_TCP_SEQ_NUM      0x12345678
#define DEFAULT_TCP_ACK_NUM      0x12340000
#define DEFAULT_TCP_WINDOW       0x4000
#define VLAN_PRIORITY_BK         1      /* Background - lowest priority */
#define VLAN_PRIORITY_BE         0      /* Best Effort */
#define VLAN_PRIORITY_EE         2      /* Excellent Effort */
#define VLAN_PRIORITY_NC         7      /* Network Control - highest priority */
#define VLAN_DEFAULT_VID         12
#define VLAN_NO_DEI              ((VLAN_PRIORITY_EE << 13) | VLAN_DEFAULT_VID)
#define ETHERNET_IFG             12      /* Ethernet Interframe Gap */
#define ETHERNET_PREAMBLE        8
#define ETHERNET_OVHD_LEN        (ETHERNET_IFG + ETHERNET_PREAMBLE)
#define CRC_LEN                  4
#define SHAPER_LEN_ADJ           ETHERNET_OVHD_LEN
#define TM_NAME_LEN              32
#define BILLION                  1000000000ULL
#define MS                       1000000  /* Millisecond in units of NS */
#define MBPS                     1000000
#define GBPS                     1000000000

#define TM_PERCENT(percent) ((uint32_t)(100 * percent))

typedef enum {
	SHAPER_PROFILE, SCHED_PROFILE, THRESHOLD_PROFILE, WRED_PROFILE
} profile_kind_t;

typedef enum {
	THRESHOLD_BYTE,
	THRESHOLD_PACKET,
	THRESHOLD_BYTE_AND_PACKET
} threshold_type_t;

typedef struct {
	uint32_t       num_queues;
	odp_tm_queue_t tm_queues[];
} tm_queue_desc_t;

typedef struct tm_node_desc_s tm_node_desc_t;

struct tm_node_desc_s {
	uint32_t         level;
	uint32_t         node_idx;
	uint32_t         num_children;
	char            *node_name;
	odp_tm_node_t    node;
	odp_tm_node_t    parent_node;
	tm_queue_desc_t *queue_desc;
	tm_node_desc_t  *children[];
};

typedef struct {
	uint32_t num_samples;
	uint32_t min_rcv_gap;
	uint32_t max_rcv_gap;
	uint32_t total_rcv_gap;
	uint64_t total_rcv_gap_squared;
	uint32_t avg_rcv_gap;
	uint32_t std_dev_gap;
} rcv_stats_t;

typedef struct {
	odp_time_t     xmt_time;
	odp_time_t     rcv_time;
	uint64_t       delta_ns;
	odp_tm_queue_t tm_queue;
	uint16_t       pkt_len;
	uint16_t       xmt_unique_id;
	uint16_t       xmt_idx;
	uint8_t        pkt_class;
	uint8_t        was_rcvd;
} xmt_pkt_desc_t;

typedef struct {
	odp_time_t      rcv_time;
	xmt_pkt_desc_t *xmt_pkt_desc;
	uint16_t        rcv_unique_id;
	uint16_t        xmt_idx;
	uint8_t         errors;
	uint8_t          matched;
	uint8_t         pkt_class;
	uint8_t         is_ipv4_pkt;
} rcv_pkt_desc_t;

typedef struct {
	odp_tm_percent_t confidence_percent;
	odp_tm_percent_t drop_percent;
	uint32_t         min_cnt;
	uint32_t         max_cnt;
} wred_pkt_cnts_t;

typedef struct {
	uint32_t       num_queues;
	uint32_t       priority;
	odp_tm_queue_t tm_queues[NUM_LEVEL2_TM_NODES];
} queue_array_t;

typedef struct {
	queue_array_t queue_array[NUM_PRIORITIES];
} queues_set_t;

typedef struct {
	uint16_t           vlan_tci;
	uint8_t            pkt_class;
	uint8_t            ip_tos;        /* TOS for IPv4 and TC for IPv6 */
	odp_packet_color_t pkt_color;
	odp_bool_t         drop_eligible;
	odp_bool_t         use_vlan;      /* Else no VLAN header */
	odp_bool_t         use_ipv6;      /* Else use IPv4 */
	odp_bool_t         use_tcp;       /* Else use UDP */
} pkt_info_t;

static const char ALPHABET[] =
	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";

/* The following constant table determines the minimum and maximum number of
 * pkts that will be received when sending 100 pkts through a system with a
 * drop probability of p% (using a uniform probability distribution), with a
 * confidence of 99.9% 99.99% and 99.999%. The confidence is interpreted as
 * follows: a 99.99% confidence says that receiving LESS pkts than the given
 * minimum or receiving MORE pkts than the given maximum (assuming a uniform
 * drop percent of p) will happen less than 1 time in 10,000 trials.
 * Mathematically the minimum pkt cnt is the largest value of cnt
 * that satisfies the following equation:
 * "(1 - cf/100)/2 <= Sum(binomial(100,k) * (1-p)^k * p^(100-k), k=0..cnt)",
 * where cf is the confidence, caret (^) represents exponentiation,
 * binomial(n,k) is the binomial coefficient defined as n! / (k! * (n-k)!).
 * and p is the drop probability.  Similarly the maximum pkt cnt is the
 * smallest value of cnt that satisfies the equation:
 * "(1 - cf/100)/2 <= Sum(binomial(100,k) * (1-p)^k * p^(100-k), k=cnt..100)".
 * As a consequence of this, it should be the case that:
 * cf/100 <= Sum(binomial(100,k) * (1-p)^k * p^(100-k), k=min..max)".
 */
static wred_pkt_cnts_t EXPECTED_PKT_RCVD[] = {
	{ TM_PERCENT(99.0), TM_PERCENT(10.0), 82, 97 },
	{ TM_PERCENT(99.0), TM_PERCENT(20.0), 69, 90 },
	{ TM_PERCENT(99.0), TM_PERCENT(30.0), 58, 81 },
	{ TM_PERCENT(99.0), TM_PERCENT(40.0), 47, 72 },
	{ TM_PERCENT(99.0), TM_PERCENT(50.0), 37, 63 },
	{ TM_PERCENT(99.0), TM_PERCENT(60.0), 28, 53 },
	{ TM_PERCENT(99.0), TM_PERCENT(70.0), 19, 42 },
	{ TM_PERCENT(99.0), TM_PERCENT(80.0), 10, 31 },
	{ TM_PERCENT(99.0), TM_PERCENT(90.0),  3, 18 },

	{ TM_PERCENT(99.9), TM_PERCENT(10.0), 79, 98 },
	{ TM_PERCENT(99.9), TM_PERCENT(20.0), 66, 92 },
	{ TM_PERCENT(99.9), TM_PERCENT(30.0), 54, 84 },
	{ TM_PERCENT(99.9), TM_PERCENT(40.0), 44, 76 },
	{ TM_PERCENT(99.9), TM_PERCENT(50.0), 34, 66 },
	{ TM_PERCENT(99.9), TM_PERCENT(60.0), 24, 56 },
	{ TM_PERCENT(99.9), TM_PERCENT(70.0), 16, 46 },
	{ TM_PERCENT(99.9), TM_PERCENT(80.0),  8, 34 },
	{ TM_PERCENT(99.9), TM_PERCENT(90.0),  2, 21 },

	{ TM_PERCENT(99.99), TM_PERCENT(10.0), 77, 99 },
	{ TM_PERCENT(99.99), TM_PERCENT(20.0), 63, 94 },
	{ TM_PERCENT(99.99), TM_PERCENT(30.0), 51, 87 },
	{ TM_PERCENT(99.99), TM_PERCENT(40.0), 41, 78 },
	{ TM_PERCENT(99.99), TM_PERCENT(50.0), 31, 69 },
	{ TM_PERCENT(99.99), TM_PERCENT(60.0), 22, 59 },
	{ TM_PERCENT(99.99), TM_PERCENT(70.0), 13, 49 },
	{ TM_PERCENT(99.99), TM_PERCENT(80.0),  6, 37 },
	{ TM_PERCENT(99.99), TM_PERCENT(90.0),  1, 23 },
};

static uint8_t EQUAL_WEIGHTS[FANIN_RATIO] = {
	16, 16, 16, 16, 16, 16, 16, 16
};

static uint8_t INCREASING_WEIGHTS[FANIN_RATIO] = {
	8, 12, 16, 24, 32, 48, 64, 96
};

static uint8_t IPV4_SRC_ADDR[ODPH_IPV4ADDR_LEN] = {
	10, 0, 0, 1   /* I.e. 10.0.0.1 */
};

static uint8_t IPV4_DST_ADDR[ODPH_IPV4ADDR_LEN] = {
	10, 0, 0, 100   /* I.e. 10.0.0.100 */
};

static uint8_t IPV6_SRC_ADDR[ODPH_IPV6ADDR_LEN] = {
	/* I.e. ::ffff:10.0.0.1 */
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, 10, 0, 0, 1
};

static uint8_t IPV6_DST_ADDR[ODPH_IPV6ADDR_LEN] = {
	/* I.e. ::ffff:10.0.0.100 */
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, 10, 0, 0, 100
};

static odp_tm_t        odp_tm_systems[MAX_TM_SYSTEMS];
static tm_node_desc_t *root_node_descs[MAX_TM_SYSTEMS];
static uint32_t        num_odp_tm_systems;

static odp_tm_capabilities_t tm_capabilities;

static bool dynamic_shaper_update = true;
static bool dynamic_sched_update = true;
static bool dynamic_threshold_update = true;
static bool dynamic_wred_update = true;

static odp_tm_shaper_t    shaper_profiles[NUM_SHAPER_PROFILES];
static odp_tm_sched_t     sched_profiles[NUM_SCHED_PROFILES];
static odp_tm_threshold_t threshold_profiles[NUM_THRESHOLD_PROFILES];
static odp_tm_wred_t      wred_profiles[NUM_WRED_PROFILES][ODP_NUM_PKT_COLORS];

static uint32_t num_shaper_profiles;
static uint32_t num_sched_profiles;
static uint32_t num_threshold_profiles;
static uint32_t num_wred_profiles;

static uint8_t payload_data[MAX_PAYLOAD];

static odp_packet_t   xmt_pkts[MAX_PKTS];
static xmt_pkt_desc_t xmt_pkt_descs[MAX_PKTS];
static uint32_t       num_pkts_made;
static uint32_t       num_pkts_sent;

static odp_packet_t   rcv_pkts[MAX_PKTS];
static rcv_pkt_desc_t rcv_pkt_descs[MAX_PKTS];
static uint32_t       num_rcv_pkts;

static uint32_t rcv_gaps[MAX_PKTS];
static uint32_t rcv_gap_cnt;

static queues_set_t queues_set;
static uint32_t     unique_id_list[MAX_PKTS];

/* interface names used for testing */
static const char *iface_name[MAX_NUM_IFACES];

/** number of interfaces being used (1=loopback, 2=pair) */
static uint32_t num_ifaces;

static odp_pool_t pools[MAX_NUM_IFACES] = {ODP_POOL_INVALID, ODP_POOL_INVALID};

static odp_pktio_t pktios[MAX_NUM_IFACES];
static odp_bool_t pktio_started[MAX_NUM_IFACES];
static odp_pktin_queue_t pktins[MAX_NUM_IFACES];
static odp_pktin_queue_t rcv_pktin;
static odp_pktio_t xmt_pktio;
static odp_pktio_capability_t xmt_pktio_capa;
static odp_lso_profile_t lso_ipv4_profile;

static odph_ethaddr_t src_mac;
static odph_ethaddr_t dst_mac;

static uint32_t cpu_unique_id;
static uint32_t cpu_tcp_seq_num;

static int8_t suite_inactive;

static uint64_t tm_shaper_min_rate;
static uint64_t tm_shaper_max_rate;
static uint32_t tm_shaper_min_burst;
static uint32_t tm_shaper_max_burst;

static void busy_wait(uint64_t nanoseconds)
{
	odp_time_t start_time, end_time;

	start_time = odp_time_local();
	end_time   = odp_time_sum(start_time,
				  odp_time_local_from_ns(nanoseconds));

	while (odp_time_cmp(odp_time_local(), end_time) < 0)
		odp_cpu_pause();
}

static odp_bool_t approx_eq32(uint32_t val, uint32_t correct)
{
	uint64_t low_bound, val_times_100, high_bound;

	if (val == correct)
		return true;

	low_bound     = 98  * (uint64_t)correct;
	val_times_100 = 100 * (uint64_t)val;
	high_bound    = 102 * (uint64_t)correct;

	if ((low_bound <= val_times_100) && (val_times_100 <= high_bound))
		return true;
	else
		return false;
}

static odp_bool_t approx_eq64(uint64_t val, uint64_t correct)
{
	uint64_t low_bound, val_times_100, high_bound;

	if (val == correct)
		return true;

	low_bound     = 98  * correct;
	val_times_100 = 100 * val;
	high_bound    = 102 * correct;

	if ((low_bound <= val_times_100) && (val_times_100 <= high_bound))
		return true;
	else
		return false;
}

static uint64_t
clamp_rate(uint64_t rate)
{
	return ODPH_MIN(ODPH_MAX(rate, tm_shaper_min_rate), tm_shaper_max_rate);
}

static uint32_t
clamp_burst(uint32_t burst)
{
	return ODPH_MIN(ODPH_MAX(burst, tm_shaper_min_burst), tm_shaper_max_burst);
}

static int test_overall_capabilities(void)
{
	odp_tm_level_capabilities_t *per_level;
	odp_tm_capabilities_t        capabilities_array[2];
	odp_tm_capabilities_t       *cap_ptr;
	odp_tm_egress_t              egress;
	odp_bool_t                  *prio_modes;
	uint32_t                     num_records, idx, num_levels, level;
	int                          rc;

	odp_tm_egress_init(&egress);
	egress.egress_kind = ODP_TM_EGRESS_PKT_IO;
	egress.pktio = xmt_pktio;

	rc = odp_tm_egress_capabilities(&capabilities_array[0], &egress);
	CU_ASSERT_FATAL(rc == 0);
	num_records = 1;

	/* Get capabilities for egress kind function. */
	odp_tm_egress_init(&egress);
	egress.egress_kind = ODP_TM_EGRESS_FN;
	rc = odp_tm_egress_capabilities(&capabilities_array[1], &egress);
	CU_ASSERT_FATAL(rc == 0);

	/* Validate this record only if egress function is supported */
	if (capabilities_array[1].max_tm_queues)
		num_records++;

	/* Loop through the returned capabilities (there MUST be at least one)
	 * and do some basic checks to prove that it isn't just an empty
	 * record. */
	for (idx = 0; idx < num_records; idx++) {
		cap_ptr = &capabilities_array[idx];
		if (cap_ptr->max_tm_queues == 0) {
			CU_ASSERT(cap_ptr->max_tm_queues != 0);
			return -1;
		}

		if (cap_ptr->max_levels == 0) {
			CU_ASSERT(cap_ptr->max_levels != 0);
			return -1;
		}

		num_levels = cap_ptr->max_levels;
		for (level = 0; level < num_levels; level++) {
			per_level = &cap_ptr->per_level[level];

			if (per_level->max_num_tm_nodes == 0) {
				CU_ASSERT(per_level->max_num_tm_nodes != 0);
				return -1;
			}

			if (per_level->max_fanin_per_node == 0) {
				CU_ASSERT(per_level->max_fanin_per_node != 0);
				return -1;
			}

			if (per_level->max_priority == 0) {
				CU_ASSERT(per_level->max_priority != 0);
				return -1;
			}

			if (per_level->tm_node_shaper_supported ||
			    per_level->tm_node_rate_limiter_supported) {
				CU_ASSERT(per_level->max_burst > 0);
				CU_ASSERT(per_level->min_rate > 0);
				CU_ASSERT(per_level->max_rate > 0);
			}

			if (per_level->tm_node_shaper_packet_mode) {
				CU_ASSERT(per_level->max_burst_packets > 0);
				CU_ASSERT(per_level->min_rate_packets > 0);
				CU_ASSERT(per_level->max_rate_packets > 0);
			}
		}

		/* At least one pkt priority mode needs to be supported */
		prio_modes = cap_ptr->pkt_prio_modes;
		CU_ASSERT((prio_modes[ODP_TM_PKT_PRIO_MODE_PRESERVE] != 0) ||
			  (prio_modes[ODP_TM_PKT_PRIO_MODE_OVERWRITE] != 0))
	}

	return 0;
}

static int wait_linkup(odp_pktio_t pktio)
{
	/* wait 1 second for link up */
	uint64_t wait_ns = (10 * ODP_TIME_MSEC_IN_NS);
	int wait_num = 100;
	int i;
	int ret = -1;

	for (i = 0; i < wait_num; i++) {
		ret = odp_pktio_link_status(pktio);
		if (ret == ODP_PKTIO_LINK_STATUS_UNKNOWN || ret == ODP_PKTIO_LINK_STATUS_UP)
			break;
		/* link is down, call status again after delay */
		odp_time_wait_ns(wait_ns);
	}

	return ret;
}

static int open_pktios(void)
{
	odp_pktio_param_t pktio_param;
	odp_pktio_config_t pktio_config;
	odp_pool_param_t  pool_param;
	odp_pktio_t       pktio;
	odp_pool_t        pkt_pool;
	uint32_t          iface;
	char              pool_name[ODP_POOL_NAME_LEN];
	int               rc, ret;
	int pkt_aging = 0;
	int lso = 0;

	odp_pool_param_init(&pool_param);
	pool_param.pkt.num  = 10 * MAX_PKTS;
	pool_param.type     = ODP_POOL_PACKET;

	odp_pktio_param_init(&pktio_param);
	pktio_param.in_mode  = ODP_PKTIN_MODE_DIRECT;

	for (iface = 0; iface < num_ifaces; iface++) {
		snprintf(pool_name, sizeof(pool_name), "pkt_pool_%s",
			 iface_name[iface]);

		pkt_pool = odp_pool_create(pool_name, &pool_param);
		if (pkt_pool == ODP_POOL_INVALID) {
			CU_FAIL("unable to create pool");
			return -1;
		}

		pools[iface] = pkt_pool;

		/* Zero'th device is always PKTOUT TM as we use it from XMIT */
		if (iface == 0) {
			pktio_param.out_mode = ODP_PKTOUT_MODE_TM;

			pktio = odp_pktio_open(iface_name[iface], pkt_pool,
					       &pktio_param);

			/* On failure check if pktio can be opened in non-TM mode.
			 * If non-TM mode works, then we can assume that PKTIO
			 * does not support TM
			 */
			if (pktio == ODP_PKTIO_INVALID) {
				pktio_param.out_mode = ODP_PKTOUT_MODE_DIRECT;
				pktio = odp_pktio_open(iface_name[iface], pkt_pool,
						       &pktio_param);

				/* Return >0 to indicate no TM support */
				if (pktio != ODP_PKTIO_INVALID) {
					odp_pktio_close(pktio);
					return 1;
				}
			}
		} else {
			pktio_param.out_mode = ODP_PKTOUT_MODE_DISABLED;

			pktio = odp_pktio_open(iface_name[iface], pkt_pool,
					       &pktio_param);
		}

		pktios[iface] = pktio;
		if (pktio == ODP_PKTIO_INVALID) {
			ODPH_ERR("odp_pktio_open() failed\n");
			return -1;
		}

		/* Set defaults for PktIn and PktOut queues */
		(void)odp_pktin_queue_config(pktio, NULL);
		rc = odp_pktio_promisc_mode_set(pktio, true);
		if (rc != 0)
			printf("****** promisc_mode_set failed  ******\n");

		if (odp_pktin_queue(pktio, &pktins[iface], 1) != 1) {
			odp_pktio_close(pktio);
			ODPH_ERR("odp_pktio_open() failed: no pktin queue\n");
			return -1;
		}

		rc = -1;
		if (iface == 0)
			rc = odp_pktio_mac_addr(pktio, &src_mac,
						ODPH_ETHADDR_LEN);

		if ((iface == 1) || (num_ifaces == 1))
			rc = odp_pktio_mac_addr(pktio, &dst_mac,
						ODPH_ETHADDR_LEN);

		if (rc != ODPH_ETHADDR_LEN) {
			ODPH_ERR("odp_pktio_mac_addr() failed\n");
			return -1;
		}
	}

	if (2 <= num_ifaces) {
		xmt_pktio = pktios[0];
		rcv_pktin  = pktins[1];
		ret = odp_pktio_start(pktios[1]);
		if (ret != 0) {
			ODPH_ERR("odp_pktio_start() failed\n");
			return -1;
		}
		pktio_started[1] = true;
	} else {
		xmt_pktio = pktios[0];
		rcv_pktin  = pktins[0];
	}

	if (odp_pktio_capability(xmt_pktio, &xmt_pktio_capa)) {
		ODPH_ERR("pktio capa failed\n");
		return -1;
	}

	odp_pktio_config_init(&pktio_config);

	/* Enable packet aging if supported */
	if (xmt_pktio_capa.max_tx_aging_tmo_ns) {
		pkt_aging = 1;
		pktio_config.pktout.bit.aging_ena = 1;
	}

	/* Enable LSO if supported */
	if (xmt_pktio_capa.lso.max_profiles && xmt_pktio_capa.lso.max_profiles_per_pktio) {
		lso = 1;
		pktio_config.enable_lso = 1;
	}

	/* Enable selected features */
	if (lso || pkt_aging) {
		if (odp_pktio_config(xmt_pktio, &pktio_config)) {
			ODPH_ERR("pktio configure failed\n");
			return -1;
		}
	}

	/* Add LSO profiles before start */
	if (lso) {
		odp_lso_profile_param_t prof_param;

		if (xmt_pktio_capa.lso.proto.ipv4) {
			odp_lso_profile_param_init(&prof_param);
			prof_param.lso_proto = ODP_LSO_PROTO_IPV4;

			lso_ipv4_profile = odp_lso_profile_create(xmt_pktio, &prof_param);
			if (lso_ipv4_profile == ODP_LSO_PROFILE_INVALID) {
				ODPH_ERR("Failed to create IPv4 LSO profile\n");
				return -1;
			}
		}
	}

	ret = odp_pktio_start(xmt_pktio);
	if (ret != 0) {
		ODPH_ERR("odp_pktio_start() failed\n");
		return -1;
	}
	pktio_started[0] = true;

	/* Now wait until the link or links are up. */
	rc = wait_linkup(xmt_pktio);
	if (rc != 1) {
		ODPH_ERR("link %" PRIX64 " not up\n", odp_pktio_to_u64(xmt_pktio));
		return -1;
	}

	if (num_ifaces < 2)
		return 0;

	/* Wait for 2nd link to be up */
	rc = wait_linkup(pktios[1]);
	if (rc != 1) {
		ODPH_ERR("link %" PRIX64 " not up\n", odp_pktio_to_u64(pktios[1]));
		return -1;
	}

	return 0;
}

static int get_unique_id(odp_packet_t odp_pkt,
			 uint16_t    *unique_id_ptr,
			 uint8_t     *is_ipv4_pkt_ptr)
{
	odp_u32be_t be_ver_tc_flow;
	odp_u16be_t be_ip_ident;
	odp_bool_t  is_ipv4;
	uint32_t    l3_offset, ident_offset, flow_offset, ver_tc_flow;
	uint16_t    unique_id;

	l3_offset = odp_packet_l3_offset(odp_pkt);

	if (odp_packet_has_ipv4(odp_pkt)) {
		/* For IPv4 pkts use the ident field to store the unique_id. */
		ident_offset = l3_offset + offsetof(odph_ipv4hdr_t, id);

		CU_ASSERT_FATAL(odp_packet_copy_to_mem(odp_pkt, ident_offset, 2,
						       &be_ip_ident) == 0);
		unique_id = odp_be_to_cpu_16(be_ip_ident);
		is_ipv4   = true;
	} else if (odp_packet_has_ipv6(odp_pkt)) {
		/* For IPv6 pkts use the flow field to store the unique_id. */
		flow_offset = l3_offset + offsetof(odph_ipv6hdr_t, ver_tc_flow);

		CU_ASSERT_FATAL(odp_packet_copy_to_mem(odp_pkt, flow_offset, 4,
						       &be_ver_tc_flow) == 0);
		ver_tc_flow = odp_be_to_cpu_32(be_ver_tc_flow);
		unique_id   = ver_tc_flow & ODPH_IPV6HDR_FLOW_LABEL_MASK;
		is_ipv4     = false;
	} else {
		return -1;
	}

	if (unique_id_ptr != NULL)
		*unique_id_ptr = unique_id;

	if (is_ipv4_pkt_ptr != NULL)
		*is_ipv4_pkt_ptr = is_ipv4;

	return 0;
}

static int get_vlan_tci(odp_packet_t odp_pkt, uint16_t *vlan_tci_ptr)
{
	odph_vlanhdr_t *vlan_hdr;
	odph_ethhdr_t  *ether_hdr;
	uint32_t        hdr_len;
	uint16_t        vlan_tci;

	if (!odp_packet_has_vlan(odp_pkt))
		return -1;

	/* *TBD* check value of hdr_len? */
	ether_hdr = odp_packet_l2_ptr(odp_pkt, &hdr_len);
	vlan_hdr  = (odph_vlanhdr_t *)(ether_hdr + 1);
	vlan_tci  = odp_be_to_cpu_16(vlan_hdr->tci);
	if (vlan_tci_ptr != NULL)
		*vlan_tci_ptr = vlan_tci;

	return 0;
}

/* Returns either the TOS field for IPv4 pkts or the TC field for IPv6 pkts. */
static int get_ip_tos(odp_packet_t odp_pkt, uint8_t *tos_ptr)
{
	odph_ipv4hdr_t *ipv4_hdr;
	odph_ipv6hdr_t *ipv6_hdr;
	uint32_t        ver_tc_flow;
	uint8_t         tos, tc;
	uint32_t        hdr_len = 0;

	if (odp_packet_has_ipv4(odp_pkt)) {
		ipv4_hdr = odp_packet_l3_ptr(odp_pkt, &hdr_len);
		if (hdr_len < 12)
			return -1;

		tos = ipv4_hdr->tos;
	} else if (odp_packet_has_ipv6(odp_pkt)) {
		ipv6_hdr = odp_packet_l3_ptr(odp_pkt, &hdr_len);
		if (hdr_len < 4)
			return -1;

		ver_tc_flow = odp_be_to_cpu_32(ipv6_hdr->ver_tc_flow);
		tc          = (ver_tc_flow & ODPH_IPV6HDR_TC_MASK)
					>> ODPH_IPV6HDR_TC_SHIFT;
		tos = tc;
	} else {
	       return -1;
	}

	if (tos_ptr != NULL)
		*tos_ptr = tos;

	return 0;
}

static odp_packet_t make_pkt(odp_pool_t  pkt_pool,
			     uint32_t    payload_len,
			     uint16_t    unique_id,
			     pkt_info_t *pkt_info)
{
	odph_vlanhdr_t *vlan_hdr;
	odph_ipv4hdr_t *ipv4_hdr;
	odph_ipv6hdr_t *ipv6_hdr;
	odph_ethhdr_t  *eth_hdr;
	odph_udphdr_t  *udp_hdr;
	odph_tcphdr_t  *tcp_hdr;
	odp_packet_t    odp_pkt;
	uint32_t        l4_hdr_len, l3_hdr_len, vlan_hdr_len, l2_hdr_len;
	uint32_t        l4_len, l3_len, l2_len, pkt_len, l3_offset, l4_offset;
	uint32_t        version, tc, flow, ver_tc_flow, app_offset;
	uint16_t        final_ether_type;
	uint8_t        *buf, *pkt_class_ptr, next_hdr;
	int             rc;

	l4_hdr_len   = pkt_info->use_tcp  ? ODPH_TCPHDR_LEN  : ODPH_UDPHDR_LEN;
	l3_hdr_len   = pkt_info->use_ipv6 ? ODPH_IPV6HDR_LEN : ODPH_IPV4HDR_LEN;
	vlan_hdr_len = pkt_info->use_vlan ? ODPH_VLANHDR_LEN : 0;
	l2_hdr_len   = ODPH_ETHHDR_LEN + vlan_hdr_len;
	l4_len       = l4_hdr_len + payload_len;
	l3_len       = l3_hdr_len + l4_len;
	l2_len       = l2_hdr_len + l3_len;
	pkt_len      = l2_len;
	if (unique_id == 0) {
		ODPH_ERR("%s called with invalid unique_id of 0\n", __func__);
		return ODP_PACKET_INVALID;
	}

	odp_pkt = odp_packet_alloc(pkt_pool, pkt_len);
	if (odp_pkt == ODP_PACKET_INVALID)
		return ODP_PACKET_INVALID;

	buf = odp_packet_data(odp_pkt);

	/* Ethernet Header */
	odp_packet_l2_offset_set(odp_pkt, 0);
	eth_hdr          = (odph_ethhdr_t *)buf;
	final_ether_type = pkt_info->use_ipv6 ? ODPH_ETHTYPE_IPV6
					      : ODPH_ETHTYPE_IPV4;
	memcpy(eth_hdr->src.addr, &src_mac, ODPH_ETHADDR_LEN);
	memcpy(eth_hdr->dst.addr, &dst_mac, ODPH_ETHADDR_LEN);

	/* Vlan Header */
	if (pkt_info->use_vlan) {
		odp_packet_has_vlan_set(odp_pkt, 1);
		eth_hdr->type  = odp_cpu_to_be_16(ODPH_ETHTYPE_VLAN);
		vlan_hdr       = (odph_vlanhdr_t *)(eth_hdr + 1);
		vlan_hdr->tci  = odp_cpu_to_be_16(pkt_info->vlan_tci);
		vlan_hdr->type = odp_cpu_to_be_16(final_ether_type);
	} else {
		eth_hdr->type = odp_cpu_to_be_16(final_ether_type);
	}

	l3_offset = l2_hdr_len;
	next_hdr  = pkt_info->use_tcp ? ODPH_IPPROTO_TCP : ODPH_IPPROTO_UDP;
	odp_packet_l3_offset_set(odp_pkt, l3_offset);
	if (pkt_info->use_ipv6) {
		/* IPv6 Header */
		odp_packet_has_ipv6_set(odp_pkt, 1);
		version     = ODPH_IPV6        << ODPH_IPV6HDR_VERSION_SHIFT;
		tc          = pkt_info->ip_tos << ODPH_IPV6HDR_TC_SHIFT;
		flow        = unique_id        << ODPH_IPV6HDR_FLOW_LABEL_SHIFT;
		ver_tc_flow = version | tc | flow;

		ipv6_hdr              = (odph_ipv6hdr_t *)(buf + l3_offset);
		ipv6_hdr->ver_tc_flow = odp_cpu_to_be_32(ver_tc_flow);
		ipv6_hdr->payload_len = odp_cpu_to_be_16(l4_len);
		ipv6_hdr->next_hdr    = next_hdr;
		ipv6_hdr->hop_limit   = DEFAULT_TTL;
		memcpy(ipv6_hdr->src_addr, IPV6_SRC_ADDR, ODPH_IPV6ADDR_LEN);
		memcpy(ipv6_hdr->dst_addr, IPV6_DST_ADDR, ODPH_IPV6ADDR_LEN);
	} else {
		/* IPv4 Header */
		odp_packet_has_ipv4_set(odp_pkt, 1);
		ipv4_hdr              = (odph_ipv4hdr_t *)(buf + l3_offset);
		ipv4_hdr->ver_ihl     = (ODPH_IPV4 << 4) | ODPH_IPV4HDR_IHL_MIN;
		ipv4_hdr->tos         = pkt_info->ip_tos;
		ipv4_hdr->tot_len     = odp_cpu_to_be_16(l3_len);
		ipv4_hdr->id          = odp_cpu_to_be_16(unique_id);
		ipv4_hdr->frag_offset = 0;
		ipv4_hdr->ttl         = DEFAULT_TTL;
		ipv4_hdr->proto       = next_hdr;
		ipv4_hdr->chksum      = 0;
		memcpy(&ipv4_hdr->src_addr, IPV4_SRC_ADDR, ODPH_IPV4ADDR_LEN);
		memcpy(&ipv4_hdr->dst_addr, IPV4_DST_ADDR, ODPH_IPV4ADDR_LEN);
	}

	l4_offset = l3_offset + l3_hdr_len;
	odp_packet_l4_offset_set(odp_pkt, l4_offset);
	tcp_hdr = (odph_tcphdr_t *)(buf + l4_offset);
	udp_hdr = (odph_udphdr_t *)(buf + l4_offset);

	if (pkt_info->use_tcp) {
		/* TCP Header */
		odp_packet_has_tcp_set(odp_pkt, 1);
		tcp_hdr->src_port = odp_cpu_to_be_16(DEFAULT_TCP_SRC_PORT);
		tcp_hdr->dst_port = odp_cpu_to_be_16(DEFAULT_TCP_DST_PORT);
		tcp_hdr->seq_no   = odp_cpu_to_be_32(cpu_tcp_seq_num);
		tcp_hdr->ack_no   = odp_cpu_to_be_32(DEFAULT_TCP_ACK_NUM);
		tcp_hdr->window   = odp_cpu_to_be_16(DEFAULT_TCP_WINDOW);
		tcp_hdr->cksm     = 0;
		tcp_hdr->urgptr   = 0;

		tcp_hdr->doffset_flags = 0;
		tcp_hdr->hl            = 5;
		tcp_hdr->ack           = 1;
		cpu_tcp_seq_num       += payload_len;
	} else {
		/* UDP Header */
		odp_packet_has_udp_set(odp_pkt, 1);
		udp_hdr->src_port = odp_cpu_to_be_16(DEFAULT_UDP_SRC_PORT);
		udp_hdr->dst_port = odp_cpu_to_be_16(DEFAULT_UDP_DST_PORT);
		udp_hdr->length   = odp_cpu_to_be_16(l4_len);
		udp_hdr->chksum   = 0;
	}

	app_offset = l4_offset + l4_hdr_len;
	rc         = odp_packet_copy_from_mem(odp_pkt, app_offset, payload_len,
					      payload_data);
	CU_ASSERT_FATAL(rc == 0);

	pkt_class_ptr = odp_packet_offset(odp_pkt, app_offset, NULL, NULL);
	CU_ASSERT_FATAL(pkt_class_ptr != NULL);
	*pkt_class_ptr = pkt_info->pkt_class;

	/* Calculate and insert checksums. First the IPv4 header checksum. */
	if (!pkt_info->use_ipv6)
		odph_ipv4_csum_update(odp_pkt);

	/* Next the UDP/TCP checksum. */
	if (odph_udp_tcp_chksum(odp_pkt, ODPH_CHKSUM_GENERATE, NULL) != 0)
		ODPH_ERR("odph_udp_tcp_chksum failed\n");

	return odp_pkt;
}

static xmt_pkt_desc_t *find_matching_xmt_pkt_desc(uint16_t unique_id)
{
	xmt_pkt_desc_t *xmt_pkt_desc;
	uint32_t        xmt_pkt_idx;

	if (unique_id == 0)
		return NULL;

	for (xmt_pkt_idx = 0; xmt_pkt_idx < num_pkts_sent; xmt_pkt_idx++) {
		xmt_pkt_desc = &xmt_pkt_descs[xmt_pkt_idx];
		if (xmt_pkt_desc->xmt_unique_id == unique_id)
			return xmt_pkt_desc;
	}

	return NULL;
}

static int32_t receive_loop(odp_tm_t tm, odp_pktin_queue_t pktin, uint32_t num_pkts,
			    uint64_t timeout_ns)
{
	odp_time_t start_time, current_time;
	uint64_t duration_ns;
	uint32_t pkts_rcvd;
	int rc;

	pkts_rcvd   = 0;
	start_time  = odp_time_local();
	duration_ns = 0;

	while ((pkts_rcvd < num_pkts) || (!odp_tm_is_idle(tm))) {
		rc = odp_pktin_recv(pktin, &rcv_pkts[pkts_rcvd], 1);
		if (rc < 0)
			return -1;

		current_time = odp_time_local();
		duration_ns  = odp_time_diff_ns(current_time, start_time);

		if (rc == 1)
			rcv_pkt_descs[pkts_rcvd++].rcv_time = current_time;
		else if (timeout_ns < duration_ns)
			break;
	}

	return pkts_rcvd;
}

static int receive_pkts(odp_tm_t tm, odp_pktin_queue_t pktin, uint32_t num_pkts,
			uint64_t rate_bps)
{
	xmt_pkt_desc_t *xmt_pkt_desc;
	rcv_pkt_desc_t *rcv_pkt_desc;
	odp_packet_t    rcv_pkt;
	odp_time_t      xmt_time;
	odp_time_t      rcv_time, delta_time;
	uint64_t        delta_ns, tmp, timeout_ns;
	uint32_t        pkts_rcvd, rcv_idx, l4_offset, l4_hdr_len, app_offset;
	uint16_t        unique_id;
	uint8_t        *pkt_class_ptr, pkt_class, is_ipv4_pkt;
	int32_t         rc;

	tmp        = (1000000ULL * 10000ULL * (uint64_t)num_pkts) / rate_bps;
	timeout_ns = 1000ULL * ((4ULL * tmp) + 10000ULL);

	rc = receive_loop(tm, pktin, num_pkts, timeout_ns);
	if (rc < 0)
		return -1;

	pkts_rcvd = rc;

	/* Now go through matching the rcv pkts to the xmt pkts, determining
	 * which xmt_pkts were lost and for the ones that did arrive, how
	 * long did they take. We don't do this work while receiving the pkts
	 * in the loop above because we want to try to get as accurate a
	 * rcv timestamp as possible. */
	for (rcv_idx = 0; rcv_idx < pkts_rcvd; rcv_idx++) {
		rcv_pkt      = rcv_pkts[rcv_idx];
		rcv_pkt_desc = &rcv_pkt_descs[rcv_idx];

		if (odp_packet_has_error(rcv_pkt)) {
			rcv_pkt_desc->errors = 0x01 |
				(odp_packet_has_l2_error(rcv_pkt) << 1) |
				(odp_packet_has_l3_error(rcv_pkt) << 2) |
				(odp_packet_has_l4_error(rcv_pkt) << 3);

			ODPH_ERR("received a pkt with the following errors\n");
			ODPH_ERR("    l2_err=%u l3_err=%u l4_err=%u. "
				 "Skipping\n",
				 (rcv_pkt_desc->errors >> 1) & 0x1,
				 (rcv_pkt_desc->errors >> 2) & 0x1,
				 (rcv_pkt_desc->errors >> 3) & 0x1);
		}

		unique_id    = 0;
		rc           = get_unique_id(rcv_pkt, &unique_id, &is_ipv4_pkt);
		if (rc != 0) {
			ODPH_ERR("received a non IPv4/IPv6 pkt\n");
			return -1;
		}

		rcv_pkt_desc->rcv_unique_id = unique_id;
		rcv_pkt_desc->is_ipv4_pkt   = is_ipv4_pkt;
		if (odp_packet_has_udp(rcv_pkt))
			l4_hdr_len = ODPH_UDPHDR_LEN;
		else if (odp_packet_has_tcp(rcv_pkt))
			l4_hdr_len = ODPH_TCPHDR_LEN;
		else
			l4_hdr_len = 0;

		l4_offset     = odp_packet_l4_offset(rcv_pkt);
		app_offset    = l4_offset + l4_hdr_len;
		pkt_class_ptr = odp_packet_offset(rcv_pkt, app_offset,
						  NULL, NULL);
		if (pkt_class_ptr != NULL)
			rcv_pkt_desc->pkt_class = *pkt_class_ptr;

		xmt_pkt_desc = find_matching_xmt_pkt_desc(unique_id);
		if (xmt_pkt_desc != NULL) {
			rcv_pkt_desc->xmt_pkt_desc = xmt_pkt_desc;
			rcv_pkt_desc->matched      = true;

			xmt_time   = xmt_pkt_desc->xmt_time;
			rcv_time   = rcv_pkt_desc->rcv_time;
			pkt_class  = rcv_pkt_desc->pkt_class;
			delta_time = odp_time_diff(rcv_time, xmt_time);
			delta_ns   = odp_time_to_ns(delta_time);

			rcv_pkt_desc->xmt_idx   = xmt_pkt_desc->xmt_idx;
			xmt_pkt_desc->rcv_time  = rcv_time;
			xmt_pkt_desc->delta_ns  = delta_ns;
			xmt_pkt_desc->pkt_class = pkt_class;
			xmt_pkt_desc->was_rcvd  = 1;
		}
	}

	return pkts_rcvd;
}

static void dump_rcvd_pkts(uint32_t first_rcv_idx, uint32_t last_rcv_idx)
{
	rcv_pkt_desc_t *rcv_pkt_desc;
	odp_packet_t    rcv_pkt;
	uint32_t        rcv_idx;
	int32_t         xmt_idx;
	uint16_t        unique_id = 0;
	uint8_t         is_ipv4 = 0;
	int             rc;

	for (rcv_idx = first_rcv_idx; rcv_idx <= last_rcv_idx; rcv_idx++) {
		rcv_pkt      = rcv_pkts[rcv_idx];
		rcv_pkt_desc = &rcv_pkt_descs[rcv_idx];
		rc           = get_unique_id(rcv_pkt, &unique_id, &is_ipv4);
		xmt_idx      = -1;
		if (rcv_pkt_desc->matched)
			xmt_idx = rcv_pkt_desc->xmt_pkt_desc->xmt_idx;

		printf("rcv_idx=%" PRIu32 " odp_pkt=0x%" PRIX64 " "
		       "xmt_idx=%" PRId32 " pkt_class=%u is_ipv4=%u "
		       "unique_id=0x%X (rc=%d)\n",
		       rcv_idx, odp_packet_to_u64(rcv_pkt), xmt_idx,
		       rcv_pkt_desc->pkt_class, is_ipv4, unique_id, rc);
	}
}

static void free_rcvd_pkts(void)
{
	odp_packet_t rcv_pkt;
	uint32_t     rcv_idx;

	/* Go through all of the received pkts and free them. */
	for (rcv_idx = 0; rcv_idx < num_rcv_pkts; rcv_idx++) {
		rcv_pkt = rcv_pkts[rcv_idx];
		if (rcv_pkt != ODP_PACKET_INVALID) {
			odp_packet_free(rcv_pkt);
			rcv_pkts[rcv_idx] = ODP_PACKET_INVALID;
		}
	}
}

static void flush_leftover_pkts(odp_tm_t odp_tm, odp_pktin_queue_t pktin)
{
	odp_packet_t rcv_pkt;
	odp_time_t   start_time, current_time, duration;
	uint64_t     min_timeout_ns, max_timeout_ns, duration_ns;
	int          rc;

	/* Set the timeout to be at least 10 milliseconds and at most 100
	 * milliseconds */
	min_timeout_ns = 10 * ODP_TIME_MSEC_IN_NS;
	max_timeout_ns = 100 * ODP_TIME_MSEC_IN_NS;
	start_time     = odp_time_local();

	while (true) {
		rc = odp_pktin_recv(pktin, &rcv_pkt, 1);
		if (rc == 1)
			odp_packet_free(rcv_pkt);

		current_time = odp_time_local();
		duration     = odp_time_diff(current_time, start_time);
		duration_ns  = odp_time_to_ns(duration);

		if (max_timeout_ns <= duration_ns)
			break;
		else if (duration_ns < min_timeout_ns)
			;
		else if ((odp_tm_is_idle(odp_tm)) && (rc == 0))
			break;

		/* Busy wait here a little bit to prevent overwhelming the
		 * odp_pktin_recv logic. */
		busy_wait(10000);
	}
}

static void init_xmt_pkts(pkt_info_t *pkt_info)
{
	memset(xmt_pkts,      0, sizeof(xmt_pkts));
	memset(xmt_pkt_descs, 0, sizeof(xmt_pkt_descs));
	num_pkts_made = 0;
	num_pkts_sent = 0;

	free_rcvd_pkts();
	memset(rcv_pkts,      0, sizeof(rcv_pkts));
	memset(rcv_pkt_descs, 0, sizeof(rcv_pkt_descs));
	num_rcv_pkts = 0;

	memset(rcv_gaps, 0, sizeof(rcv_gaps));
	rcv_gap_cnt = 0;
	memset(pkt_info, 0, sizeof(pkt_info_t));
	pkt_info->ip_tos = DEFAULT_TOS;
}

static int make_pkts(uint32_t    num_pkts,
		     uint32_t    pkt_len,
		     pkt_info_t *pkt_info)
{
	xmt_pkt_desc_t *xmt_pkt_desc;
	odp_packet_t    odp_pkt;
	uint32_t        l4_hdr_len, l3_hdr_len, vlan_hdr_len, l2_hdr_len;
	uint32_t        hdrs_len, payload_len, idx, unique_id, xmt_pkt_idx;

	l4_hdr_len   = pkt_info->use_tcp  ? ODPH_TCPHDR_LEN  : ODPH_UDPHDR_LEN;
	l3_hdr_len   = pkt_info->use_ipv6 ? ODPH_IPV6HDR_LEN : ODPH_IPV4HDR_LEN;
	vlan_hdr_len = pkt_info->use_vlan ? ODPH_VLANHDR_LEN : 0;
	l2_hdr_len   = ODPH_ETHHDR_LEN + vlan_hdr_len;

	hdrs_len    = l2_hdr_len + l3_hdr_len + l4_hdr_len;
	payload_len = pkt_len - hdrs_len;

	for (idx = 0; idx < num_pkts; idx++) {
		unique_id                   = cpu_unique_id++;
		xmt_pkt_idx                 = num_pkts_made++;
		xmt_pkt_desc                = &xmt_pkt_descs[xmt_pkt_idx];
		xmt_pkt_desc->pkt_len       = pkt_len;
		xmt_pkt_desc->xmt_unique_id = unique_id;
		xmt_pkt_desc->pkt_class     = pkt_info->pkt_class;

		odp_pkt = make_pkt(pools[0], payload_len, unique_id, pkt_info);
		if (odp_pkt == ODP_PACKET_INVALID)
			return -1;

		odp_packet_color_set(odp_pkt, pkt_info->pkt_color);
		odp_packet_drop_eligible_set(odp_pkt, pkt_info->drop_eligible);
		odp_packet_shaper_len_adjust_set(odp_pkt, SHAPER_LEN_ADJ);

		xmt_pkts[xmt_pkt_idx] = odp_pkt;
	}

	return 0;
}

static uint32_t send_pkts_multi(odp_tm_queue_t tm_queue, uint32_t num_pkts)
{
	xmt_pkt_desc_t *xmt_pkt_desc;
	odp_packet_t    odp_pkt;
	uint32_t        xmt_pkt_idx, pkts_sent;
	int64_t         rc, i = 0;

	/* Now send the pkts as fast as we can. RED drops are internally
	 * consumed by odp_tm_enq_multi().
	 */
	xmt_pkt_idx = num_pkts_sent;
	rc = odp_tm_enq_multi(tm_queue, &xmt_pkts[xmt_pkt_idx], num_pkts);
	CU_ASSERT(rc >= 0);
	CU_ASSERT(rc <= num_pkts);

	/* Record consumed packets */
	pkts_sent = 0;
	for (i = 0; i < rc; i++) {
		xmt_pkt_desc = &xmt_pkt_descs[xmt_pkt_idx + i];
		xmt_pkt_desc->xmt_idx = xmt_pkt_idx + i;
		xmt_pkt_desc->xmt_time = odp_time_local();
		xmt_pkt_desc->tm_queue = tm_queue;
		pkts_sent++;
	}

	/* Free rejected pkts */
	for (; i < num_pkts; i++) {
		xmt_pkt_desc = &xmt_pkt_descs[xmt_pkt_idx + i];
		xmt_pkt_desc->xmt_idx = xmt_pkt_idx + i;

		odp_pkt = xmt_pkts[xmt_pkt_idx + i];
		odp_packet_free(odp_pkt);
		xmt_pkts[xmt_pkt_idx + i] = ODP_PACKET_INVALID;
	}
	num_pkts_sent += num_pkts;

	return pkts_sent;
}

static uint32_t send_pkts(odp_tm_queue_t tm_queue, uint32_t num_pkts)
{
	xmt_pkt_desc_t *xmt_pkt_desc;
	odp_packet_t    odp_pkt;
	uint32_t        idx, xmt_pkt_idx, pkts_sent;
	int             rc;

	/* Now send the pkts as fast as we can. */
	pkts_sent = 0;
	for (idx = 0; idx < num_pkts; idx++) {
		xmt_pkt_idx  = num_pkts_sent;
		odp_pkt      = xmt_pkts[xmt_pkt_idx];
		xmt_pkt_desc = &xmt_pkt_descs[xmt_pkt_idx];

		/* Alternate calling with odp_tm_enq and odp_tm_enq_with_cnt */
		if ((idx & 1) == 0) {
			rc = odp_tm_enq(tm_queue, odp_pkt);
			CU_ASSERT(rc <= 0);
		} else {
			rc = odp_tm_enq_with_cnt(tm_queue, odp_pkt);
		}

		xmt_pkt_desc->xmt_idx = xmt_pkt_idx;
		if (0 <= rc) {
			xmt_pkt_desc->xmt_time = odp_time_local();
			xmt_pkt_desc->tm_queue = tm_queue;
			pkts_sent++;
		} else {
			odp_packet_free(odp_pkt);
			xmt_pkts[xmt_pkt_idx] = ODP_PACKET_INVALID;
		}

		num_pkts_sent++;
	}

	return pkts_sent;
}

static uint32_t send_pkts_lso(odp_tm_queue_t tm_queue, uint32_t num_pkts,
			      odp_lso_protocol_t lso_proto, uint32_t max_len)
{
	odp_packet_lso_opt_t lso_opt;
	odp_lso_profile_t profile;
	xmt_pkt_desc_t *xmt_pkt_desc;
	odp_packet_t pkt;
	uint32_t offset, pkts_sent;
	int64_t rc, i, idx;

	pkt = xmt_pkts[0];

	if (lso_proto == ODP_LSO_PROTO_IPV4) {
		profile = lso_ipv4_profile;
		offset  = odp_packet_l4_offset(pkt);
	} else {
		ODPH_ERR("Bad LSO protocol\n");
		return 0;
	}

	lso_opt.lso_profile     = profile;
	lso_opt.payload_offset  = offset;
	lso_opt.max_payload_len = max_len;

	pkts_sent = 0;

	for (i = 0; i < num_pkts; i++) {
		idx = num_pkts_sent + i;
		pkt = xmt_pkts[idx];
		xmt_pkt_desc = &xmt_pkt_descs[idx];

		rc = odp_tm_enq_multi_lso(tm_queue, &pkt, 1, &lso_opt);

		CU_ASSERT(rc == 0 || rc == 1);

		if (rc < 0) {
			ODPH_ERR("Enqueue LSO failed\n");
			num_pkts_sent += i;
			return pkts_sent;
		}

		xmt_pkt_desc->xmt_idx = idx;

		if (rc > 0) {
			/* Record consumed packets */
			xmt_pkt_desc->xmt_time = odp_time_local();
			xmt_pkt_desc->tm_queue = tm_queue;
			pkts_sent++;
		} else {
			/* Free rejected pkts */
			odp_packet_free(pkt);
			xmt_pkts[idx] = ODP_PACKET_INVALID;
		}
	}

	num_pkts_sent += num_pkts;

	return pkts_sent;
}

static uint32_t pkts_rcvd_in_send_order(void)
{
	xmt_pkt_desc_t *xmt_pkt_desc;
	odp_time_t      last_rcv_time, rcv_time;
	uint32_t        xmt_pkt_idx, pkts_rcvd;

	pkts_rcvd     = 0;
	last_rcv_time = ODP_TIME_NULL;
	for (xmt_pkt_idx = 0; xmt_pkt_idx < num_pkts_sent; xmt_pkt_idx++) {
		xmt_pkt_desc = &xmt_pkt_descs[xmt_pkt_idx];
		rcv_time     = xmt_pkt_desc->rcv_time;
		if (xmt_pkt_desc->was_rcvd != 0) {
			if ((pkts_rcvd != 0) &&
			    (odp_time_cmp(rcv_time, last_rcv_time) < 0))
				return 0;

			pkts_rcvd++;
			last_rcv_time = xmt_pkt_desc->rcv_time;
		}
	}

	return pkts_rcvd;
}

static int unique_id_list_idx(uint32_t unique_id,
			      uint32_t unique_id_list[],
			      uint32_t unique_id_list_len)
{
	uint32_t idx;

	for (idx = 0; idx < unique_id_list_len; idx++)
		if (unique_id_list[idx] == unique_id)
			return idx;

	return -1;
}

static uint32_t pkts_rcvd_in_given_order(uint32_t   unique_id_list[],
					 uint32_t   unique_id_list_len,
					 uint8_t    pkt_class,
					 odp_bool_t match_pkt_class,
					 odp_bool_t ignore_pkt_class)
{
	rcv_pkt_desc_t *rcv_pkt_desc;
	odp_bool_t      is_match;
	uint32_t        rcv_pkt_idx, pkts_in_order;
	uint32_t        rcv_unique_id;
	int             last_pkt_idx, pkt_idx;

	pkts_in_order     = 1;
	last_pkt_idx      = -1;
	pkt_idx           = -1;

	for (rcv_pkt_idx = 0; rcv_pkt_idx < num_rcv_pkts; rcv_pkt_idx++) {
		rcv_pkt_desc = &rcv_pkt_descs[rcv_pkt_idx];

		if (ignore_pkt_class)
			is_match = true;
		else if (match_pkt_class)
			is_match = rcv_pkt_desc->pkt_class == pkt_class;
		else
			is_match = rcv_pkt_desc->pkt_class != pkt_class;

		if (is_match) {
			rcv_unique_id = rcv_pkt_desc->rcv_unique_id;
			pkt_idx       = unique_id_list_idx(rcv_unique_id,
							   unique_id_list,
							   unique_id_list_len);
			if (0 <= pkt_idx) {
				if (0 <= last_pkt_idx && last_pkt_idx < pkt_idx)
					pkts_in_order++;

				last_pkt_idx = pkt_idx;
			}
		}
	}

	return pkts_in_order;
}

static inline void record_rcv_gap(odp_time_t rcv_time, odp_time_t last_rcv_time)
{
	odp_time_t delta_time;
	uint64_t   delta_ns;
	uint32_t   rcv_gap;

	rcv_gap = 0;
	if (odp_time_cmp(last_rcv_time, rcv_time) <= 0) {
		delta_time = odp_time_diff(rcv_time, last_rcv_time);
		delta_ns   = odp_time_to_ns(delta_time);
		rcv_gap    = delta_ns / 1000;
	}

	/* Note that rcv_gap is in units of microseconds. */
	rcv_gaps[rcv_gap_cnt++] = rcv_gap;
}

static int rcv_gap_cmp(const void *left_ptr, const void *right_ptr)
{
	uint32_t left_value, right_value;

	left_value  = * (const uint32_t *)left_ptr;
	right_value = * (const uint32_t *)right_ptr;

	if (left_value < right_value)
		return -1;
	else if (left_value == right_value)
		return 0;
	else
		return 1;
}

static inline void calc_rcv_stats(rcv_stats_t *rcv_stats,
				  uint32_t     initial_drop_percent,
				  uint32_t     ending_drop_percent)
{
	uint32_t first_rcv_gap_idx, last_rcv_gap_idx, idx, rcv_gap;

	/* Sort the rcv_gaps, and then drop the outlying x values before doing
	 * doing the rcv stats on the remaining */
	qsort(&rcv_gaps[0], rcv_gap_cnt, sizeof(uint32_t), rcv_gap_cmp);

	/* Next we drop the outlying values before doing doing the rcv stats
	 * on the remaining rcv_gap values.  The number of initial (very low)
	 * rcv_gaps dropped and the number of ending (very high) rcv_gaps
	 * drops is based on the percentages passed in. */
	first_rcv_gap_idx = (rcv_gap_cnt * initial_drop_percent) / 100;
	last_rcv_gap_idx  = (rcv_gap_cnt * (100 - ending_drop_percent)) / 100;
	for (idx = first_rcv_gap_idx; idx <= last_rcv_gap_idx; idx++) {
		rcv_gap                = rcv_gaps[idx];
		rcv_stats->min_rcv_gap = ODPH_MIN(rcv_stats->min_rcv_gap, rcv_gap);
		rcv_stats->max_rcv_gap = ODPH_MAX(rcv_stats->max_rcv_gap, rcv_gap);
		rcv_stats->total_rcv_gap         += rcv_gap;
		rcv_stats->total_rcv_gap_squared += rcv_gap * rcv_gap;
		rcv_stats->num_samples++;
	}
}

static int rcv_rate_stats(rcv_stats_t *rcv_stats, uint8_t pkt_class)
{
	xmt_pkt_desc_t *xmt_pkt_desc;
	odp_time_t      last_rcv_time, rcv_time;
	uint32_t        pkt_idx, pkts_rcvd, num;
	uint32_t        avg, variance, std_dev;

	pkts_rcvd     = 0;
	last_rcv_time = ODP_TIME_NULL;
	memset(rcv_stats, 0, sizeof(rcv_stats_t));
	rcv_stats->min_rcv_gap = 1000000000;

	for (pkt_idx = 0; pkt_idx < num_pkts_sent; pkt_idx++) {
		xmt_pkt_desc = &xmt_pkt_descs[pkt_idx];
		if ((xmt_pkt_desc->was_rcvd != 0) &&
		    (xmt_pkt_desc->pkt_class == pkt_class)) {
			rcv_time = xmt_pkt_desc->rcv_time;
			if (pkts_rcvd != 0)
				record_rcv_gap(rcv_time, last_rcv_time);
			pkts_rcvd++;
			last_rcv_time = rcv_time;
		}
	}

	if (pkts_rcvd == 0)
		return -1;

	calc_rcv_stats(rcv_stats, INITIAL_RCV_GAP_DROP, ENDING_RCV_GAP_DROP);
	num      = rcv_stats->num_samples;
	if (num == 0)
		return -1;

	avg      = rcv_stats->total_rcv_gap / num;
	variance = (rcv_stats->total_rcv_gap_squared / num) - avg * avg;
	std_dev  = (uint32_t)sqrt((double)variance);

	rcv_stats->avg_rcv_gap = avg;
	rcv_stats->std_dev_gap = std_dev;
	return 0;
}

static int create_tm_queue(odp_tm_t         odp_tm,
			   odp_tm_node_t    tm_node,
			   uint32_t         node_idx,
			   tm_queue_desc_t *queue_desc,
			   uint32_t         priority)
{
	odp_tm_queue_params_t queue_params;
	odp_tm_queue_t        tm_queue;
	odp_tm_wred_t         green_profile, yellow_profile, red_profile;
	int                   rc;

	odp_tm_queue_params_init(&queue_params);
	queue_params.priority = priority;
	if (priority == 0) {
		green_profile  = wred_profiles[node_idx][PKT_GREEN];
		yellow_profile = wred_profiles[node_idx][PKT_YELLOW];
		red_profile    = wred_profiles[node_idx][PKT_RED];

		queue_params.shaper_profile    = shaper_profiles[0];
		queue_params.threshold_profile = threshold_profiles[0];
		queue_params.wred_profile[PKT_GREEN]  = green_profile;
		queue_params.wred_profile[PKT_YELLOW] = yellow_profile;
		queue_params.wred_profile[PKT_RED]    = red_profile;
		queue_params.ordered_enqueue          = true;
	}

	tm_queue = odp_tm_queue_create(odp_tm, &queue_params);
	if (tm_queue == ODP_TM_INVALID) {
		ODPH_ERR("odp_tm_queue_create() failed\n");
		return -1;
	}

	queue_desc->tm_queues[priority] = tm_queue;
	rc = odp_tm_queue_connect(tm_queue, tm_node);
	if (rc != 0) {
		ODPH_ERR("odp_tm_queue_connect() failed for queue %" PRIx64
			"\n", odp_tm_queue_to_u64(tm_queue));
		odp_tm_queue_destroy(tm_queue);
		return -1;
	}

	return 0;
}

static int destroy_tm_queue(odp_tm_queue_t tm_queue)
{
	odp_tm_queue_disconnect(tm_queue);
	return odp_tm_queue_destroy(tm_queue);
}

static tm_node_desc_t *create_tm_node(odp_tm_t        odp_tm,
				      uint32_t        level,
				      uint32_t        num_levels,
				      uint32_t        node_idx,
				      tm_node_desc_t *parent_node_desc)
{
	odp_tm_node_params_t  node_params;
	tm_queue_desc_t      *queue_desc;
	tm_node_desc_t       *node_desc;
	odp_tm_wred_t         green_profile, yellow_profile, red_profile;
	odp_tm_node_t         tm_node, parent_node;
	uint32_t              node_desc_size, queue_desc_size, priority;
	char                  node_name[TM_NAME_LEN];
	int                   rc;

	odp_tm_node_params_init(&node_params);
	node_params.shaper_profile           = ODP_TM_INVALID;
	node_params.threshold_profile        = ODP_TM_INVALID;
	node_params.wred_profile[PKT_GREEN]  = ODP_TM_INVALID;
	node_params.wred_profile[PKT_YELLOW] = ODP_TM_INVALID;
	node_params.wred_profile[PKT_RED]    = ODP_TM_INVALID;
	if (node_idx == 0) {
		node_params.shaper_profile    = shaper_profiles[0];
		node_params.threshold_profile = threshold_profiles[0];
		if (level == num_levels) {
			green_profile  = wred_profiles[node_idx][PKT_GREEN];
			yellow_profile = wred_profiles[node_idx][PKT_YELLOW];
			red_profile    = wred_profiles[node_idx][PKT_RED];

			node_params.wred_profile[PKT_GREEN]  = green_profile;
			node_params.wred_profile[PKT_YELLOW] = yellow_profile;
			node_params.wred_profile[PKT_RED]    = red_profile;
		}
	}

	node_params.max_fanin = FANIN_RATIO;
	node_params.level = level;
	/* This is ignored when pkt priority mode is not overwrite */
	node_params.priority = 0;

	if (parent_node_desc == NULL)
		snprintf(node_name, sizeof(node_name), "node_%" PRIu32,
			 node_idx + 1);
	else
		snprintf(node_name, sizeof(node_name), "%s_%" PRIu32,
			 parent_node_desc->node_name, node_idx + 1);

	tm_node = odp_tm_node_create(odp_tm, node_name, &node_params);
	if (tm_node == ODP_TM_INVALID) {
		ODPH_ERR("odp_tm_node_create() failed @ level=%" PRIu32 "\n",
			 level);
		return NULL;
	}

	/* Now connect this node to the lower level "parent" node. */
	if (level == 0 || !parent_node_desc)
		parent_node = ODP_TM_ROOT;
	else
		parent_node = parent_node_desc->node;

	rc = odp_tm_node_connect(tm_node, parent_node);
	if (rc != 0) {
		ODPH_ERR("odp_tm_node_connect() failed @ level=%" PRIu32 "\n",
			 level);
		odp_tm_node_destroy(tm_node);
		return NULL;
	}

	node_desc_size = sizeof(tm_node_desc_t) +
			 sizeof(odp_tm_node_t) * FANIN_RATIO;
	node_desc = malloc(node_desc_size);
	memset(node_desc, 0, node_desc_size);
	node_desc->level = level;
	node_desc->node_idx = node_idx;
	node_desc->num_children = FANIN_RATIO;
	node_desc->node = tm_node;
	node_desc->parent_node = parent_node;
	node_desc->node_name = strdup(node_name);

	/* Finally if the level is the highest then make fanin_ratio tm_queues
	 * feeding this node. */
	if (level < (num_levels - 1))
		return node_desc;

	node_desc->num_children = 0;
	queue_desc_size = sizeof(tm_queue_desc_t) +
			  sizeof(odp_tm_queue_t) * NUM_QUEUES_PER_NODE;
	queue_desc = malloc(queue_desc_size);
	memset(queue_desc, 0, queue_desc_size);
	queue_desc->num_queues = NUM_QUEUES_PER_NODE;
	node_desc->queue_desc = queue_desc;

	for (priority = 0; priority < NUM_QUEUES_PER_NODE; priority++) {
		rc = create_tm_queue(odp_tm, tm_node, node_idx, queue_desc,
				     priority);
		if (rc != 0) {
			ODPH_ERR("create_tm_queue() failed @ "
				 "level=%" PRIu32 "\n", level);
			while (priority > 0)
				(void)destroy_tm_queue
					(queue_desc->tm_queues[--priority]);
			free(queue_desc);
			free(node_desc);
			return NULL;
		}
	}

	return node_desc;
}

static tm_node_desc_t *create_tm_subtree(odp_tm_t        odp_tm,
					 uint32_t        level,
					 uint32_t        num_levels,
					 uint32_t        node_idx,
					 tm_node_desc_t *parent_node)
{
	tm_node_desc_t *node_desc, *child_desc;
	uint32_t        child_idx;

	node_desc = create_tm_node(odp_tm, level, num_levels,
				   node_idx, parent_node);
	if (node_desc == NULL) {
		ODPH_ERR("create_tm_node() failed @ level=%" PRIu32 "\n",
			 level);
		return NULL;
	}

	if (level < (num_levels - 1)) {
		for (child_idx = 0; child_idx < FANIN_RATIO; child_idx++) {
			child_desc = create_tm_subtree(odp_tm, level + 1,
						       num_levels, child_idx,
						       node_desc);
			if (child_desc == NULL) {
				ODPH_ERR("%s failed level=%" PRIu32 "\n",
					 __func__, level);

				return NULL;
			}

			node_desc->children[child_idx] = child_desc;
		}
	}

	return node_desc;
}

static odp_tm_node_t find_tm_node(uint8_t tm_system_idx, const char *node_name)
{
	return odp_tm_node_lookup(odp_tm_systems[tm_system_idx], node_name);
}

static tm_node_desc_t *find_node_desc(uint8_t     tm_system_idx,
				      const char *node_name)
{
	tm_node_desc_t *node_desc;
	uint32_t        child_num;
	char           *name_ptr;

	/* Assume node_name is "node_" followed by a sequence of integers
	 * separated by underscores, where each integer is the child number to
	 * get to the next level node. */
	node_desc = root_node_descs[tm_system_idx];
	name_ptr  = strchr(node_name, '_');
	if (name_ptr == NULL)
		return NULL;

	/* Skip over the first integer */
	name_ptr++;
	name_ptr  = strchr(name_ptr, '_');
	if (name_ptr != NULL)
		name_ptr++;

	while (node_desc != NULL) {
		if (strncmp(node_desc->node_name, node_name, TM_NAME_LEN) == 0)
			return node_desc;

		if (name_ptr == NULL)
			return NULL;

		child_num = atoi(name_ptr);
		if (node_desc->num_children < child_num)
			return NULL;

		node_desc = node_desc->children[child_num - 1];
		name_ptr  = strchr(name_ptr, '_');
		if (name_ptr != NULL)
			name_ptr++;
	}

	return NULL;
}

static odp_tm_queue_t find_tm_queue(uint8_t     tm_system_idx,
				    const char *node_name,
				    uint8_t     priority)
{
	tm_queue_desc_t *queue_desc;
	tm_node_desc_t  *node_desc;

	node_desc = find_node_desc(tm_system_idx, node_name);
	if (node_desc == NULL)
		return ODP_TM_INVALID;

	queue_desc = node_desc->queue_desc;
	if (queue_desc == NULL)
		return ODP_TM_INVALID;

	return queue_desc->tm_queues[priority];
}

static uint32_t find_child_queues(uint8_t         tm_system_idx,
				  tm_node_desc_t *node_desc,
				  uint8_t         priority,
				  odp_tm_queue_t  tm_queues[],
				  uint32_t        max_queues)
{
	tm_queue_desc_t *queue_desc;
	tm_node_desc_t  *child_node_desc;
	uint32_t         num_children, num_queues, child_idx, rem_queues;

	if (max_queues == 0)
		return 0;

	queue_desc = node_desc->queue_desc;
	if (queue_desc != NULL) {
		tm_queues[0] = queue_desc->tm_queues[priority];
		return 1;
	}

	num_children = node_desc->num_children;
	num_queues   = 0;

	for (child_idx = 0; child_idx < num_children; child_idx++) {
		child_node_desc = node_desc->children[child_idx];
		rem_queues  = max_queues - num_queues;
		num_queues += find_child_queues(tm_system_idx, child_node_desc,
						priority,
						&tm_queues[num_queues],
						rem_queues);
		if (num_queues == max_queues)
			break;
	}

	return num_queues;
}

static void
set_reqs_based_on_capas(odp_tm_requirements_t *req)
{
	odp_packet_color_t color;
	int j;

	/* Use tm capabilities identified based on egress capabilities
	 * to see what can be enabled.
	 */
	if (tm_capabilities.ecn_marking_supported)
		req->ecn_marking_needed = true;
	if (tm_capabilities.drop_prec_marking_supported)
		req->drop_prec_marking_needed = true;
	if (tm_capabilities.tm_queue_wred_supported)
		req->tm_queue_wred_needed = true;
	if (tm_capabilities.tm_queue_dual_slope_supported)
		req->tm_queue_dual_slope_needed = true;
	if (tm_capabilities.vlan_marking_supported)
		req->vlan_marking_needed = true;
	if (tm_capabilities.tm_queue_threshold.byte ||
	    tm_capabilities.tm_queue_threshold.packet ||
	    tm_capabilities.tm_queue_threshold.byte_and_packet)
		req->tm_queue_threshold_needed = true;

	for (j = 0; j < tm_capabilities.max_levels; j++) {
		if (tm_capabilities.per_level[j].tm_node_threshold.byte ||
		    tm_capabilities.per_level[j].tm_node_threshold.packet ||
		    tm_capabilities.per_level[j].tm_node_threshold.byte_and_packet)
			req->per_level[j].tm_node_threshold_needed = true;
	}

	/* Mark colors as needed if at least one of the marking
	 * feature is needed.
	 * */
	if (req->ecn_marking_needed || req->drop_prec_marking_needed) {
		for (color = 0; color < ODP_NUM_PACKET_COLORS; color++)
			req->marking_colors_needed[color] = true;
	}

	if (tm_capabilities.tm_queue_shaper_supported ||
	    tm_capabilities.tm_queue_rate_limiter_supported)
		req->tm_queue_shaper_needed = true;

	/* We can use any packet priority mode since it does not affect
	 * our tests. Our scheduler test tests scheduling only in a node
	 * directly connected to TM queues and such nodes see the original
	 * packet priority before it could have been overwritten by any node.
	 */
	req->pkt_prio_mode = ODP_TM_PKT_PRIO_MODE_PRESERVE;
	if (!tm_capabilities.pkt_prio_modes[ODP_TM_PKT_PRIO_MODE_PRESERVE])
		req->pkt_prio_mode = ODP_TM_PKT_PRIO_MODE_OVERWRITE;

}

static int create_tm_system(void)
{
	odp_tm_level_requirements_t *per_level;
	odp_tm_requirements_t        requirements;
	odp_tm_egress_t              egress;
	tm_node_desc_t              *root_node_desc;
	uint32_t                     level, max_nodes[ODP_TM_MAX_LEVELS];
	odp_tm_t                     odp_tm, found_odp_tm;
	char                         tm_name[TM_NAME_LEN];
	int                          rc;

	odp_tm_requirements_init(&requirements);
	odp_tm_egress_init(&egress);

	requirements.max_tm_queues              = NUM_TM_QUEUES;
	requirements.num_levels                 = NUM_LEVELS;

	set_reqs_based_on_capas(&requirements);

	/* Set the max_num_tm_nodes to be double the expected number of nodes
	 * at that level */
	memset(max_nodes, 0, sizeof(max_nodes));
	max_nodes[0] = 2 * NUM_LEVEL0_TM_NODES;
	max_nodes[1] = 2 * NUM_LEVEL1_TM_NODES;
	max_nodes[2] = 2 * NUM_LEVEL2_TM_NODES;
	max_nodes[3] = 2 * NUM_LEVEL2_TM_NODES * FANIN_RATIO;

	for (level = 0; level < NUM_LEVELS; level++) {
		per_level = &requirements.per_level[level];
		per_level->max_priority              = NUM_PRIORITIES - 1;
		per_level->max_num_tm_nodes          = max_nodes[level];
		per_level->max_fanin_per_node        = FANIN_RATIO;
		per_level->tm_node_shaper_needed     = true;
		per_level->tm_node_wred_needed       = false;
		per_level->tm_node_dual_slope_needed = false;
		per_level->fair_queuing_needed       = true;
		per_level->weights_needed            = true;
	}

	egress.egress_kind = ODP_TM_EGRESS_PKT_IO;
	egress.pktio      = xmt_pktio;

	snprintf(tm_name, sizeof(tm_name), "TM_system_%" PRIu32,
		 num_odp_tm_systems);
	odp_tm = odp_tm_create(tm_name, &requirements, &egress);
	CU_ASSERT_FATAL(odp_tm != ODP_TM_INVALID);


	odp_tm_systems[num_odp_tm_systems] = odp_tm;

	root_node_desc = create_tm_subtree(odp_tm, 0, NUM_LEVELS, 0, NULL);
	root_node_descs[num_odp_tm_systems] = root_node_desc;
	if (root_node_desc == NULL) {
		ODPH_ERR("create_tm_subtree() failed\n");
		return -1;
	}

	num_odp_tm_systems++;

	/* Test odp_tm_capability and odp_tm_find. */
	rc = odp_tm_capability(odp_tm, &tm_capabilities);
	if (rc != 0) {
		ODPH_ERR("odp_tm_capability() failed for tm: %" PRIx64 "\n",
			 odp_tm_to_u64(odp_tm));
		return -1;
	}

	/* Update dynamic capability flags from created tm system */
	dynamic_shaper_update = tm_capabilities.dynamic_shaper_update;
	dynamic_sched_update = tm_capabilities.dynamic_sched_update;
	dynamic_threshold_update = tm_capabilities.dynamic_threshold_update;
	dynamic_wred_update = tm_capabilities.dynamic_wred_update;

	found_odp_tm = odp_tm_find(tm_name, &requirements, &egress);
	if ((found_odp_tm == ODP_TM_INVALID) || (found_odp_tm != odp_tm)) {
		ODPH_ERR("odp_tm_find() failed\n");
		return -1;
	}

	/* Start TM system */
	CU_ASSERT((rc = odp_tm_start(odp_tm)) == 0);
	if (rc != 0) {
		ODPH_ERR("odp_tm_start() failed for tm: %" PRIx64 "\n",
			 odp_tm_to_u64(odp_tm));
		return -1;
	}

	return 0;
}

static void dump_tm_subtree(tm_node_desc_t *node_desc)
{
	odp_tm_node_info_t node_info;
	uint32_t           idx, num_queues, child_idx;
	int                rc;

	for (idx = 0; idx < node_desc->level; idx++)
		printf("  ");

	rc = odp_tm_node_info(node_desc->node, &node_info);
	if (rc != 0) {
		ODPH_ERR("odp_tm_node_info failed for tm_node=0x%" PRIX64 "\n",
			 odp_tm_node_to_u64(node_desc->node));
	}

	num_queues = 0;
	if (node_desc->queue_desc != NULL)
		num_queues = node_desc->queue_desc->num_queues;

	printf("node_desc=%p name='%s' tm_node=0x%" PRIX64 " idx=%" PRIu32 " "
	       "level=%" PRIu32" parent=0x%" PRIX64 " children=%" PRIu32 " "
	       "queues=%" PRIu32 " queue_fanin=%" PRIu32 " "
	       "node_fanin=%" PRIu32 "\n",
	       (void *)node_desc, node_desc->node_name,
	       odp_tm_node_to_u64(node_desc->node), node_desc->node_idx,
	       node_desc->level, odp_tm_node_to_u64(node_desc->parent_node),
	       node_desc->num_children, num_queues, node_info.tm_queue_fanin,
	       node_info.tm_node_fanin);

	for (child_idx = 0; child_idx < node_desc->num_children; child_idx++)
		dump_tm_subtree(node_desc->children[child_idx]);
}

static void dump_tm_tree(uint32_t tm_idx)
{
	tm_node_desc_t *root_node_desc;

	if (!TM_DEBUG)
		return;

	root_node_desc = root_node_descs[tm_idx];
	dump_tm_subtree(root_node_desc);
}

static int unconfig_tm_queue_profiles(odp_tm_queue_t tm_queue)
{
	odp_tm_queue_info_t queue_info;
	odp_tm_wred_t       wred_profile;
	uint32_t            color;
	int                 rc;

	rc = odp_tm_queue_info(tm_queue, &queue_info);
	if (rc != 0) {
		ODPH_ERR("odp_tm_queue_info failed code=%d\n", rc);
		return rc;
	}

	if (queue_info.shaper_profile != ODP_TM_INVALID) {
		rc = odp_tm_queue_shaper_config(tm_queue, ODP_TM_INVALID);
		if (rc != 0) {
			ODPH_ERR("odp_tm_queue_shaper_config failed code=%d\n",
				 rc);
			return rc;
		}
	}

	if (queue_info.threshold_profile != ODP_TM_INVALID) {
		rc = odp_tm_queue_threshold_config(tm_queue, ODP_TM_INVALID);
		if (rc != 0) {
			ODPH_ERR("odp_tm_queue_threshold_config failed "
				 "code=%d\n", rc);
			return rc;
		}
	}

	for (color = 0; color < ODP_NUM_PACKET_COLORS; color++) {
		wred_profile = queue_info.wred_profile[color];
		if (wred_profile != ODP_TM_INVALID) {
			rc = odp_tm_queue_wred_config(tm_queue, color,
						      ODP_TM_INVALID);
			if (rc != 0) {
				ODPH_ERR("odp_tm_queue_wred_config failed "
					 "color=%" PRIu32 " code=%d\n",
					color, rc);
				return rc;
			}
		}
	}

	return 0;
}

static int destroy_tm_queues(tm_queue_desc_t *queue_desc)
{
	odp_tm_queue_t tm_queue;
	uint32_t       num_queues, queue_idx;
	int            rc;

	num_queues = queue_desc->num_queues;
	for (queue_idx = 0; queue_idx < num_queues; queue_idx++) {
		tm_queue = queue_desc->tm_queues[queue_idx];
		if (tm_queue != ODP_TM_INVALID) {
			rc = odp_tm_queue_disconnect(tm_queue);
			if (rc != 0) {
				ODPH_ERR("odp_tm_queue_disconnect failed "
					 "idx=%" PRIu32 " code=%d\n",
					queue_idx, rc);
				return rc;
			}

			rc = unconfig_tm_queue_profiles(tm_queue);
			if (rc != 0) {
				ODPH_ERR("unconfig_tm_queue_profiles failed "
					 "idx=%" PRIu32 " code=%d\n",
					queue_idx, rc);
				return rc;
			}

			rc = odp_tm_queue_destroy(tm_queue);
			if (rc != 0) {
				ODPH_ERR("odp_tm_queue_destroy failed "
					 "idx=%" PRIu32 " code=%d\n",
					queue_idx, rc);
				return rc;
			}
		}
	}

	free(queue_desc);
	return 0;
}

static int unconfig_tm_node_profiles(odp_tm_node_t tm_node)
{
	odp_tm_node_info_t node_info;
	odp_tm_wred_t      wred_profile;
	uint32_t           color;
	int                rc;

	rc = odp_tm_node_info(tm_node, &node_info);
	if (rc != 0) {
		ODPH_ERR("odp_tm_node_info failed code=%d\n", rc);
		return rc;
	}

	if (node_info.shaper_profile != ODP_TM_INVALID) {
		rc = odp_tm_node_shaper_config(tm_node, ODP_TM_INVALID);
		if (rc != 0) {
			ODPH_ERR("odp_tm_node_shaper_config failed code=%d\n",
				 rc);
			return rc;
		}
	}

	if (node_info.threshold_profile != ODP_TM_INVALID) {
		rc = odp_tm_node_threshold_config(tm_node, ODP_TM_INVALID);
		if (rc != 0) {
			ODPH_ERR("odp_tm_node_threshold_config failed "
				 "code=%d\n", rc);
			return rc;
		}
	}

	for (color = 0; color < ODP_NUM_PACKET_COLORS; color++) {
		wred_profile = node_info.wred_profile[color];
		if (wred_profile != ODP_TM_INVALID) {
			rc = odp_tm_node_wred_config(tm_node, color,
						     ODP_TM_INVALID);
			if (rc != 0) {
				ODPH_ERR("odp_tm_node_wred_config failed "
					 "color=%" PRIu32 " code=%d\n",
					 color, rc);
				return rc;
			}
		}
	}

	return 0;
}

static int destroy_tm_subtree(tm_node_desc_t *node_desc)
{
	tm_queue_desc_t *queue_desc;
	tm_node_desc_t  *child_desc;
	odp_tm_node_t    tm_node;
	uint32_t         num_children, child_num;
	int              rc;

	num_children = node_desc->num_children;
	for (child_num = 0; child_num < num_children; child_num++) {
		child_desc = node_desc->children[child_num];
		if (child_desc != NULL) {
			rc = destroy_tm_subtree(child_desc);
			if (rc != 0) {
				ODPH_ERR("%s failed child_num=%" PRIu32 " "
					 "code=%d\n", __func__, child_num, rc);
				return rc;
			}
		}
	}

	queue_desc = node_desc->queue_desc;
	if (queue_desc != NULL) {
		rc = destroy_tm_queues(queue_desc);
		if (rc != 0) {
			ODPH_ERR("destroy_tm_queues failed code=%d\n", rc);
			return rc;
		}
	}

	tm_node = node_desc->node;
	rc = odp_tm_node_disconnect(tm_node);
	if (rc != 0) {
		ODPH_ERR("odp_tm_node_disconnect failed code=%d\n", rc);
		return rc;
	}

	rc = unconfig_tm_node_profiles(tm_node);
	if (rc != 0) {
		ODPH_ERR("unconfig_tm_node_profiles failed code=%d\n", rc);
		return rc;
	}

	rc = odp_tm_node_destroy(tm_node);
	if (rc != 0) {
		ODPH_ERR("odp_tm_node_destroy failed code=%d\n", rc);
		return rc;
	}

	if (node_desc->node_name)
		free(node_desc->node_name);

	free(node_desc);
	return 0;
}

static int destroy_all_shaper_profiles(void)
{
	odp_tm_shaper_t shaper_profile;
	uint32_t        idx;
	int             rc;

	for (idx = 0; idx < NUM_SHAPER_PROFILES; idx++) {
		shaper_profile = shaper_profiles[idx];
		if (shaper_profile != ODP_TM_INVALID) {
			rc = odp_tm_shaper_destroy(shaper_profile);
			if (rc != 0) {
				ODPH_ERR("odp_tm_sched_destroy failed "
					 "node=%" PRIx64 " idx=%" PRIu32
					 " code=%d\n",
					 odp_tm_shaper_to_u64(shaper_profile),
					 idx, rc);
				return rc;
			}
			shaper_profiles[idx] = ODP_TM_INVALID;
		}
	}

	return 0;
}

static int destroy_all_sched_profiles(void)
{
	odp_tm_sched_t sched_profile;
	uint32_t       idx;
	int            rc;

	for (idx = 0; idx < NUM_SCHED_PROFILES; idx++) {
		sched_profile = sched_profiles[idx];
		if (sched_profile != ODP_TM_INVALID) {
			rc = odp_tm_sched_destroy(sched_profile);
			if (rc != 0) {
				ODPH_ERR("odp_tm_sched_destroy failed "
					 "node=%" PRIx64 " idx=%" PRIu32
					 " code=%d\n",
					 odp_tm_sched_to_u64(sched_profile),
					 idx, rc);
				return rc;
			}
			sched_profiles[idx] = ODP_TM_INVALID;
		}
	}

	return 0;
}

static int destroy_all_threshold_profiles(void)
{
	odp_tm_threshold_t thr_profile;
	uint32_t           idx;
	int                rc;

	for (idx = 0; idx < NUM_THRESHOLD_PROFILES; idx++) {
		thr_profile = threshold_profiles[idx];
		if (thr_profile != ODP_TM_INVALID) {
			rc = odp_tm_threshold_destroy(thr_profile);
			if (rc != 0) {
				ODPH_ERR("odp_tm_threshold_destroy failed "
					 "node=%" PRIx64 " idx=%" PRIu32
					 " code=%d\n",
					 odp_tm_threshold_to_u64(thr_profile),
					 idx, rc);
				return rc;
			}
			threshold_profiles[idx] = ODP_TM_INVALID;
		}
	}

	return 0;
}

static int destroy_all_wred_profiles(void)
{
	odp_tm_wred_t wred_prof;
	uint32_t      idx, color;
	int           rc;

	for (idx = 0; idx < NUM_WRED_PROFILES; idx++) {
		for (color = 0; color < ODP_NUM_PKT_COLORS; color++) {
			wred_prof = wred_profiles[idx][color];
			if (wred_prof != ODP_TM_INVALID) {
				rc = odp_tm_wred_destroy(wred_prof);
				if (rc != 0) {
					ODPH_ERR("odp_tm_wred_destroy failed "
						 "node=%" PRIx64 " idx=%" PRIu32
						 " color=%" PRIu32 " code=%d\n",
						 odp_tm_wred_to_u64(wred_prof),
						 idx, color, rc);
					return rc;
				}
				wred_profiles[idx][color] = ODP_TM_INVALID;
			}
		}
	}

	return 0;
}

static int destroy_all_profiles(void)
{
	int rc;

	rc = destroy_all_shaper_profiles();
	if (rc != 0) {
		ODPH_ERR("destroy_all_shaper_profiles failed code=%d\n", rc);
		return rc;
	}

	rc = destroy_all_sched_profiles();
	if (rc != 0) {
		ODPH_ERR("destroy_all_sched_profiles failed code=%d\n", rc);
		return rc;
	}

	rc = destroy_all_threshold_profiles();
	if (rc != 0) {
		ODPH_ERR("destroy_all_threshold_profiles failed code=%d\n", rc);
		return rc;
	}

	rc = destroy_all_wred_profiles();
	if (rc != 0) {
		ODPH_ERR("destroy_all_wred_profiles failed code=%d\n", rc);
		return rc;
	}

	return 0;
}

static int destroy_tm_systems(void)
{
	uint32_t idx;

	/* Close/free the TM systems. */
	for (idx = 0; idx < num_odp_tm_systems; idx++) {
		if (odp_tm_stop(odp_tm_systems[idx]) != 0)
			return -1;

		if (destroy_tm_subtree(root_node_descs[idx]) != 0)
			return -1;

		if (odp_tm_destroy(odp_tm_systems[idx]) != 0)
			return -1;

		odp_tm_systems[idx] = ODP_TM_INVALID;
	}

	/* Close/free the TM profiles. */
	if (destroy_all_profiles() != 0)
		return -1;

	return 0;
}

static int traffic_mngr_suite_init(void)
{
	odp_tm_capabilities_t egress_capa;
	uint32_t payload_len, copy_len;
	odp_tm_egress_t egress;
	int j, ret;

	/* Initialize some global variables. */
	num_pkts_made   = 0;
	num_pkts_sent   = 0;
	num_rcv_pkts    = 0;
	cpu_unique_id   = 1;
	cpu_tcp_seq_num = DEFAULT_TCP_SEQ_NUM;
	memset(xmt_pkts, 0, sizeof(xmt_pkts));
	memset(rcv_pkts, 0, sizeof(rcv_pkts));

	payload_len = 0;
	while (payload_len < MAX_PAYLOAD) {
		copy_len = ODPH_MIN(MAX_PAYLOAD - payload_len, sizeof(ALPHABET));
		memcpy(&payload_data[payload_len], ALPHABET, copy_len);
		payload_len += copy_len;
	}

	/* Next open a single or pair of interfaces.  This should be the same
	 * logic as in the pktio_suite_init() function in the
	 * test/validation/pktio.c file. */
	iface_name[0] = getenv("ODP_PKTIO_IF0");
	iface_name[1] = getenv("ODP_PKTIO_IF1");
	num_ifaces = 1;

	if (!iface_name[0]) {
		printf("No interfaces specified, using default \"loop\".\n");
		iface_name[0] = "loop";
	} else if (!iface_name[1]) {
		printf("Using loopback interface: %s\n", iface_name[0]);
	} else {
		num_ifaces = 2;
		printf("Using paired interfaces: %s %s\n",
		       iface_name[0], iface_name[1]);
	}

	pktios[0] = ODP_PKTIO_INVALID;
	pktios[1] = ODP_PKTIO_INVALID;

	ret = open_pktios();
	if (ret < 0)
		return -1;

	/* Positive return indicates, that pktio open failed with out mode as TM
	 * but succeeded with direct mode.
	 */
	if (ret > 0)
		goto skip_tests;

	odp_tm_egress_init(&egress);
	egress.egress_kind = ODP_TM_EGRESS_PKT_IO;
	egress.pktio = xmt_pktio;

	/* Get TM capabilities */
	ret = odp_tm_egress_capabilities(&egress_capa, &egress);
	if (ret) {
		ODPH_ERR("Failed to retrieve tm capabilities");
		return ret;
	}

	/* Check for sufficient TM queues */
	if (egress_capa.max_tm_queues < NUM_TM_QUEUES)
		goto skip_tests;

	/* Check for sufficient TM levels */
	if (egress_capa.max_levels < NUM_LEVELS)
		goto skip_tests;

	tm_shaper_min_rate = egress_capa.per_level[0].min_rate;
	tm_shaper_max_rate = egress_capa.per_level[0].max_rate;
	tm_shaper_min_burst = egress_capa.per_level[0].min_burst;
	tm_shaper_max_burst = egress_capa.per_level[0].max_burst;

	for (j = 0; j < NUM_LEVELS; j++) {
		odp_tm_level_capabilities_t *per_level =
			&egress_capa.per_level[j];

		/* Per node fanin */
		if (per_level->max_fanin_per_node < FANIN_RATIO)
			break;

		if (j == 0)
			continue;

		if (per_level->min_rate > tm_shaper_min_rate)
			tm_shaper_min_rate = per_level->min_rate;

		if (per_level->min_burst > tm_shaper_min_burst)
			tm_shaper_min_burst = per_level->min_burst;

		if (per_level->max_rate < tm_shaper_max_rate)
			tm_shaper_max_rate = per_level->max_rate;

		if (per_level->max_burst < tm_shaper_max_burst)
			tm_shaper_max_burst = per_level->max_burst;
	}

	if (tm_shaper_min_rate > tm_shaper_max_rate ||
	    tm_shaper_min_burst > tm_shaper_max_burst)
		goto skip_tests;

	if (j != NUM_LEVELS)
		goto skip_tests;

	if (egress_capa.pkt_prio_modes[ODP_TM_PKT_PRIO_MODE_PRESERVE] &&
	    egress_capa.max_schedulers_per_node < NUM_QUEUES_PER_NODE)
		goto skip_tests;

	if (!egress_capa.pkt_prio_modes[ODP_TM_PKT_PRIO_MODE_PRESERVE] &&
	    egress_capa.max_schedulers_per_node < 1)
		goto skip_tests;

	/* Init tm capabilities with matching egress capa until tm is created */
	tm_capabilities = egress_capa;

	if (!tm_capabilities.dynamic_shaper_update)
		dynamic_shaper_update = false;

	if (!tm_capabilities.dynamic_sched_update)
		dynamic_sched_update = false;

	if (!tm_capabilities.dynamic_threshold_update)
		dynamic_threshold_update = false;

	if (!tm_capabilities.dynamic_wred_update)
		dynamic_wred_update = false;

	return 0;
skip_tests:
	/* Mark all tests as inactive under this suite */
	odp_cunit_set_inactive();
	suite_inactive++;
	return 0;
}

static int traffic_mngr_suite_term(void)
{
	uint32_t iface;

	/* Close the pktios and associated packet pools. */
	free_rcvd_pkts();
	for (iface = 0; iface < num_ifaces; iface++) {
		/* Skip pktios not initialized */
		if (pktios[iface] != ODP_PKTIO_INVALID) {
			if (pktio_started[iface] &&
			    odp_pktio_stop(pktios[iface]) != 0)
				return -1;

			if (odp_pktio_close(pktios[iface]) != 0)
				return -1;
			pktios[iface] = ODP_PKTIO_INVALID;
			pktio_started[iface] = false;
		}

		if (odp_pool_destroy(pools[iface]) != 0)
			return -1;

		pools[iface] = ODP_POOL_INVALID;
	}

	if (odp_cunit_print_inactive())
		return -1;

	return 0;
}

static void check_shaper_profile(char *shaper_name, uint32_t shaper_idx)
{
	odp_tm_shaper_params_t shaper_params;
	odp_tm_shaper_t        profile;
	int		       rc;

	profile = odp_tm_shaper_lookup(shaper_name);
	CU_ASSERT(profile != ODP_TM_INVALID);
	CU_ASSERT(profile == shaper_profiles[shaper_idx - 1]);
	if (profile != shaper_profiles[shaper_idx - 1])
		return;

	memset(&shaper_params, 0, sizeof(shaper_params));
	rc = odp_tm_shaper_params_read(profile, &shaper_params);
	CU_ASSERT(rc == 0);
	CU_ASSERT(approx_eq64(shaper_params.commit_rate,
			      clamp_rate(shaper_idx * MIN_COMMIT_BW)));
	CU_ASSERT(approx_eq64(shaper_params.peak_rate,
			      clamp_rate(shaper_idx * MIN_PEAK_BW)));
	CU_ASSERT(approx_eq32(shaper_params.commit_burst,
			      clamp_burst(shaper_idx * MIN_COMMIT_BURST)));
	CU_ASSERT(approx_eq32(shaper_params.peak_burst,
			      clamp_burst(shaper_idx * MIN_PEAK_BURST)));

	CU_ASSERT(shaper_params.shaper_len_adjust == SHAPER_LEN_ADJ);
	CU_ASSERT(shaper_params.dual_rate         == true);
}

static void traffic_mngr_test_shaper_profile(void)
{
	odp_tm_shaper_params_t shaper_params;
	odp_tm_shaper_t        profile;
	uint32_t               idx, shaper_idx, i;
	char                   shaper_name[TM_NAME_LEN];

	odp_tm_shaper_params_init(&shaper_params);
	shaper_params.shaper_len_adjust = SHAPER_LEN_ADJ;
	shaper_params.dual_rate         = true;

	for (idx = 1; idx <= NUM_SHAPER_TEST_PROFILES; idx++) {
		snprintf(shaper_name, sizeof(shaper_name),
			 "shaper_profile_%" PRIu32, idx);
		shaper_params.commit_rate  = clamp_rate(idx * MIN_COMMIT_BW);
		shaper_params.peak_rate    = clamp_rate(idx * MIN_PEAK_BW);
		shaper_params.commit_burst = clamp_burst(idx * MIN_COMMIT_BURST);
		shaper_params.peak_burst   = clamp_burst(idx * MIN_PEAK_BURST);

		profile = odp_tm_shaper_create(shaper_name, &shaper_params);
		CU_ASSERT_FATAL(profile != ODP_TM_INVALID);

		/* Make sure profile handle is unique */
		for (i = 1; i < idx - 1; i++)
			CU_ASSERT(profile != shaper_profiles[i - 1]);

		shaper_profiles[idx - 1] = profile;
		num_shaper_profiles++;
	}

	/* Now test odp_tm_shaper_lookup */
	for (idx = 1; idx <= NUM_SHAPER_TEST_PROFILES; idx++) {
		/* The following equation is designed is somewhat randomize
		 * the lookup of the profiles to catch any implementations
		 *taking shortcuts. */
		shaper_idx = ((3 + 7 * idx) % NUM_SHAPER_TEST_PROFILES) + 1;
		snprintf(shaper_name, sizeof(shaper_name),
			 "shaper_profile_%" PRIu32, shaper_idx);

		check_shaper_profile(shaper_name, shaper_idx);
	}
}

static void check_sched_profile(char *sched_name, uint32_t sched_idx)
{
	odp_tm_sched_params_t sched_params;
	odp_tm_sched_t        profile;
	uint32_t              priority;

	profile = odp_tm_sched_lookup(sched_name);
	CU_ASSERT(profile != ODP_TM_INVALID);
	CU_ASSERT(profile == sched_profiles[sched_idx - 1]);
	if (profile != sched_profiles[sched_idx - 1])
		return;

	odp_tm_sched_params_read(profile, &sched_params);
	for (priority = 0; priority < NUM_PRIORITIES; priority++) {
		CU_ASSERT(sched_params.sched_modes[priority] ==
			  ODP_TM_BYTE_BASED_WEIGHTS);
		CU_ASSERT(approx_eq32(sched_params.sched_weights[priority],
				      8 + sched_idx + priority));
	}
}

static void traffic_mngr_test_sched_profile(void)
{
	odp_tm_sched_params_t sched_params;
	odp_tm_sched_t        profile;
	uint32_t              idx, priority, sched_idx, i;
	char                  sched_name[TM_NAME_LEN];

	odp_tm_sched_params_init(&sched_params);

	for (idx = 1; idx <= NUM_SCHED_TEST_PROFILES; idx++) {
		snprintf(sched_name, sizeof(sched_name),
			 "sched_profile_%" PRIu32, idx);
		for (priority = 0; priority < ODP_TM_MAX_PRIORITIES; priority++) {
			sched_params.sched_modes[priority] =
				ODP_TM_BYTE_BASED_WEIGHTS;
			sched_params.sched_weights[priority] = 8 + idx +
							       priority;
		}

		profile = odp_tm_sched_create(sched_name, &sched_params);
		CU_ASSERT_FATAL(profile != ODP_TM_INVALID);

		/* Make sure profile handle is unique */
		for (i = 1; i < idx - 1; i++)
			CU_ASSERT(profile != sched_profiles[i - 1]);

		sched_profiles[idx - 1] = profile;
		num_sched_profiles++;
	}

	/* Now test odp_tm_sched_lookup */
	for (idx = 1; idx <= NUM_SCHED_TEST_PROFILES; idx++) {
		/* The following equation is designed is somewhat randomize
		 * the lookup of the profiles to catch any implementations
		 * taking shortcuts. */
		sched_idx = ((3 + 7 * idx) % NUM_SCHED_TEST_PROFILES) + 1;
		snprintf(sched_name, sizeof(sched_name),
			 "sched_profile_%" PRIu32, sched_idx);
		check_sched_profile(sched_name, sched_idx);
	}
}

static void check_threshold_profile(char    *threshold_name,
				    uint32_t threshold_idx,
				    threshold_type_t threshold)
{
	odp_tm_threshold_params_t threshold_params;
	odp_tm_threshold_t        profile;
	int ret;

	profile = odp_tm_thresholds_lookup(threshold_name);
	CU_ASSERT(profile != ODP_TM_INVALID);
	CU_ASSERT(profile == threshold_profiles[threshold_idx - 1]);

	if (profile == threshold_profiles[threshold_idx - 1])
		return;

	ret = odp_tm_thresholds_params_read(profile, &threshold_params);
	CU_ASSERT(ret == 0);

	if (ret)
		return;

	if (threshold == THRESHOLD_PACKET || threshold == THRESHOLD_BYTE_AND_PACKET) {
		CU_ASSERT(threshold_params.enable_max_pkts  == 1);
		CU_ASSERT(threshold_params.max_pkts  == threshold_idx * MIN_PKT_THRESHOLD);
	}
	if (threshold == THRESHOLD_BYTE || threshold == THRESHOLD_BYTE_AND_PACKET) {
		CU_ASSERT(threshold_params.enable_max_bytes == 1);
		CU_ASSERT(threshold_params.max_bytes == threshold_idx * MIN_BYTE_THRESHOLD);
	}
}

static void traffic_mngr_test_threshold_profile(threshold_type_t threshold)
{
	odp_tm_threshold_params_t threshold_params;
	odp_tm_threshold_t        profile;
	uint32_t                  idx, threshold_idx, i;
	char                      threshold_name[TM_NAME_LEN];

	odp_tm_threshold_params_init(&threshold_params);

	if (threshold == THRESHOLD_PACKET || threshold == THRESHOLD_BYTE_AND_PACKET)
		threshold_params.enable_max_pkts  = 1;
	if (threshold == THRESHOLD_BYTE || threshold == THRESHOLD_BYTE_AND_PACKET)
		threshold_params.enable_max_bytes = 1;

	for (idx = 1; idx <= NUM_THRESH_TEST_PROFILES; idx++) {
		snprintf(threshold_name, sizeof(threshold_name),
			 "threshold_profile_%" PRIu32, idx);
		if (threshold == THRESHOLD_PACKET || threshold == THRESHOLD_BYTE_AND_PACKET)
			threshold_params.max_pkts = idx * MIN_PKT_THRESHOLD;
		if (threshold == THRESHOLD_BYTE || threshold == THRESHOLD_BYTE_AND_PACKET)
			threshold_params.max_bytes = idx * MIN_BYTE_THRESHOLD;

		profile = odp_tm_threshold_create(threshold_name,
						  &threshold_params);
		CU_ASSERT_FATAL(profile != ODP_TM_INVALID);

		/* Make sure profile handle is unique */
		for (i = 1; i < idx - 1; i++)
			CU_ASSERT(profile != threshold_profiles[i - 1]);

		threshold_profiles[idx - 1] = profile;
		num_threshold_profiles++;
	}

	/* Now test odp_tm_threshold_lookup */
	for (idx = 1; idx <= NUM_THRESH_TEST_PROFILES; idx++) {
		/* The following equation is designed is somewhat randomize
		 * the lookup of the profiles to catch any implementations
		 * taking shortcuts. */
		threshold_idx = ((3 + 7 * idx) % NUM_THRESH_TEST_PROFILES) + 1;
		snprintf(threshold_name, sizeof(threshold_name),
			 "threshold_profile_%" PRIu32, threshold_idx);
		check_threshold_profile(threshold_name, threshold_idx, threshold);
	}

	for (i = 0; i < NUM_THRESH_TEST_PROFILES; i++) {
		CU_ASSERT(odp_tm_threshold_destroy(threshold_profiles[i]) == 0);
		num_threshold_profiles--;
	}
}

static void traffic_mngr_test_threshold_profile_byte(void)
{
	traffic_mngr_test_threshold_profile(THRESHOLD_BYTE);
}

static void traffic_mngr_test_threshold_profile_packet(void)
{
	traffic_mngr_test_threshold_profile(THRESHOLD_PACKET);
}

static void traffic_mngr_test_threshold_profile_byte_and_packet(void)
{
	traffic_mngr_test_threshold_profile(THRESHOLD_BYTE_AND_PACKET);
}

static void check_wred_profile(char    *wred_name,
			       uint32_t wred_idx,
			       uint32_t color)
{
	odp_tm_wred_params_t wred_params;
	odp_tm_wred_t        profile;
	int ret;

	profile = odp_tm_wred_lookup(wred_name);
	CU_ASSERT(profile != ODP_TM_INVALID);
	CU_ASSERT(profile == wred_profiles[wred_idx - 1][color]);
	if (profile != wred_profiles[wred_idx - 1][color])
		return;

	ret = odp_tm_wred_params_read(profile, &wred_params);
	CU_ASSERT(ret == 0);

	if (ret)
		return;

	CU_ASSERT(wred_params.min_threshold == wred_idx * MIN_WRED_THRESH);
	CU_ASSERT(wred_params.med_threshold == wred_idx * MED_WRED_THRESH);
	CU_ASSERT(wred_params.med_drop_prob == wred_idx * MED_DROP_PROB);
	CU_ASSERT(wred_params.max_drop_prob == wred_idx * MAX_DROP_PROB);

	CU_ASSERT(wred_params.enable_wred       == 1);
	CU_ASSERT(wred_params.use_byte_fullness == 0);
}

static void traffic_mngr_test_wred_profile(void)
{
	odp_tm_wred_params_t wred_params;
	odp_tm_wred_t        profile;
	uint32_t             idx, color, wred_idx, i, c;
	char                 wred_name[TM_NAME_LEN];

	odp_tm_wred_params_init(&wred_params);
	wred_params.enable_wred       = 1;
	wred_params.use_byte_fullness = 0;

	for (idx = 1; idx <= NUM_WRED_TEST_PROFILES; idx++) {
		for (color = 0; color < ODP_NUM_PKT_COLORS; color++) {
			snprintf(wred_name, sizeof(wred_name),
				 "wred_profile_%" PRIu32 "_%" PRIu32,
				 idx, color);
			wred_params.min_threshold = idx * MIN_WRED_THRESH;
			wred_params.med_threshold = idx * MED_WRED_THRESH;
			wred_params.med_drop_prob = idx * MED_DROP_PROB;
			wred_params.max_drop_prob = idx * MAX_DROP_PROB;

			profile = odp_tm_wred_create(wred_name, &wred_params);
			CU_ASSERT_FATAL(profile != ODP_TM_INVALID);

			/* Make sure profile handle is unique */
			for (i = 1; i < idx - 1; i++)
				for (c = 0; c < ODP_NUM_PKT_COLORS; c++)
					CU_ASSERT(profile !=
						  wred_profiles[i - 1][c]);

			wred_profiles[idx - 1][color] = profile;
		}

		num_wred_profiles++;
	}

	/* Now test odp_tm_wred_lookup */
	for (idx = 1; idx <= NUM_WRED_TEST_PROFILES; idx++) {
		/* The following equation is designed is somewhat randomize
		 * the lookup of the profiles to catch any implementations
		 * taking shortcuts. */
		wred_idx = ((3 + 7 * idx) % NUM_WRED_TEST_PROFILES) + 1;

		for (color = 0; color < ODP_NUM_PKT_COLORS; color++) {
			snprintf(wred_name, sizeof(wred_name),
				 "wred_profile_%" PRIu32 "_%" PRIu32,
				 wred_idx, color);
			check_wred_profile(wred_name, wred_idx, color);
		}
	}
}

static int set_shaper(const char    *node_name,
		      const char    *shaper_name,
		      uint64_t      commit_bps,
		      uint64_t      commit_burst_in_bits)
{
	odp_tm_shaper_params_t shaper_params;
	odp_tm_shaper_t        shaper_profile;
	odp_tm_node_t          tm_node;
	int rc;

	commit_bps = clamp_rate(commit_bps);
	commit_burst_in_bits = clamp_burst(commit_burst_in_bits);

	tm_node = find_tm_node(0, node_name);
	if (tm_node == ODP_TM_INVALID) {
		ODPH_ERR("find_tm_node(%s) failed\n", node_name);
		CU_ASSERT_FATAL(tm_node != ODP_TM_INVALID);
		return -1;
	}

	odp_tm_shaper_params_init(&shaper_params);
	shaper_params.commit_rate       = commit_bps;
	shaper_params.peak_rate         = 0;
	shaper_params.commit_burst      = commit_burst_in_bits;
	shaper_params.peak_burst        = 0;
	shaper_params.shaper_len_adjust = 0;
	shaper_params.dual_rate         = 0;

	if (!dynamic_shaper_update) {
		/* Stop TM system before update when dynamic update is not
		 * supported.
		 */
		CU_ASSERT_FATAL(odp_tm_stop(odp_tm_systems[0]) == 0);
	}

	if (!shaper_name) {
		shaper_profile = ODP_TM_INVALID;
		goto skip_profile;
	}

	/* First see if a shaper profile already exists with this name, in
	 * which case we use that profile, else create a new one. */
	shaper_profile = odp_tm_shaper_lookup(shaper_name);
	if (shaper_profile != ODP_TM_INVALID) {
		odp_tm_shaper_params_update(shaper_profile, &shaper_params);
	} else {
		shaper_profile = odp_tm_shaper_create(shaper_name,
						      &shaper_params);
		shaper_profiles[num_shaper_profiles] = shaper_profile;
		num_shaper_profiles++;
	}

skip_profile:
	rc = odp_tm_node_shaper_config(tm_node, shaper_profile);

	if (!dynamic_shaper_update) {
		/* Start TM system, post update */
		CU_ASSERT_FATAL(odp_tm_start(odp_tm_systems[0]) == 0);
	}
	return rc;
}

static int traffic_mngr_check_shaper(void)
{
	odp_cpumask_t cpumask;
	int cpucount = odp_cpumask_all_available(&cpumask);

/* Skip the shaper test on arm64 systems */
#if defined(__aarch64__)
	printf("\nTemporarily skip shaper test which intermittently "
	       "fails on arm64 systems. Will be activated when issue "
	       "is resolved\n");
	return ODP_TEST_INACTIVE;
#endif

	if (cpucount < 2) {
		ODPH_DBG("\nSkipping shaper test because cpucount = %d "
			 "is less then min number 2 required\n", cpucount);
		ODPH_DBG("Rerun with more cpu resources\n");
		return ODP_TEST_INACTIVE;
	}

	/* This test needs 1 Mbps, 4 Mbps, 10 Mpbs, 40 Mbps, 100 Mbps */
	if ((tm_shaper_min_rate > 100 * MBPS) || (tm_shaper_max_rate < 1 * MBPS))
		return ODP_TEST_INACTIVE;

	/* All the subtests run with burst of 10000 bits */
	if ((tm_shaper_min_burst > 10000) || tm_shaper_max_burst < 10000)
		return ODP_TEST_INACTIVE;

	return ODP_TEST_ACTIVE;
}

static int traffic_mngr_check_scheduler(void)
{
	odp_cpumask_t cpumask;
	int cpucount = odp_cpumask_all_available(&cpumask);

	if (cpucount < 2) {
		ODPH_DBG("\nSkipping scheduler test because cpucount = %d "
			 "is less then min number 2 required\n", cpucount);
		ODPH_DBG("Rerun with more cpu resources\n");
		return ODP_TEST_INACTIVE;
	}

	/* Scheduler test test_sched_queue_priority() depends on rate of
	 * 64 Kbps and burst of 5600.
	 */
	if ((tm_shaper_min_rate > 64 * 1000) ||
	    (tm_shaper_max_rate < 64 * 1000) ||
	    (tm_shaper_min_burst > 5600) ||
	    (tm_shaper_max_burst < 5600))
		return ODP_TEST_INACTIVE;

	return ODP_TEST_ACTIVE;
}

static int test_shaper_bw(const char *shaper_name,
			  const char *node_name,
			  uint8_t     priority,
			  uint64_t    commit_bps)
{
	odp_tm_queue_t tm_queue;
	rcv_stats_t    rcv_stats;
	pkt_info_t     pkt_info;
	uint64_t       expected_rcv_gap_us;
	uint32_t       num_pkts, pkt_len, pkts_rcvd_in_order, avg_rcv_gap;
	uint32_t       min_rcv_gap, max_rcv_gap, pkts_sent;
	int            rc, ret_code;

	/* This test can support a commit_bps from 64K to 2 Gbps and possibly
	 * up to a max of 10 Gbps, but no higher. */
	CU_ASSERT_FATAL(commit_bps <= (10ULL * 1000000000ULL));

	/* Pick a tm_queue and set the parent node's shaper BW to be commit_bps
	 * with a small burst tolerance.  Then send the traffic with a pkt_len
	 * such that the pkt start time to next pkt start time is 10,000 bit
	* times and then measure the average inter-arrival receive "gap" in
	 * microseconds. */
	tm_queue = find_tm_queue(0, node_name, priority);
	if (set_shaper(node_name, shaper_name, commit_bps, 10000) != 0)
		return -1;

	init_xmt_pkts(&pkt_info);
	num_pkts           = 50;
	pkt_len            = (10000 / 8) - (ETHERNET_OVHD_LEN + CRC_LEN);
	pkt_info.pkt_class = 1;
	if (make_pkts(num_pkts, pkt_len, &pkt_info) != 0)
		return -1;

	pkts_sent = send_pkts(tm_queue, num_pkts);

	/* The expected inter arrival receive gap in seconds is equal to
	 * "10,000 bits / commit_bps".  To get the gap time in microseconds
	 * we multiply this by one million.  The timeout we use is 50 times
	 * this gap time (since we send 50 pkts) multiplied by 4 to be
	 * conservative, plus a constant time of 1 millisecond to account for
	 * testing delays.  This then needs to be expressed in nanoseconds by
	 * multiplying by 1000. */
	expected_rcv_gap_us = (1000000ULL * 10000ULL) / commit_bps;
	num_rcv_pkts = receive_pkts(odp_tm_systems[0], rcv_pktin, pkts_sent,
				    commit_bps);
	pkts_rcvd_in_order = pkts_rcvd_in_send_order();
	ret_code = -1;

	/* First verify that MOST of the pkts were received in any order. */
	if (num_rcv_pkts <= (pkts_sent / 2)) {
		/* This is fairly major failure in that most of the pkts didn't
		 * even get received, regardless of rate or order. Log the error
		 * to assist with debugging */
		ODPH_ERR("Sent %" PRIu32 " pkts but only %" PRIu32 " "
			 "came back\n", pkts_sent, num_rcv_pkts);
		CU_ASSERT(num_rcv_pkts <= (pkts_sent / 2));
	} else if (pkts_rcvd_in_order <= 32) {
		ODPH_ERR("Sent %" PRIu32 " pkts but only %" PRIu32 " "
			 "came back (%" PRIu32 " in order)\n",
			 pkts_sent, num_rcv_pkts, pkts_rcvd_in_order);
		CU_ASSERT(pkts_rcvd_in_order <= 32);
	} else {
		if (pkts_rcvd_in_order < pkts_sent)
			ODPH_DBG("Info: of %" PRIu32 " pkts sent %" PRIu32 " "
				 "came back (%" PRIu32 " in order)\n",
				 pkts_sent, num_rcv_pkts, pkts_rcvd_in_order);

		/* Next determine the inter arrival receive pkt statistics. */
		rc = rcv_rate_stats(&rcv_stats, pkt_info.pkt_class);
		CU_ASSERT(rc == 0);

		/* Next verify that the rcvd pkts have an average inter-receive
		 * gap of "expected_rcv_gap_us" microseconds, +/- 25%. */
		avg_rcv_gap = rcv_stats.avg_rcv_gap;
		min_rcv_gap = ((MIN_SHAPER_BW_RCV_GAP * expected_rcv_gap_us) /
					100) - 2;
		max_rcv_gap = ((MAX_SHAPER_BW_RCV_GAP * expected_rcv_gap_us) /
					100) + 2;
		if ((avg_rcv_gap < min_rcv_gap) ||
		    (max_rcv_gap < avg_rcv_gap)) {
			ODPH_ERR("min=%" PRIu32 " avg_rcv_gap=%" PRIu32 " "
				 "max=%" PRIu32 " std_dev_gap=%" PRIu32 "\n",
				 rcv_stats.min_rcv_gap, avg_rcv_gap,
				 rcv_stats.max_rcv_gap, rcv_stats.std_dev_gap);
			ODPH_ERR("  expected_rcv_gap=%" PRIu64 " acceptable "
				 "rcv_gap range=%" PRIu32 "..%" PRIu32 "\n",
				 expected_rcv_gap_us, min_rcv_gap, max_rcv_gap);
			ODPH_ERR("agv_rcv_gap=%" PRIu32 " acceptable "
				 "rcv_gap range=%" PRIu32 "..%" PRIu32 "\n",
				 avg_rcv_gap, min_rcv_gap, max_rcv_gap);
			ret_code = -1;
		} else if (expected_rcv_gap_us < rcv_stats.std_dev_gap) {
			ODPH_ERR("min=%" PRIu32 " avg_rcv_gap=%" PRIu32 " "
				 "max=%" PRIu32 " std_dev_gap=%" PRIu32 "\n",
				 rcv_stats.min_rcv_gap, avg_rcv_gap,
				 rcv_stats.max_rcv_gap, rcv_stats.std_dev_gap);
			ODPH_ERR("  expected_rcv_gap=%" PRIu64 " acceptable "
				 "rcv_gap range=%" PRIu32 "..%" PRIu32 "\n",
				 expected_rcv_gap_us, min_rcv_gap, max_rcv_gap);
			ODPH_ERR("std_dev_gap=%" PRIu32 " >  "
				 "expected_rcv_gap_us=%" PRIu64 "\n",
				 rcv_stats.std_dev_gap, expected_rcv_gap_us);
			ret_code = -1;
		} else {
			ret_code = 0;
		}
	}

	/* Disable the shaper, so as to get the pkts out quicker. */
	set_shaper(node_name, NULL, 0, 0);
	flush_leftover_pkts(odp_tm_systems[0], rcv_pktin);
	CU_ASSERT(odp_tm_is_idle(odp_tm_systems[0]));
	return ret_code;
}

static int set_sched_fanin(const char         *node_name,
			   const char         *sched_base_name,
			   odp_tm_sched_mode_t sched_mode,
			   uint8_t             sched_weights[FANIN_RATIO])
{
	odp_tm_sched_params_t sched_params;
	odp_tm_sched_t        sched_profile;
	tm_node_desc_t       *node_desc, *child_desc;
	odp_tm_node_t         tm_node, fanin_node;
	uint32_t              fanin_cnt, fanin, priority;
	uint8_t               sched_weight;
	char                  sched_name[TM_NAME_LEN];
	int                   rc;

	node_desc = find_node_desc(0, node_name);
	if (node_desc == NULL)
		return -1;

	if (!dynamic_sched_update) {
		/* Stop TM system before update when dynamic update is not
		 * supported.
		 */
		CU_ASSERT_FATAL(odp_tm_stop(odp_tm_systems[0]) == 0);
	}

	fanin_cnt = ODPH_MIN(node_desc->num_children, FANIN_RATIO);
	for (fanin = 0; fanin < fanin_cnt; fanin++) {
		odp_tm_sched_params_init(&sched_params);
		sched_weight = sched_weights[fanin];

		/* Set the weights and mode the same for all priorities */
		for (priority = 0; priority < NUM_PRIORITIES; priority++) {
			sched_params.sched_modes[priority]   = sched_mode;
			sched_params.sched_weights[priority] = sched_weight;
		}

		/* Create the scheduler profile name using the sched_base_name
		 * and the fanin index */
		snprintf(sched_name, sizeof(sched_name), "%s_%" PRIu32,
			 sched_base_name, fanin);

		/* First see if a sched profile already exists with this name,
		 * in which case we use that profile, else create a new one. */
		sched_profile = odp_tm_sched_lookup(sched_name);
		if (sched_profile != ODP_TM_INVALID) {
			odp_tm_sched_params_update(sched_profile,
						   &sched_params);
		} else {
			sched_profile = odp_tm_sched_create(sched_name,
							    &sched_params);
			sched_profiles[num_sched_profiles] = sched_profile;
			num_sched_profiles++;
		}

		/* Apply the weights to the nodes fan-in. */
		child_desc = node_desc->children[fanin];
		tm_node    = node_desc->node;
		fanin_node = child_desc->node;
		rc = odp_tm_node_sched_config(tm_node, fanin_node,
					      sched_profile);
		if (rc != 0)
			goto exit;
	}

exit:
	if (!dynamic_sched_update) {
		/* Start TM system, post update */
		CU_ASSERT_FATAL(odp_tm_start(odp_tm_systems[0]) == 0);
	}
	return rc;
}

static int test_sched_queue_priority(const char *shaper_name,
				     const char *node_name,
				     uint32_t    num_pkts)
{
	odp_tm_queue_t tm_queues[NUM_PRIORITIES];
	pkt_info_t     pkt_info;
	uint32_t       pkt_cnt, pkts_in_order, base_idx;
	uint32_t       idx, unique_id, pkt_len, base_pkt_len, pkts_sent;
	int            priority;

	memset(unique_id_list, 0, sizeof(unique_id_list));
	for (priority = 0; priority < NUM_PRIORITIES; priority++)
		tm_queues[priority] = find_tm_queue(0, node_name, priority);

	/* Enable the shaper to be low bandwidth. */
	pkt_len = 1400;
	set_shaper(node_name, shaper_name, 64 * 1000, 4 * pkt_len);

	/* Make a couple of low priority dummy pkts first. */
	init_xmt_pkts(&pkt_info);
	if (make_pkts(4, pkt_len, &pkt_info) != 0)
		return -1;

	/* Now make "num_pkts" first at the lowest priority, then "num_pkts"
	 * at the second lowest priority, etc until "num_pkts" are made last
	 * at the highest priority (which is always priority 0). */
	pkt_cnt      = NUM_PRIORITIES * num_pkts;
	base_pkt_len = 256;
	for (priority = NUM_PRIORITIES - 1; 0 <= priority; priority--) {
		unique_id          = cpu_unique_id;
		pkt_info.pkt_class = priority + 1;
		pkt_len            = base_pkt_len + 64 * priority;
		if (make_pkts(num_pkts, pkt_len, &pkt_info) != 0)
			return -1;

		base_idx = priority * num_pkts;
		for (idx = 0; idx < num_pkts; idx++)
			unique_id_list[base_idx + idx] = unique_id++;
	}

	/* Send the low priority dummy pkts first.  The arrival order of
	 * these pkts will be ignored. */
	pkts_sent = send_pkts_multi(tm_queues[NUM_PRIORITIES - 1], 4);

	/* Now send "num_pkts" first at the lowest priority, then "num_pkts"
	 * at the second lowest priority, etc until "num_pkts" are sent last
	 * at the highest priority. */
	for (priority = NUM_PRIORITIES - 1; 0 <= priority; priority--)
		pkts_sent += send_pkts_multi(tm_queues[priority], num_pkts);

	busy_wait(100 * ODP_TIME_MSEC_IN_NS);

	/* Disable the shaper, so as to get the pkts out quicker.
	 * We cannot do this if dynamic shaper update is not supported. Without
	 * dynamic update support set_shaper() can cause packet drops due to
	 * start/stop.
	 */
	if (dynamic_shaper_update)
		set_shaper(node_name, NULL, 0, 0);

	num_rcv_pkts = receive_pkts(odp_tm_systems[0], rcv_pktin,
				    pkt_cnt + 4, 64 * 1000);

	/* Check rcvd packet arrivals to make sure that pkts arrived in
	 * priority order, except for perhaps the first few lowest priority
	 * dummy pkts. */
	pkts_in_order = pkts_rcvd_in_given_order(unique_id_list, pkt_cnt, 0,
						 false, false);
	if (pkts_in_order != pkt_cnt) {
		ODPH_ERR("pkts_sent=%" PRIu32 " pkt_cnt=%" PRIu32 " "
			 "num_rcv_pkts=%" PRIu32 " rcvd_in_order=%" PRIu32 "\n",
			 pkts_sent, pkt_cnt, num_rcv_pkts, pkts_in_order);
	}

	CU_ASSERT(pkts_in_order == pkt_cnt);

	/* Disable shaper in case it is still enabled */
	set_shaper(node_name, NULL, 0, 0);
	flush_leftover_pkts(odp_tm_systems[0], rcv_pktin);
	CU_ASSERT(odp_tm_is_idle(odp_tm_systems[0]));
	return 0;
}

static int test_sched_node_priority(const char *shaper_name,
				    const char *node_name,
				    uint32_t    num_pkts)
{
	odp_tm_queue_t *tm_queues, tm_queue;
	tm_node_desc_t *node_desc;
	queue_array_t  *queue_array;
	pkt_info_t      pkt_info;
	uint32_t        total_num_queues, max_queues, num_queues, pkt_cnt;
	uint32_t        pkts_in_order, base_idx, queue_idx, idx, unique_id;
	uint32_t        pkt_len, base_pkt_len, total_pkt_cnt, pkts_sent;
	int             priority;

	memset(unique_id_list, 0, sizeof(unique_id_list));
	node_desc = find_node_desc(0, node_name);
	if (node_desc == NULL)
		return -1;

	total_num_queues = 0;
	for (priority = 0; priority < NUM_PRIORITIES; priority++) {
		max_queues  = NUM_LEVEL2_TM_NODES;
		queue_array = &queues_set.queue_array[priority];
		tm_queues   = queue_array->tm_queues;
		num_queues  = find_child_queues(0, node_desc, priority,
						tm_queues, max_queues);
		queue_array->num_queues = num_queues;
		queue_array->priority   = priority;
		total_num_queues       += num_queues;
	}

	/* Enable the shaper to be low bandwidth. */
	pkt_len = 1400;
	set_shaper(node_name, shaper_name, 64 * 1000, 4 * pkt_len);

	/* Make a couple of low priority large dummy pkts first. */
	init_xmt_pkts(&pkt_info);
	if (make_pkts(4, pkt_len, &pkt_info) != 0)
		return -1;

	/* Now make "num_pkts" for each tm_queue at the lowest priority, then
	 * "num_pkts" for each tm_queue at the second lowest priority, etc.
	 * until "num_pkts" for each tm_queue at the highest priority are made
	 * last.  Note that the highest priority is always priority 0. */
	total_pkt_cnt  = total_num_queues * num_pkts;
	base_pkt_len   = 256;
	base_idx       = 0;
	for (priority = NUM_PRIORITIES - 1; 0 <= priority; priority--) {
		unique_id          = cpu_unique_id;
		queue_array        = &queues_set.queue_array[priority];
		num_queues         = queue_array->num_queues;
		pkt_cnt            = num_queues * num_pkts;
		pkt_info.pkt_class = priority + 1;
		pkt_len            = base_pkt_len + 64 * priority;
		if (make_pkts(pkt_cnt, pkt_len, &pkt_info) != 0)
			return -1;

		base_idx = priority * num_pkts;
		for (idx = 0; idx < pkt_cnt; idx++)
			unique_id_list[base_idx + idx] = unique_id++;
	}

	/* Send the low priority dummy pkts first.  The arrival order of
	 * these pkts will be ignored. */
	queue_array = &queues_set.queue_array[NUM_PRIORITIES - 1];
	tm_queue    = queue_array->tm_queues[0];
	pkts_sent   = send_pkts(tm_queue, 4);

	/* Now send "num_pkts" for each tm_queue at the lowest priority, then
	 * "num_pkts" for each tm_queue at the second lowest priority, etc.
	 * until "num_pkts" for each tm_queue at the highest priority are sent
	 * last. */
	for (priority = NUM_PRIORITIES - 1; 0 <= priority; priority--) {
		queue_array = &queues_set.queue_array[priority];
		num_queues  = queue_array->num_queues;
		for (queue_idx = 0; queue_idx < num_queues; queue_idx++) {
			tm_queue   = queue_array->tm_queues[queue_idx];
			pkts_sent += send_pkts(tm_queue, num_pkts);
		}
	}

	busy_wait(100 * ODP_TIME_MSEC_IN_NS);

	/* Disable the shaper, so as to get the pkts out quicker.
	 * We cannot do this if dynamic shaper update is not supported. Without
	 * dynamic update support set_shaper() can cause packet drops due to
	 * start/stop.
	 */
	if (dynamic_shaper_update)
		set_shaper(node_name, NULL, 0, 0);

	num_rcv_pkts = receive_pkts(odp_tm_systems[0], rcv_pktin,
				    pkts_sent, 64 * 1000);

	/* Check rcvd packet arrivals to make sure that pkts arrived in
	 * priority order, except for perhaps the first few lowest priority
	 * dummy pkts. */
	pkts_in_order = pkts_rcvd_in_given_order(unique_id_list, total_pkt_cnt,
						 0, false, false);
	CU_ASSERT(pkts_in_order == total_pkt_cnt);

	/* Disable shaper in case it is still enabled */
	set_shaper(node_name, NULL, 0, 0);
	flush_leftover_pkts(odp_tm_systems[0], rcv_pktin);
	CU_ASSERT(odp_tm_is_idle(odp_tm_systems[0]));
	return 0;
}

static int test_sched_wfq(const char         *sched_base_name,
			  const char         *shaper_name,
			  const char         *node_name,
			  odp_tm_sched_mode_t sched_mode,
			  uint8_t             sched_weights[FANIN_RATIO])
{
	odp_tm_queue_t  tm_queues[FANIN_RATIO], tm_queue;
	tm_node_desc_t *node_desc, *child_desc;
	rcv_stats_t     rcv_stats[FANIN_RATIO];
	pkt_info_t      pkt_info;
	uint32_t        fanin_cnt, fanin, num_queues, pkt_cnt;
	uint32_t        pkt_len, pkts_sent, pkt_idx;
	uint8_t         pkt_class;
	int             priority, rc;

	memset(tm_queues, 0, sizeof(tm_queues));
	node_desc = find_node_desc(0, node_name);
	if (node_desc == NULL)
		return -1;

	rc = set_sched_fanin(node_name, sched_base_name, sched_mode,
			     sched_weights);
	if (rc != 0)
		return -1;

	/* Now determine at least one tm_queue that feeds into each fanin/
	 * child node. */
	priority  = 0;
	fanin_cnt = ODPH_MIN(node_desc->num_children, FANIN_RATIO);
	for (fanin = 0; fanin < fanin_cnt; fanin++) {
		child_desc = node_desc->children[fanin];
		num_queues = find_child_queues(0, child_desc, priority,
					       &tm_queues[fanin], 1);
		if (num_queues != 1)
			return -1;
	}

	/* Enable the shaper to be low bandwidth. */
	pkt_len = 1400;
	set_shaper(node_name, shaper_name, 64 * 1000, 8 * pkt_len);

	/* Make a couple of low priority dummy pkts first. */
	init_xmt_pkts(&pkt_info);
	if (make_pkts(4, pkt_len, &pkt_info) != 0)
		return -1;

	/* Make 100 pkts for each fanin of this node, alternating amongst
	 * the inputs. */
	pkt_cnt = FANIN_RATIO * 100;
	fanin   = 0;
	for (pkt_idx = 0; pkt_idx < pkt_cnt; pkt_idx++) {
		pkt_len            = 128 + 128 * fanin;
		pkt_info.pkt_class = 1 + fanin++;
		if (make_pkts(1, pkt_len, &pkt_info) != 0)
			return -1;

		if (FANIN_RATIO <= fanin)
			fanin = 0;
	}

	/* Send the low priority dummy pkts first.  The arrival order of
	 * these pkts will be ignored. */
	pkts_sent = send_pkts(tm_queues[NUM_PRIORITIES - 1], 4);

	/* Now send the test pkts, alternating amongst the input queues. */
	fanin = 0;
	for (pkt_idx = 0; pkt_idx < pkt_cnt; pkt_idx++) {
		tm_queue   = tm_queues[fanin++];
		pkts_sent += send_pkts(tm_queue, 1);
		if (FANIN_RATIO <= fanin)
			fanin = 0;
	}
	CU_ASSERT(pkts_sent == pkt_cnt + 4);

	busy_wait(1000000);   /* wait 1 millisecond */

	/* Disable the shaper, so as to get the pkts out quicker.
	 * We cannot do this if dynamic shaper update is not supported. Without
	 * dynamic update support set_shaper() can cause packet drops due to
	 * start/stop.
	 */
	if (dynamic_shaper_update)
		set_shaper(node_name, NULL, 0, 0);

	num_rcv_pkts = receive_pkts(odp_tm_systems[0], rcv_pktin,
				    pkt_cnt + 4, 64 * 1000);

	/* Check rcvd packet arrivals to make sure that pkts arrived in
	 * an order commensurate with their weights, sched mode and pkt_len. */
	for (fanin = 0; fanin < fanin_cnt; fanin++) {
		pkt_class = 1 + fanin;
		CU_ASSERT(rcv_rate_stats(&rcv_stats[fanin], pkt_class) == 0);
	}

	/* Disable shaper in case it is still enabled */
	set_shaper(node_name, NULL, 0, 0);
	flush_leftover_pkts(odp_tm_systems[0], rcv_pktin);
	CU_ASSERT(odp_tm_is_idle(odp_tm_systems[0]));
	return 0;
}

static int set_queue_thresholds(odp_tm_queue_t             tm_queue,
				const char                *threshold_name,
				odp_tm_threshold_params_t *threshold_params)
{
	odp_tm_threshold_t threshold_profile;
	int ret;

	if (!dynamic_threshold_update) {
		/* Stop TM system before update when dynamic update is not
		 * supported.
		 */
		CU_ASSERT_FATAL(odp_tm_stop(odp_tm_systems[0]) == 0);
	}

	/* First see if a threshold profile already exists with this name, in
	 * which case we use that profile, else create a new one. */
	threshold_profile = odp_tm_thresholds_lookup(threshold_name);
	if (threshold_profile != ODP_TM_INVALID) {
		ret = odp_tm_thresholds_params_update(threshold_profile,
						      threshold_params);
		if (ret)
			goto exit;
	} else {
		threshold_profile = odp_tm_threshold_create(threshold_name,
							    threshold_params);
		if (threshold_profile == ODP_TM_INVALID) {
			ret = -1;
			goto exit;
		}
		threshold_profiles[num_threshold_profiles] = threshold_profile;
		num_threshold_profiles++;
	}

	ret = odp_tm_queue_threshold_config(tm_queue, threshold_profile);
exit:
	if (!dynamic_threshold_update) {
		/* Start TM system, post update */
		CU_ASSERT_FATAL(odp_tm_start(odp_tm_systems[0]) == 0);
	}
	return ret;
}

static int test_threshold(const char *threshold_name,
			  const char *shaper_name,
			  const char *node_name,
			  uint8_t     priority,
			  uint32_t    max_pkts,
			  uint32_t    max_bytes)
{
	odp_tm_threshold_params_t threshold_params;
	odp_tm_queue_t            tm_queue;
	pkt_info_t                pkt_info;
	uint32_t                  pkt_len, pkts_sent;
	uint32_t                  num_pkts = 0;

	odp_tm_threshold_params_init(&threshold_params);
	if (max_pkts != 0) {
		max_pkts = ODPH_MIN(max_pkts, MAX_PKTS / 3);
		threshold_params.max_pkts        = max_pkts;
		threshold_params.enable_max_pkts = true;
		num_pkts = 2 * max_pkts;
		pkt_len  = 256;
	}

	if (max_bytes != 0) {
		max_bytes = ODPH_MIN(max_bytes, MAX_PKTS * MAX_PAYLOAD / 3);
		threshold_params.max_bytes        = max_bytes;
		threshold_params.enable_max_bytes = true;
		num_pkts = 2 * max_bytes / MAX_PAYLOAD;
		pkt_len  = MAX_PAYLOAD;
	}

	if (max_pkts == 0 && max_bytes == 0)
		return -1;

	/* Pick a tm_queue and set the tm_queue's threshold profile and then
	 * send in twice the amount of traffic as suggested by the thresholds
	 * and make sure at least SOME pkts get dropped. */
	tm_queue = find_tm_queue(0, node_name, priority);
	if (set_queue_thresholds(tm_queue, threshold_name,
				 &threshold_params) != 0) {
		ODPH_ERR("set_queue_thresholds failed\n");
		return -1;
	}

	/* Enable the shaper to be very low bandwidth. */
	set_shaper(node_name, shaper_name, 256 * 1000, 8 * pkt_len);

	init_xmt_pkts(&pkt_info);
	pkt_info.drop_eligible = true;
	pkt_info.pkt_class     = 1;
	if (make_pkts(num_pkts, pkt_len, &pkt_info) != 0) {
		ODPH_ERR("make_pkts failed\n");
		return -1;
	}

	pkts_sent = send_pkts(tm_queue, num_pkts);

	num_rcv_pkts = receive_pkts(odp_tm_systems[0], rcv_pktin, pkts_sent,
				    1 * GBPS);

	/* Disable the shaper, so as to get the pkts out quicker. */
	set_shaper(node_name, NULL, 0, 0);
	flush_leftover_pkts(odp_tm_systems[0], rcv_pktin);
	CU_ASSERT(odp_tm_is_idle(odp_tm_systems[0]));

	if (num_rcv_pkts < num_pkts)
		return 0;

	CU_ASSERT(num_rcv_pkts < pkts_sent);
	return 0;
}

static wred_pkt_cnts_t *search_expected_pkt_rcv_tbl(odp_tm_percent_t confidence,
						    odp_tm_percent_t drop_perc)
{
	wred_pkt_cnts_t *wred_pkt_cnts;
	uint32_t         idx, table_size;

	/* Search the EXPECTED_PKT_RCVD table to find a matching entry */
	table_size = ODPH_ARRAY_SIZE(EXPECTED_PKT_RCVD);
	for (idx = 0; idx < table_size; idx++) {
		wred_pkt_cnts = &EXPECTED_PKT_RCVD[idx];
		if ((wred_pkt_cnts->confidence_percent == confidence) &&
		    (wred_pkt_cnts->drop_percent       == drop_perc))
			return wred_pkt_cnts;
	}

	return NULL;
}

static int set_queue_wred(odp_tm_queue_t   tm_queue,
			  const char      *wred_name,
			  uint8_t          pkt_color,
			  odp_tm_percent_t drop_percent,
			  odp_bool_t       use_byte_fullness,
			  odp_bool_t       use_dual_slope)
{
	odp_tm_wred_params_t wred_params;
	odp_tm_wred_t        wred_profile;
	int rc;

	odp_tm_wred_params_init(&wred_params);
	if (use_dual_slope) {
		wred_params.min_threshold = TM_PERCENT(20);
		wred_params.med_threshold = TM_PERCENT(40);
		wred_params.med_drop_prob = drop_percent;
		wred_params.max_drop_prob = drop_percent;
	} else {
		wred_params.min_threshold = 0;
		wred_params.med_threshold = TM_PERCENT(20);
		wred_params.med_drop_prob = 0;
		wred_params.max_drop_prob = 2 * drop_percent;
	}

	wred_params.enable_wred       = true;
	wred_params.use_byte_fullness = use_byte_fullness;

	if (!dynamic_wred_update) {
		/* Stop TM system before update when dynamic update is not
		 * supported.
		 */
		CU_ASSERT_FATAL(odp_tm_stop(odp_tm_systems[0]) == 0);
	}

	/* First see if a wred profile already exists with this name, in
	 * which case we use that profile, else create a new one. */
	wred_profile = odp_tm_wred_lookup(wred_name);
	if (wred_profile != ODP_TM_INVALID) {
		odp_tm_wred_params_update(wred_profile, &wred_params);
	} else {
		wred_profile = odp_tm_wred_create(wred_name, &wred_params);
		if (wred_profiles[num_wred_profiles - 1][pkt_color] ==
			ODP_TM_INVALID) {
			wred_profiles[num_wred_profiles - 1][pkt_color] =
					wred_profile;
		} else {
			wred_profiles[num_wred_profiles][pkt_color] =
					wred_profile;
			num_wred_profiles++;
		}
	}

	rc = odp_tm_queue_wred_config(tm_queue, pkt_color, wred_profile);

	if (!dynamic_wred_update) {
		/* Start TM system, post update */
		CU_ASSERT_FATAL(odp_tm_start(odp_tm_systems[0]) == 0);
	}
	return rc;

}

static int test_byte_wred(const char      *wred_name,
			  const char      *shaper_name,
			  const char      *threshold_name,
			  const char      *node_name,
			  uint8_t          priority,
			  uint8_t          pkt_color,
			  odp_tm_percent_t drop_percent,
			  odp_bool_t       use_dual_slope)
{
	odp_tm_threshold_params_t threshold_params;
	wred_pkt_cnts_t          *wred_pkt_cnts;
	odp_tm_queue_t            tm_queue;
	pkt_info_t                pkt_info;
	uint32_t                  num_fill_pkts, num_test_pkts, pkts_sent;
	int ret;

	/* Pick the tm_queue and set the tm_queue's wred profile to drop the
	 * given percentage of traffic, then send 100 pkts and see how many
	 * pkts are received. */
	tm_queue = find_tm_queue(0, node_name, priority);
	set_queue_wred(tm_queue, wred_name, pkt_color, drop_percent,
		       true, use_dual_slope);

	/* Enable the shaper to be very low bandwidth. */
	set_shaper(node_name, shaper_name, 64 * 1000, 8 * PKT_BUF_SIZE);

	/* Set the threshold to be byte based and to handle 200 pkts of
	 * size PKT_BUF_SIZE. This way the byte-fullness for the wred test
	 * pkts will be around 60%. */
	odp_tm_threshold_params_init(&threshold_params);
	threshold_params.max_bytes        = 200 * PKT_BUF_SIZE;
	threshold_params.enable_max_bytes = true;
	if (set_queue_thresholds(tm_queue, threshold_name,
				 &threshold_params) != 0) {
		ODPH_ERR("set_queue_thresholds failed\n");
		return -1;
	}

	/* Make and send the first batch of pkts whose job is to set the
	 * queue byte fullness to around 60% for the subsequent test packets.
	 * These packets MUST have drop_eligible false. */
	init_xmt_pkts(&pkt_info);
	num_fill_pkts          = 120;
	pkt_info.pkt_color     = pkt_color;
	pkt_info.pkt_class     = 0;
	pkt_info.drop_eligible = false;
	if (make_pkts(num_fill_pkts, PKT_BUF_SIZE, &pkt_info) != 0)
		return -1;

	send_pkts(tm_queue, num_fill_pkts);

	/* Now send the real test pkts, which are all small so as to try to
	 * keep the byte fullness still close to the 60% point. These pkts
	 * MUST have drop_eligible true. */
	num_test_pkts          = 100;
	pkt_info.pkt_class     = 1;
	pkt_info.drop_eligible = true;
	if (make_pkts(num_test_pkts, 128, &pkt_info) != 0)
		return -1;

	pkts_sent = send_pkts(tm_queue, num_test_pkts);

	/* Disable the shaper, so as to get the pkts out quicker.
	 * We cannot do this if dynamic shaper update is not supported. Without
	 * dynamic update support set_shaper() can cause packet drops due to
	 * start/stop.
	 */
	if (dynamic_shaper_update)
		set_shaper(node_name, NULL, 0, 0);

	num_rcv_pkts = receive_pkts(odp_tm_systems[0], rcv_pktin,
				    num_fill_pkts + pkts_sent, 64 * 1000);

	/* Search the EXPECTED_PKT_RCVD table to find a matching entry */
	wred_pkt_cnts = search_expected_pkt_rcv_tbl(TM_PERCENT(99.9),
						    drop_percent);
	if (wred_pkt_cnts == NULL)
		return -1;

	/* Disable shaper in case it is still enabled */
	set_shaper(node_name, NULL, 0, 0);
	flush_leftover_pkts(odp_tm_systems[0], rcv_pktin);
	CU_ASSERT(odp_tm_is_idle(odp_tm_systems[0]));

	ret = !((wred_pkt_cnts->min_cnt <= pkts_sent) &&
	      (pkts_sent <= wred_pkt_cnts->max_cnt));
	if (ret)
		ODPH_DBG("min %" PRIu32 " pkts %" PRIu32 " max %" PRIu32 "\n",
			 wred_pkt_cnts->min_cnt, pkts_sent,
			 wred_pkt_cnts->max_cnt);
	return odp_cunit_ret(ret);
}

static int test_pkt_wred(const char      *wred_name,
			 const char      *shaper_name,
			 const char      *threshold_name,
			 const char      *node_name,
			 uint8_t          priority,
			 uint8_t          pkt_color,
			 odp_tm_percent_t drop_percent,
			 odp_bool_t       use_dual_slope)
{
	odp_tm_threshold_params_t threshold_params;
	wred_pkt_cnts_t          *wred_pkt_cnts;
	odp_tm_queue_t            tm_queue;
	pkt_info_t                pkt_info;
	uint32_t                  num_fill_pkts, num_test_pkts, pkts_sent;
	int ret;

	/* Pick the tm_queue and set the tm_queue's wred profile to drop the
	 * given percentage of traffic, then send 100 pkts and see how many
	 * pkts are received. */
	tm_queue = find_tm_queue(0, node_name, priority);
	set_queue_wred(tm_queue, wred_name, pkt_color, drop_percent,
		       false, use_dual_slope);

	/* Enable the shaper to be very low bandwidth. */
	set_shaper(node_name, shaper_name, 64 * 1000, 1000);

	/* Set the threshold to be pkt based and to handle 1000 pkts.  This
	 * way the pkt-fullness for the wred test pkts will be around 60%. */
	odp_tm_threshold_params_init(&threshold_params);
	threshold_params.max_pkts        = 1000;
	threshold_params.enable_max_pkts = true;

	ret = set_queue_thresholds(tm_queue, threshold_name,
				   &threshold_params);
	if (ret) {
		ODPH_ERR("set_queue_thresholds failed\n");
		return -1;
	}

	/* Make and send the first batch of pkts whose job is to set the
	 * queue pkt fullness to around 60% for the subsequent test packets.
	 * These packets MUST have drop_eligible false. */
	init_xmt_pkts(&pkt_info);
	num_fill_pkts          = 600;
	pkt_info.pkt_color     = pkt_color;
	pkt_info.pkt_class     = 0;
	pkt_info.drop_eligible = false;
	if (make_pkts(num_fill_pkts, 80, &pkt_info) != 0)
		return -1;

	send_pkts(tm_queue, num_fill_pkts);

	/* Now send the real test pkts.  These pkts MUST have drop_eligible
	 * true. */
	num_test_pkts          = 100;
	pkt_info.pkt_class     = 1;
	pkt_info.drop_eligible = true;
	if (make_pkts(num_test_pkts, 80, &pkt_info) != 0)
		return -1;

	pkts_sent = send_pkts(tm_queue, num_test_pkts);

	/* Disable the shaper, so as to get the pkts out quicker.
	 * We cannot do this if dynamic shaper update is not supported. Without
	 * dynamic update support set_shaper() can cause packet drops due to
	 * start/stop.
	 */
	if (dynamic_shaper_update)
		set_shaper(node_name, NULL, 0, 0);

	ret = receive_pkts(odp_tm_systems[0], rcv_pktin,
			   num_fill_pkts + pkts_sent, 64 * 1000);
	if (ret < 0)
		return -1;

	num_rcv_pkts = ret;

	/* Search the EXPECTED_PKT_RCVD table to find a matching entry */
	wred_pkt_cnts = search_expected_pkt_rcv_tbl(TM_PERCENT(99.9),
						    drop_percent);
	if (wred_pkt_cnts == NULL)
		return -1;

	/* Disable shaper in case it is still enabled */
	set_shaper(node_name, NULL, 0, 0);
	flush_leftover_pkts(odp_tm_systems[0], rcv_pktin);
	CU_ASSERT(odp_tm_is_idle(odp_tm_systems[0]));

	if ((pkts_sent < wred_pkt_cnts->min_cnt) ||
	    (pkts_sent > wred_pkt_cnts->max_cnt)) {
		ODPH_ERR("min_cnt %d <= pkts_sent %d <= max_cnt %d\n",
			 wred_pkt_cnts->min_cnt, pkts_sent,
			 wred_pkt_cnts->max_cnt);
		return -1;
	}

	return 0;
}

static int test_query_functions(const char *shaper_name,
				const char *node_name,
				uint8_t     priority,
				uint32_t    num_pkts)
{
	odp_tm_query_info_t query_info;
	odp_tm_queue_t      tm_queue;
	pkt_info_t          pkt_info;
	uint64_t            commit_bps, expected_pkt_cnt, expected_byte_cnt;
	int                 rc;

	/* Pick a tm_queue and set the egress node's shaper BW to be 64K bps
	 * with a small burst tolerance.  Then send the traffic. */
	tm_queue   = find_tm_queue(0, node_name, priority);
	commit_bps = 64 * 1000;
	if (set_shaper(node_name, shaper_name, commit_bps, 1000) != 0)
		return -1;

	init_xmt_pkts(&pkt_info);
	pkt_info.pkt_class = 1;
	if (make_pkts(num_pkts, PKT_BUF_SIZE, &pkt_info) != 0)
		return -1;

	send_pkts(tm_queue, num_pkts);

	/* Assume all but 2 of the pkts are still in the queue.*/
	expected_pkt_cnt  = num_pkts - 2;
	expected_byte_cnt = expected_pkt_cnt * PKT_BUF_SIZE;

	memset(&query_info, 0, sizeof(query_info));
	rc = odp_tm_queue_query(tm_queue,
				ODP_TM_QUERY_PKT_CNT | ODP_TM_QUERY_BYTE_CNT,
				&query_info);
	CU_ASSERT(rc == 0);
	CU_ASSERT(query_info.total_pkt_cnt_valid);
	CU_ASSERT(expected_pkt_cnt < query_info.total_pkt_cnt);
	CU_ASSERT(query_info.total_byte_cnt_valid);
	CU_ASSERT(expected_byte_cnt < query_info.total_byte_cnt);

	memset(&query_info, 0, sizeof(query_info));
	rc = odp_tm_priority_query(odp_tm_systems[0], priority,
				   ODP_TM_QUERY_PKT_CNT | ODP_TM_QUERY_BYTE_CNT,
				   &query_info);
	CU_ASSERT(rc == 0);
	CU_ASSERT(query_info.total_pkt_cnt_valid);
	CU_ASSERT(expected_pkt_cnt < query_info.total_pkt_cnt);
	CU_ASSERT(query_info.total_byte_cnt_valid);
	CU_ASSERT(expected_byte_cnt < query_info.total_byte_cnt);

	memset(&query_info, 0, sizeof(query_info));
	rc = odp_tm_total_query(odp_tm_systems[0],
				ODP_TM_QUERY_PKT_CNT | ODP_TM_QUERY_BYTE_CNT,
				&query_info);
	CU_ASSERT(rc == 0);
	CU_ASSERT(query_info.total_pkt_cnt_valid);
	CU_ASSERT(expected_pkt_cnt < query_info.total_pkt_cnt);
	CU_ASSERT(query_info.total_byte_cnt_valid);
	CU_ASSERT(expected_byte_cnt < query_info.total_byte_cnt);

	/* Disable the shaper, so as to get the pkts out quicker. */
	set_shaper(node_name, NULL, 0, 0);
	num_rcv_pkts = receive_pkts(odp_tm_systems[0], rcv_pktin, num_pkts,
				    commit_bps);

	flush_leftover_pkts(odp_tm_systems[0], rcv_pktin);
	CU_ASSERT(odp_tm_is_idle(odp_tm_systems[0]));
	return 0;
}

static int check_vlan_marking_pkts(void)
{
	odp_packet_t rcv_pkt;
	uint32_t     rcv_pkt_idx, err_cnt;
	uint16_t     tci;
	uint8_t      pkt_class, dei, expected_dei;

	/* Check rcvd packets to make sure that pkt_class 1 pkts continue to
	 * not have a VLAN header, pkt class 2 pkts have a VLAN header with the
	 * drop precedence not set and pkt class 3 pkts have a VLAN header with
	 * the  DEI bit set. */
	err_cnt = 0;
	for (rcv_pkt_idx = 0; rcv_pkt_idx < num_rcv_pkts; rcv_pkt_idx++) {
		rcv_pkt   = rcv_pkts[rcv_pkt_idx];
		pkt_class = rcv_pkt_descs[rcv_pkt_idx].pkt_class;

		switch (pkt_class) {
		case 1:
			/* Make sure no VLAN header. */
			if (odp_packet_has_vlan(rcv_pkt)) {
				err_cnt++;
				ODPH_ERR("VLAN incorrectly added\n");
				CU_ASSERT(odp_packet_has_vlan(rcv_pkt));
			}
			break;

		case 2:
		case 3:
			/* Make sure it does have a VLAN header */
			if (!odp_packet_has_vlan(rcv_pkt)) {
				err_cnt++;
				ODPH_ERR("VLAN header missing\n");
				CU_ASSERT(!odp_packet_has_vlan(rcv_pkt));
				break;
			}

			/* Make sure DEI bit is 0 if pkt_class == 2, and 1 if
			 * pkt_class == 3. */
			if (get_vlan_tci(rcv_pkt, &tci) != 0) {
				err_cnt++;
				ODPH_ERR("VLAN header missing\n");
				CU_ASSERT(!odp_packet_has_vlan(rcv_pkt));
				break;
			}

			dei          = (tci >> ODPH_VLANHDR_DEI_SHIFT) & 1;
			expected_dei = (pkt_class == 2) ? 0 : 1;
			if (dei != expected_dei) {
				ODPH_ERR("expected_dei=%u rcvd dei=%u\n",
					 expected_dei, dei);
				err_cnt++;
				CU_ASSERT(dei == expected_dei);
			}
			break;

		default:
			/* Log error but otherwise ignore, since it is
			 * probably a stray pkt from a previous test. */
			ODPH_ERR("Pkt rcvd with invalid pkt class\n");
		}
	}

	return (err_cnt == 0) ? 0 : -1;
}

static int test_vlan_marking(const char        *node_name,
			     odp_packet_color_t pkt_color)
{
	odp_packet_color_t color;
	odp_tm_queue_t     tm_queue;
	pkt_info_t         pkt_info;
	odp_tm_t           odp_tm;
	uint32_t           pkt_cnt, num_pkts, pkt_len, pkts_sent;
	int                rc;

	/* First disable vlan marking for all colors. These "disable" calls
	 * should NEVER fail. */
	odp_tm = odp_tm_systems[0];
	for (color = 0; color < ODP_NUM_PKT_COLORS; color++) {
		rc = odp_tm_vlan_marking(odp_tm, color, false);
		if (rc != 0) {
			ODPH_ERR("disabling odp_tm_vlan_marking() failed\n");
			return -1;
		}
	}

	/* Next enable vlan marking for just the given color parameter */
	rc = odp_tm_vlan_marking(odp_tm, pkt_color, true);

	tm_queue = find_tm_queue(0, node_name, 0);
	if (tm_queue == ODP_TM_INVALID) {
		ODPH_ERR("No tm_queue found for node_name='%s'\n", node_name);
		return -1;
	}

	/* Next make 2*X pkts of each color, half with vlan headers -
	 * half without. */
	init_xmt_pkts(&pkt_info);

	pkt_cnt            = 5;
	num_pkts           = 0;
	pkt_len            = 600;
	pkt_info.pkt_class = 1;
	for (color = 0; color < ODP_NUM_PKT_COLORS; color++) {
		num_pkts          += pkt_cnt;
		pkt_info.pkt_color = color;
		if (make_pkts(pkt_cnt, pkt_len, &pkt_info) != 0)
			return -1;
	}

	for (color = 0; color < ODP_NUM_PKT_COLORS; color++) {
		num_pkts          += pkt_cnt;
		pkt_info.pkt_color = color;
		pkt_info.pkt_class = (color == pkt_color) ? 3 : 2;
		pkt_info.use_vlan  = true;
		pkt_info.vlan_tci  = VLAN_NO_DEI;
		if (make_pkts(pkt_cnt, pkt_len, &pkt_info) != 0)
			return -1;
	}

	pkts_sent    = send_pkts(tm_queue, num_pkts);
	num_rcv_pkts = receive_pkts(odp_tm_systems[0], rcv_pktin, pkts_sent,
				    1000 * 1000);
	if (num_rcv_pkts == 0) {
		ODPH_ERR("No pkts received\n");
		rc = -1;
	} else if (num_rcv_pkts != pkts_sent) {
		ODPH_ERR("pkts_sent=%" PRIu32 " but num_rcv_pkts=%" PRIu32 "\n",
			 pkts_sent, num_rcv_pkts);
		dump_rcvd_pkts(0, num_rcv_pkts - 1);
		CU_ASSERT(num_rcv_pkts == pkts_sent);
	} else {
		rc = check_vlan_marking_pkts();
	}

	flush_leftover_pkts(odp_tm_systems[0], rcv_pktin);
	CU_ASSERT(odp_tm_is_idle(odp_tm_systems[0]));
	return rc;
}

static int check_tos_marking_pkts(odp_bool_t use_ipv6,
				  odp_bool_t use_tcp,
				  odp_bool_t test_ecn,
				  odp_bool_t test_drop_prec,
				  uint8_t    unmarked_tos,
				  uint8_t    new_dscp,
				  uint8_t    dscp_mask)
{
	odp_packet_t rcv_pkt;
	uint32_t     rcv_pkt_idx;
	uint8_t      unmarked_ecn, unmarked_dscp, shifted_dscp, pkt_class;
	uint8_t      tos, expected_tos;
	int          rc;

	/* Turn off test_ecn for UDP pkts, since ECN marking should
	 * only happen for TCP pkts. */
	if (!use_tcp)
		test_ecn = false;

	/* The expected_tos value is only the expected TOS/TC field for pkts
	 * that have been enabled for modification, as indicated by the
	 * pkt_class associated with this pkt. */
	unmarked_ecn  = (unmarked_tos & ODPH_IP_TOS_ECN_MASK)
				>> ODPH_IP_TOS_ECN_SHIFT;
	unmarked_dscp = (unmarked_tos & ODPH_IP_TOS_DSCP_MASK)
				>> ODPH_IP_TOS_DSCP_SHIFT;
	new_dscp      = (new_dscp & dscp_mask) | (unmarked_dscp & ~dscp_mask);
	shifted_dscp  = new_dscp << ODPH_IP_TOS_DSCP_SHIFT;

	if (test_ecn && test_drop_prec)
		expected_tos = shifted_dscp | ODPH_IP_ECN_CE;
	else if (test_ecn)
		expected_tos = unmarked_tos | ODPH_IP_ECN_CE;
	else if (test_drop_prec)
		expected_tos = shifted_dscp | unmarked_ecn;
	else
		expected_tos = unmarked_tos;

	for (rcv_pkt_idx = 0; rcv_pkt_idx < num_rcv_pkts; rcv_pkt_idx++) {
		rcv_pkt   = rcv_pkts[rcv_pkt_idx];
		pkt_class = rcv_pkt_descs[rcv_pkt_idx].pkt_class;

		/* Check that the pkts match the use_ipv6 setting */
		if (use_ipv6)
			rc = odp_packet_has_ipv6(rcv_pkt);
		else
			rc = odp_packet_has_ipv4(rcv_pkt);

		if (rc != 1) {
			if (use_ipv6)
				ODPH_ERR("Expected IPv6 pkt but got IPv4");
			else
				ODPH_ERR("Expected IPv4 pkt but got IPv6");

			return -1;
		}

		/* Check that the pkts match the use_tcp setting */
		if (use_tcp)
			rc = odp_packet_has_tcp(rcv_pkt);
		else
			rc = odp_packet_has_udp(rcv_pkt);

		if (rc != 1) {
			if (use_tcp)
				ODPH_ERR("Expected TCP pkt but got UDP");
			else
				ODPH_ERR("Expected UDP pkt but got TCP");

			return -1;
		}

		/* Now get the tos field to see if it was changed */
		rc = get_ip_tos(rcv_pkt, &tos);
		if (rc != 0) {
			ODPH_ERR("get_ip_tos failed\n");
			return -1;
		}

		switch (pkt_class) {
		case 2:
			/* Tos field must be unchanged. */
			if (unmarked_tos != tos) {
				ODPH_ERR("Tos was changed from 0x%X to 0x%X\n",
					 unmarked_tos, tos);
				return -1;
			}
			break;

		case 3:
			/* Tos field must be changed. */
			if (tos != expected_tos) {
				ODPH_ERR("tos=0x%X instead of expected 0x%X\n",
					 tos, expected_tos);
				CU_ASSERT(tos == expected_tos);
			}
			break;

		default:
			/* Log error but otherwise ignore, since it is
			 * probably a stray pkt from a previous test. */
			ODPH_ERR("Pkt rcvd with invalid pkt class=%u\n",
				 pkt_class);
		}
	}

	return 0;
}

static int test_ip_marking(const char        *node_name,
			   odp_packet_color_t pkt_color,
			   odp_bool_t         use_ipv6,
			   odp_bool_t         use_tcp,
			   odp_bool_t         test_ecn,
			   odp_bool_t         test_drop_prec,
			   uint8_t            new_dscp,
			   uint8_t            dscp_mask)
{
	odp_packet_color_t color;
	odp_tm_queue_t     tm_queue;
	pkt_info_t         pkt_info;
	odp_tm_t           odp_tm;
	uint32_t           pkt_cnt, num_pkts, pkt_len, pkts_sent;
	int                rc, ret_code;

	/* First disable IP TOS marking for all colors. These "disable" calls
	 * should NEVER fail. */
	odp_tm = odp_tm_systems[0];
	for (color = 0; color < ODP_NUM_PKT_COLORS; color++) {
		rc = odp_tm_ecn_marking(odp_tm, color, false);
		if (rc != 0) {
			ODPH_ERR("disabling odp_tm_ecn_marking() failed\n");
			return -1;
		}

		rc = odp_tm_drop_prec_marking(odp_tm, color, false);
		if (rc != 0) {
			ODPH_ERR("disabling odp_tm_drop_prec_marking failed\n");
			return -1;
		}
	}

	/* Next enable IP TOS marking for just the given color parameter */
	if ((!test_ecn) && (!test_drop_prec))
		return 0;

	if (test_ecn) {
		rc = odp_tm_ecn_marking(odp_tm, pkt_color, true);
		if (rc != 0) {
			ODPH_ERR("odp_tm_ecn_marking() call failed\n");
			return -1;
		}
	}

	if (test_drop_prec) {
		rc = odp_tm_drop_prec_marking(odp_tm, pkt_color, true);
		if (rc != 0) {
			ODPH_ERR("odp_tm_drop_prec_marking() call failed\n");
			return -1;
		}
	}

	tm_queue = find_tm_queue(0, node_name, 0);
	if (tm_queue == ODP_TM_INVALID) {
		ODPH_ERR("No tm_queue found for node_name='%s'\n", node_name);
		return -1;
	}

	init_xmt_pkts(&pkt_info);
	pkt_info.use_ipv6 = use_ipv6;
	pkt_info.use_tcp  = use_tcp;
	pkt_info.ip_tos   = DEFAULT_TOS;

	pkt_cnt  = 5;
	num_pkts = 0;
	pkt_len  = 1340;
	for (color = 0; color < ODP_NUM_PKT_COLORS; color++) {
		num_pkts          += pkt_cnt;
		pkt_info.pkt_color = color;
		if (test_drop_prec || (test_ecn && use_tcp))
			pkt_info.pkt_class = (color == pkt_color) ? 3 : 2;
		else
			pkt_info.pkt_class = 2;

		if (make_pkts(pkt_cnt, pkt_len, &pkt_info) != 0) {
			ODPH_ERR("make_pkts failed\n");
			return -1;
		}
	}

	pkts_sent    = send_pkts(tm_queue, num_pkts);
	num_rcv_pkts = receive_pkts(odp_tm_systems[0], rcv_pktin, pkts_sent,
				    1000 * 1000);
	ret_code     = -1;

	if (num_rcv_pkts == 0) {
		ODPH_ERR("No pkts received\n");
		CU_ASSERT(num_rcv_pkts != 0);
		ret_code = -1;
	} else if (num_rcv_pkts != pkts_sent) {
		ODPH_ERR("pkts_sent=%" PRIu32 " but num_rcv_pkts=%" PRIu32 "\n",
			 pkts_sent, num_rcv_pkts);
		dump_rcvd_pkts(0, num_rcv_pkts - 1);
		CU_ASSERT(num_rcv_pkts == pkts_sent);
		ret_code = -1;
	} else {
		rc = check_tos_marking_pkts(use_ipv6, use_tcp, test_ecn,
					    test_drop_prec, DEFAULT_TOS,
					    new_dscp, dscp_mask);
		CU_ASSERT(rc == 0);
		ret_code = (rc == 0) ? 0 : -1;
	}

	flush_leftover_pkts(odp_tm_systems[0], rcv_pktin);
	CU_ASSERT(odp_tm_is_idle(odp_tm_systems[0]));
	return ret_code;
}

static int test_protocol_marking(const char        *node_name,
				 odp_packet_color_t pkt_color,
				 odp_bool_t         test_ecn,
				 odp_bool_t         test_drop_prec,
				 uint8_t            new_dscp,
				 uint8_t            dscp_mask)
{
	uint32_t errs = 0;
	int      rc;

	/* Now call test_ip_marking once for all combinations of IPv4 or IPv6
	 * pkts AND for UDP or TCP. */
	rc = test_ip_marking(node_name, pkt_color, USE_IPV4, USE_UDP,
			     test_ecn, test_drop_prec, new_dscp, dscp_mask);
	CU_ASSERT(rc == 0);
	if (rc != 0) {
		ODPH_ERR("test_ip_marking failed using IPV4/UDP pkts color=%u "
			 "test_ecn=%u test_drop_prec=%u\n",
			pkt_color, test_ecn, test_drop_prec);
		errs++;
	}

	rc = test_ip_marking(node_name, pkt_color, USE_IPV6, USE_UDP,
			     test_ecn, test_drop_prec, new_dscp, dscp_mask);
	CU_ASSERT(rc == 0);
	if (rc != 0) {
		ODPH_ERR("test_ip_marking failed using IPV6/UDP pkts color=%u "
			 "test_ecn=%u test_drop_prec=%u\n",
			pkt_color, test_ecn, test_drop_prec);
		errs++;
	}

	rc = test_ip_marking(node_name, pkt_color, USE_IPV4, USE_TCP,
			     test_ecn, test_drop_prec, new_dscp, dscp_mask);
	CU_ASSERT(rc == 0);
	if (rc != 0) {
		ODPH_ERR("test_ip_marking failed using IPV4/TCP pkts color=%u "
			 "test_ecn=%u test_drop_prec=%u\n",
			pkt_color, test_ecn, test_drop_prec);
		errs++;
	}

	rc = test_ip_marking(node_name, pkt_color, USE_IPV6, USE_TCP,
			     test_ecn, test_drop_prec, new_dscp, dscp_mask);
	CU_ASSERT(rc == 0);
	if (rc != 0) {
		ODPH_ERR("test_ip_marking failed using IPV6/TCP pkts color=%u "
			 "test_ecn=%u test_drop_prec=%u\n",
			 pkt_color, test_ecn, test_drop_prec);
		errs++;
	}

	return (errs == 0) ? 0 : -1;
}

static int ip_marking_tests(const char *node_name,
			    odp_bool_t  test_ecn,
			    odp_bool_t  test_drop_prec)
{
	odp_packet_color_t color;
	uint32_t           errs = 0;
	uint8_t            new_dscp, dscp_mask;
	int                rc;

	dscp_mask = DROP_PRECEDENCE_MASK;
	for (color = 0; color < ODP_NUM_PKT_COLORS; color++) {
		if (tm_capabilities.marking_colors_supported[color]) {
			if (color == PKT_YELLOW)
				new_dscp = MEDIUM_DROP_PRECEDENCE;
			else if (color == PKT_RED)
				new_dscp = HIGH_DROP_PRECEDENCE;
			else
				new_dscp = LOW_DROP_PRECEDENCE;

			rc = test_protocol_marking(node_name, color, test_ecn,
						   test_drop_prec, new_dscp,
						   dscp_mask);
			CU_ASSERT(rc == 0);
			if (rc != 0)
				errs++;
		}
	}

	return (errs == 0) ? 0 : -1;
}

static int walk_tree_backwards(odp_tm_node_t tm_node)
{
	odp_tm_node_fanin_info_t fanin_info;
	odp_tm_node_info_t       node_info;
	odp_tm_queue_t           first_tm_queue;
	odp_tm_node_t            first_tm_node;
	uint32_t                 tm_queue_fanin, tm_node_fanin;
	int                      rc;

	/* Start from the given tm_node and try to go backwards until a valid
	 * and active tm_queue is reached. */
	rc = odp_tm_node_info(tm_node, &node_info);
	if (rc != 0) {
		ODPH_ERR("odp_tm_node_info failed for tm_node=0x%" PRIX64 "\n",
			 odp_tm_node_to_u64(tm_node));
		return rc;
	}

	if ((node_info.tm_queue_fanin == 0) &&
	    (node_info.tm_node_fanin  == 0)) {
		ODPH_ERR("odp_tm_node_info showed no fanin for this node\n");
		return -1;
	}

	fanin_info.tm_queue = ODP_TM_INVALID;
	fanin_info.tm_node  = ODP_TM_INVALID;
	fanin_info.is_last  = false;

	/* TBD* Loop over the entire fanin list verifying the fanin counts.
	 * Also remember the first tm_queue and tm_node seen. */
	tm_queue_fanin = 0;
	tm_node_fanin  = 0;
	first_tm_queue = ODP_TM_INVALID;
	first_tm_node  = ODP_TM_INVALID;

	while (!fanin_info.is_last) {
		rc = odp_tm_node_fanin_info(tm_node, &fanin_info);
		if (rc != 0)
			return rc;

		if ((fanin_info.tm_queue != ODP_TM_INVALID) &&
		    (fanin_info.tm_node  != ODP_TM_INVALID)) {
			ODPH_ERR("Both tm_queue and tm_node are set\n");
			return -1;
		} else if (fanin_info.tm_queue != ODP_TM_INVALID) {
			tm_queue_fanin++;
			if (first_tm_queue == ODP_TM_INVALID)
				first_tm_queue = fanin_info.tm_queue;
		} else if (fanin_info.tm_node != ODP_TM_INVALID) {
			tm_node_fanin++;
			if (first_tm_node == ODP_TM_INVALID)
				first_tm_node = fanin_info.tm_node;
		} else {
			ODPH_ERR("both tm_queue and tm_node are INVALID\n");
			return -1;
		}
	}

	if (tm_queue_fanin != node_info.tm_queue_fanin)
		ODPH_ERR("tm_queue_fanin count error\n");
	else if (tm_node_fanin != node_info.tm_node_fanin)
		ODPH_ERR("tm_node_fanin count error\n");

	/* If we have found a tm_queue then we are successfully done. */
	if (first_tm_queue != ODP_TM_INVALID)
		return 0;

	/* Now recurse up a level */
	return walk_tree_backwards(first_tm_node);
}

static int test_fanin_info(const char *node_name)
{
	tm_node_desc_t *node_desc;
	odp_tm_node_t   tm_node;

	node_desc = find_node_desc(0, node_name);
	if (node_desc == NULL) {
		ODPH_ERR("node_name %s not found\n", node_name);
		return -1;
	}

	tm_node = node_desc->node;
	if (tm_node == ODP_TM_INVALID) {
		ODPH_ERR("tm_node is ODP_TM_INVALID\n");
		return -1;
	}

	return walk_tree_backwards(node_desc->node);
}

static void test_packet_aging(uint64_t tmo_ns, uint32_t pkt_len, odp_bool_t is_dropping)
{
	odp_tm_queue_t tm_queue;
	const char *node_name = "node_1_1_1";
	const char *shaper_name = "test_shaper";
	const uint64_t rate = 256 * 1000;
	pkt_info_t pkt_info;
	const uint16_t num_pkts = 4;
	int recv_pkts;

	tm_queue = find_tm_queue(0, node_name, 0);
	CU_ASSERT_FATAL(tm_queue != ODP_TM_INVALID);
	init_xmt_pkts(&pkt_info);
	pkt_info.drop_eligible = false;
	pkt_info.pkt_class = 1;
	CU_ASSERT_FATAL(make_pkts(num_pkts, pkt_len, &pkt_info) == 0);

	for (int i = 0; i < num_pkts; i++)
		odp_packet_aging_tmo_set(xmt_pkts[i], tmo_ns);

	CU_ASSERT_FATAL(set_shaper(node_name, shaper_name, rate, rate) == 0);
	CU_ASSERT(send_pkts(tm_queue, num_pkts) == num_pkts);
	recv_pkts = receive_pkts(odp_tm_systems[0], rcv_pktin, num_pkts, MBPS);

	if (is_dropping)
		CU_ASSERT(recv_pkts < num_pkts)
	else
		CU_ASSERT(recv_pkts == num_pkts);

	set_shaper(node_name, NULL, 0, 0);
	flush_leftover_pkts(odp_tm_systems[0], rcv_pktin);
	CU_ASSERT(odp_tm_is_idle(odp_tm_systems[0]));
}

static void test_defaults(uint8_t fill)
{
	odp_tm_requirements_t req;
	odp_tm_shaper_params_t shaper;
	odp_tm_sched_params_t sched;
	odp_tm_threshold_params_t threshold;
	odp_tm_wred_params_t wred;
	odp_tm_node_params_t node;
	odp_tm_queue_params_t queue;
	int n;

	memset(&req, fill, sizeof(req));
	odp_tm_requirements_init(&req);
	CU_ASSERT_EQUAL(req.num_levels, 0);
	CU_ASSERT(!req.tm_queue_shaper_needed);
	CU_ASSERT(!req.tm_queue_wred_needed);
	CU_ASSERT(!req.tm_queue_dual_slope_needed);
	CU_ASSERT(!req.tm_queue_threshold_needed);
	CU_ASSERT(!req.vlan_marking_needed);
	CU_ASSERT(!req.ecn_marking_needed);
	CU_ASSERT(!req.drop_prec_marking_needed);
	for (n = 0; n < ODP_NUM_PACKET_COLORS; n++)
		CU_ASSERT(!req.marking_colors_needed[n]);
	CU_ASSERT_EQUAL(req.pkt_prio_mode, ODP_TM_PKT_PRIO_MODE_PRESERVE);
	for (n = 0; n < ODP_TM_MAX_LEVELS; n++) {
		odp_tm_level_requirements_t *l_req = &req.per_level[n];

		CU_ASSERT(!l_req->tm_node_shaper_needed);
		CU_ASSERT(!l_req->tm_node_wred_needed);
		CU_ASSERT(!l_req->tm_node_dual_slope_needed);
		CU_ASSERT(!l_req->fair_queuing_needed);
		CU_ASSERT(!l_req->weights_needed);
		CU_ASSERT(!l_req->tm_node_threshold_needed);
	}

	memset(&shaper, fill, sizeof(shaper));
	odp_tm_shaper_params_init(&shaper);
	CU_ASSERT(shaper.packet_mode == ODP_TM_SHAPER_RATE_SHAPE);
	CU_ASSERT_EQUAL(shaper.shaper_len_adjust, 0);
	CU_ASSERT(!shaper.dual_rate);
	CU_ASSERT(!shaper.packet_mode);

	memset(&sched, 0xff, sizeof(sched));
	odp_tm_sched_params_init(&sched);
	for (n = 0; n < ODP_TM_MAX_PRIORITIES; n++)
		CU_ASSERT_EQUAL(sched.sched_modes[n], ODP_TM_BYTE_BASED_WEIGHTS);

	memset(&threshold, fill, sizeof(threshold));
	odp_tm_threshold_params_init(&threshold);
	CU_ASSERT(!threshold.enable_max_pkts);
	CU_ASSERT(!threshold.enable_max_bytes);

	memset(&wred, fill, sizeof(wred));
	odp_tm_wred_params_init(&wred);
	CU_ASSERT(!wred.enable_wred);
	CU_ASSERT(!wred.use_byte_fullness);

	memset(&node, fill, sizeof(node));
	odp_tm_node_params_init(&node);
	CU_ASSERT_EQUAL(node.shaper_profile, ODP_TM_INVALID);
	CU_ASSERT_EQUAL(node.threshold_profile, ODP_TM_INVALID);
	for (n = 0; n < ODP_NUM_PACKET_COLORS; n++)
		CU_ASSERT_EQUAL(node.wred_profile[n], ODP_TM_INVALID);

	memset(&queue, fill, sizeof(queue));
	odp_tm_queue_params_init(&queue);
	CU_ASSERT_EQUAL(queue.shaper_profile, ODP_TM_INVALID);
	CU_ASSERT_EQUAL(queue.threshold_profile, ODP_TM_INVALID);
	for (n = 0; n < ODP_NUM_PACKET_COLORS; n++)
		CU_ASSERT_EQUAL(queue.wred_profile[n], ODP_TM_INVALID);
	CU_ASSERT_EQUAL(queue.priority, 0);
	CU_ASSERT(queue.ordered_enqueue);
}

static void traffic_mngr_test_default_values(void)
{
	test_defaults(0);
	test_defaults(0xff);
}

static void traffic_mngr_test_capabilities(void)
{
	CU_ASSERT(test_overall_capabilities() == 0);
}

static void traffic_mngr_test_tm_create(void)
{
	/* Create the first/primary TM system. */
	CU_ASSERT_FATAL(create_tm_system() == 0);
	dump_tm_tree(0);
}

static void traffic_mngr_test_shaper(void)
{
	if ((tm_shaper_min_rate <= 1 * MBPS) &&
	    (tm_shaper_max_rate >= 1 * MBPS)) {
		CU_ASSERT(!odp_cunit_ret(test_shaper_bw("bw1",
							"node_1_1_1",
							0,
							MBPS * 1)));
	}

	if ((tm_shaper_min_rate <= 4 * MBPS) &&
	    (tm_shaper_max_rate >= 4 * MBPS)) {
		CU_ASSERT(!odp_cunit_ret(test_shaper_bw("bw4",
							"node_1_1_1",
							1,
							4   * MBPS)));
	}

	if ((tm_shaper_min_rate <= 10 * MBPS) &&
	    (tm_shaper_max_rate >= 10 * MBPS)) {
		CU_ASSERT(!odp_cunit_ret(test_shaper_bw("bw10",
							"node_1_1_1",
							2,
							10  * MBPS)));
	}

	if ((tm_shaper_min_rate <= 40 * MBPS) &&
	    (tm_shaper_max_rate >= 40 * MBPS)) {
		CU_ASSERT(!odp_cunit_ret(test_shaper_bw("bw40",
							"node_1_1_1",
							3,
							40  * MBPS)));
	}

	if ((tm_shaper_min_rate <= 100 * MBPS) &&
	    (tm_shaper_max_rate >= 100 * MBPS)) {
		CU_ASSERT(!odp_cunit_ret(test_shaper_bw("bw100",
							"node_1_1_2",
							0,
							100 * MBPS)));
	}
}

static void traffic_mngr_test_scheduler(void)
{
	CU_ASSERT(test_sched_queue_priority("que_prio", "node_1_1_3", 10) == 0);
	return;

	/* The following tests are not quite ready for production use. */
	CU_ASSERT(test_sched_node_priority("node_prio", "node_1_3", 4) == 0);

	CU_ASSERT(test_sched_wfq("sched_rr", "shaper_rr", "node_1_3",
				 ODP_TM_FRAME_BASED_WEIGHTS,
				 EQUAL_WEIGHTS) == 0);
	CU_ASSERT(test_sched_wfq("sched_wrr", "shaper_wrr", "node_1_3",
				 ODP_TM_FRAME_BASED_WEIGHTS,
				 INCREASING_WEIGHTS) == 0);
	CU_ASSERT(test_sched_wfq("sched_wfq", "shaper_wfq", "node_1_3",
				 ODP_TM_BYTE_BASED_WEIGHTS,
				 INCREASING_WEIGHTS) == 0);
}

static int traffic_mngr_check_thresholds_byte(void)
{
	/* Check only for TM queue threshold support as we only test queue threshold. */
	if (!tm_capabilities.tm_queue_threshold.byte)
		return ODP_TEST_INACTIVE;

	return ODP_TEST_ACTIVE;
}

static int traffic_mngr_check_thresholds_packet(void)
{
	/* Check only for TM queue threshold support as we only test queue threshold. */
	if (!tm_capabilities.tm_queue_threshold.packet)
		return ODP_TEST_INACTIVE;

	return ODP_TEST_ACTIVE;
}

static int traffic_mngr_check_thresholds_byte_and_packet(void)
{
	/* Check only for TM queue threshold support as we only test queue threshold. */
	if (!tm_capabilities.tm_queue_threshold.byte_and_packet)
		return ODP_TEST_INACTIVE;

	return ODP_TEST_ACTIVE;
}

static void traffic_mngr_test_thresholds_byte(void)
{
	CU_ASSERT(test_threshold("thresh_byte", "shaper_B", "node_1_2_1", 1,
				 0,  6400) == 0);
}

static void traffic_mngr_test_thresholds_packet(void)
{
	CU_ASSERT(test_threshold("thresh_packet", "shaper_A", "node_1_2_1", 0,
				 16, 0) == 0);
}

static void traffic_mngr_test_thresholds_byte_and_packet(void)
{
	CU_ASSERT(test_threshold("thresh_byte_and_packet", "shaper_A", "node_1_2_1", 0,
				 16, 6400) == 0);
}

static int traffic_mngr_check_queue_stats(void)
{
	if (tm_capabilities.queue_stats.all_counters == 0)
		return ODP_TEST_INACTIVE;

	return ODP_TEST_ACTIVE;
}

static void traffic_mngr_test_queue_stats(void)
{
	odp_tm_queue_stats_t stats_start, stats_stop;
	odp_tm_queue_t tm_queue;
	odp_tm_capabilities_t capa;
	pkt_info_t pkt_info;
	uint32_t pkts_sent;
	uint32_t num_pkts = ODPH_MIN(50u, MAX_PKTS);
	uint32_t pkt_len = 256;

	CU_ASSERT_FATAL(odp_tm_capability(odp_tm_systems[0], &capa) == 0);

	/* Reuse threshold test node */
	tm_queue = find_tm_queue(0, "node_1_2_1", 0);
	CU_ASSERT_FATAL(tm_queue != ODP_TM_INVALID);

	init_xmt_pkts(&pkt_info);
	pkt_info.drop_eligible = false;
	pkt_info.pkt_class     = 1;
	CU_ASSERT_FATAL(make_pkts(num_pkts, pkt_len, &pkt_info) == 0);

	CU_ASSERT(odp_tm_queue_stats(tm_queue, &stats_start) == 0);

	pkts_sent = send_pkts(tm_queue, num_pkts);

	num_rcv_pkts = receive_pkts(odp_tm_systems[0], rcv_pktin, pkts_sent,
				    1 * GBPS);

	odp_tm_stats_print(odp_tm_systems[0]);

	CU_ASSERT(odp_tm_queue_stats(tm_queue, &stats_stop) == 0);

	if (capa.queue_stats.counter.packets)
		CU_ASSERT(stats_stop.packets >= stats_start.packets + num_rcv_pkts);
	if (capa.queue_stats.counter.octets)
		CU_ASSERT(stats_stop.octets >= stats_start.octets + (num_rcv_pkts * pkt_len));
	CU_ASSERT((stats_stop.discards - stats_start.discards) == 0);
	CU_ASSERT((stats_stop.discard_octets - stats_start.discard_octets) == 0);
	CU_ASSERT((stats_stop.errors - stats_start.errors) == 0);

	printf("\nTM queue statistics\n-------------------\n");
	printf("  discards:        %" PRIu64 "\n", stats_stop.discards);
	printf("  discard octets:  %" PRIu64 "\n", stats_stop.discard_octets);
	printf("  errors:          %" PRIu64 "\n", stats_stop.errors);
	printf("  octets:          %" PRIu64 "\n", stats_stop.octets);
	printf("  packets:         %" PRIu64 "\n", stats_stop.packets);

	/* Check that all unsupported counters are still zero */
	if (!capa.queue_stats.counter.discards)
		CU_ASSERT(stats_stop.discards == 0);
	if (!capa.queue_stats.counter.discard_octets)
		CU_ASSERT(stats_stop.discard_octets == 0);
	if (!capa.queue_stats.counter.errors)
		CU_ASSERT(stats_stop.errors == 0);
	if (!capa.queue_stats.counter.octets)
		CU_ASSERT(stats_stop.octets == 0);
	if (!capa.queue_stats.counter.packets)
		CU_ASSERT(stats_stop.packets == 0);

	flush_leftover_pkts(odp_tm_systems[0], rcv_pktin);
	CU_ASSERT(odp_tm_is_idle(odp_tm_systems[0]));
}

static int traffic_mngr_check_wred(void)
{
	/* Check if wred is part of created odp_tm_t capabilities */
	if (!tm_capabilities.tm_queue_wred_supported)
		return ODP_TEST_INACTIVE;

	return ODP_TEST_ACTIVE;
}

static int traffic_mngr_check_byte_wred(void)
{
	/* Check if wred is part of created odp_tm_t capabilities */
	if (!tm_capabilities.tm_queue_wred_supported ||
	    !tm_capabilities.tm_queue_threshold.byte)
		return ODP_TEST_INACTIVE;

	if ((tm_shaper_min_rate > 64 * 1000) ||
	    (tm_shaper_max_rate < 64 * 1000) ||
	    (tm_shaper_min_burst > 8 * PKT_BUF_SIZE) ||
	     (tm_shaper_max_burst < 8 * PKT_BUF_SIZE))
		return ODP_TEST_INACTIVE;
	return ODP_TEST_ACTIVE;
}

static int traffic_mngr_check_pkt_wred(void)
{
	/* Check if wred is part of created odp_tm_t capabilities */
	if (!tm_capabilities.tm_queue_wred_supported ||
	    !tm_capabilities.tm_queue_threshold.packet)
		return ODP_TEST_INACTIVE;

	if ((tm_shaper_min_rate > 64 * 1000) ||
	    (tm_shaper_max_rate < 64 * 1000) ||
	    (tm_shaper_min_burst > 1000) ||
	     (tm_shaper_max_burst < 1000))
		return ODP_TEST_INACTIVE;
	return ODP_TEST_ACTIVE;
}

static void traffic_mngr_test_byte_wred(void)
{
	CU_ASSERT(test_byte_wred("byte_wred_30G", "byte_bw_30G",
				 "byte_thresh_30G", "node_1_3_1", 1,
				 ODP_PACKET_GREEN, TM_PERCENT(30), true) == 0);
	CU_ASSERT(test_byte_wred("byte_wred_50Y", "byte_bw_50Y",
				 "byte_thresh_50Y", "node_1_3_1", 2,
				 ODP_PACKET_YELLOW, TM_PERCENT(50), true) == 0);
	CU_ASSERT(test_byte_wred("byte_wred_70R", "byte_bw_70R",
				 "byte_thresh_70R", "node_1_3_1", 3,
				 ODP_PACKET_RED, TM_PERCENT(70), true) == 0);

	CU_ASSERT(test_byte_wred("byte_wred_40G", "byte_bw_40G",
				 "byte_thresh_40G", "node_1_3_1", 1,
				 ODP_PACKET_GREEN, TM_PERCENT(30), false) == 0);
}

static void traffic_mngr_test_pkt_wred(void)
{
	int rc;

	rc = test_pkt_wred("pkt_wred_40G", "pkt_bw_40G",
			   "pkt_thresh_40G", "node_1_3_2", 1,
			   ODP_PACKET_GREEN, TM_PERCENT(30), false);
	if (odp_cunit_ret(rc) != 0)
		CU_FAIL("40G test failed\n");

	if (!tm_capabilities.tm_queue_dual_slope_supported) {
		ODPH_DBG("since tm_capabilities indicates no dual slope "
			 "WRED support  these tests are skipped.\n");
		return;
	}

	rc = test_pkt_wred("pkt_wred_30G", "pkt_bw_30G",
			   "pkt_thresh_30G", "node_1_3_2", 1,
			   ODP_PACKET_GREEN, TM_PERCENT(30), true);
	if (odp_cunit_ret(rc) != 0)
		CU_FAIL("30G test failed\n");

	rc = test_pkt_wred("pkt_wred_50Y", "pkt_bw_50Y",
			   "pkt_thresh_50Y", "node_1_3_2", 2,
			   ODP_PACKET_YELLOW, TM_PERCENT(50), true);
	if (odp_cunit_ret(rc) != 0)
		CU_FAIL("50Y test failed\n");

	rc = test_pkt_wred("pkt_wred_70R", "pkt_bw_70R",
			   "pkt_thresh_70R", "node_1_3_2", 3,
			   ODP_PACKET_RED,    TM_PERCENT(70), true);
	if (odp_cunit_ret(rc) != 0)
		CU_FAIL("70Y test failed\n");
}

static int traffic_mngr_check_query(void)
{
	uint32_t query_flags = (ODP_TM_QUERY_PKT_CNT | ODP_TM_QUERY_BYTE_CNT);

	/* We need both pkt count and byte count query support */
	if ((tm_capabilities.tm_queue_query_flags & query_flags) != query_flags)
		return ODP_TEST_INACTIVE;

	/* This test uses 64 Kbps rate and a 1000 bit burst size */
	if (tm_shaper_min_rate > 64 * 1000 ||
	    tm_shaper_max_rate < 64 * 1000 ||
	    tm_shaper_min_burst > 1000 ||
	    tm_shaper_max_burst < 1000)
		return ODP_TEST_INACTIVE;

	return ODP_TEST_ACTIVE;
}

static void traffic_mngr_test_query(void)
{
	CU_ASSERT(test_query_functions("query_shaper", "node_1_3_3", 3, 10)
		  == 0);
}

static int traffic_mngr_check_vlan_marking(void)
{
	if (!tm_capabilities.vlan_marking_supported)
		return ODP_TEST_INACTIVE;
	return ODP_TEST_ACTIVE;
}

static int traffic_mngr_check_ecn_marking(void)
{
	if (!tm_capabilities.ecn_marking_supported)
		return ODP_TEST_INACTIVE;
	return ODP_TEST_ACTIVE;
}

static int traffic_mngr_check_drop_prec_marking(void)
{
	if (!tm_capabilities.drop_prec_marking_supported)
		return ODP_TEST_INACTIVE;
	return ODP_TEST_ACTIVE;
}

static int traffic_mngr_check_ecn_drop_prec_marking(void)
{
	if (!tm_capabilities.ecn_marking_supported ||
	    !tm_capabilities.drop_prec_marking_supported)
		return ODP_TEST_INACTIVE;
	return ODP_TEST_ACTIVE;
}

static void traffic_mngr_test_vlan_marking(void)
{
	odp_packet_color_t color;

	for (color = 0; color < ODP_NUM_PKT_COLORS; color++) {
		/* Tree is 3 level */
		CU_ASSERT(test_vlan_marking("node_1_3_1", color) == 0);
	}
}

static void traffic_mngr_test_ecn_marking(void)
{
	CU_ASSERT(ip_marking_tests("node_1_3_2", true, false) == 0);
}

static void traffic_mngr_test_drop_prec_marking(void)
{
	CU_ASSERT(ip_marking_tests("node_1_4_2", false, true) == 0);
}

static void traffic_mngr_test_ecn_drop_prec_marking(void)
{
	CU_ASSERT(ip_marking_tests("node_1_4_2", true, true) == 0);
}

static int traffic_mngr_check_tx_aging(void)
{
	return xmt_pktio_capa.max_tx_aging_tmo_ns ? ODP_TEST_ACTIVE : ODP_TEST_INACTIVE;
}

static void traffic_mngr_test_tx_aging_no_drop(void)
{
	/* Set very long aging tmo, packets should not be dropped due to aging */
	test_packet_aging(60000000000, 128, false);
}

static void traffic_mngr_test_tx_aging_drop(void)
{
	/* Set very short aging tmo, there should be drops due to aging */
	test_packet_aging(10, MAX_PAYLOAD, true);
}

static void traffic_mngr_test_fanin_info(void)
{
	CU_ASSERT(test_fanin_info("node_1")     == 0);
	CU_ASSERT(test_fanin_info("node_1_2")   == 0);
	CU_ASSERT(test_fanin_info("node_1_3_7") == 0);
}

static int traffic_mngr_check_lso_ipv4(void)
{
	if (xmt_pktio_capa.lso.max_profiles == 0 || xmt_pktio_capa.lso.max_profiles_per_pktio == 0)
		return ODP_TEST_INACTIVE;

	if (xmt_pktio_capa.lso.proto.ipv4 == 0)
		return ODP_TEST_INACTIVE;

	return ODP_TEST_ACTIVE;
}

static void traffic_mngr_test_lso_ipv4(void)
{
	odp_tm_queue_t tm_queue;
	pkt_info_t pkt_info;
	uint32_t pkts_sent;
	int32_t ret, expect;
	uint32_t num_pkts = 20;
	uint32_t pkt_len  = 256;

	/* Reuse shaper test node */
	tm_queue = find_tm_queue(0, "node_1_1_1", 0);
	CU_ASSERT_FATAL(tm_queue != ODP_TM_INVALID);

	/* IPv4 / UDP packets */
	init_xmt_pkts(&pkt_info);
	pkt_info.drop_eligible = false;
	pkt_info.pkt_class     = 1;
	pkt_info.use_ipv6      = 0;
	pkt_info.use_tcp       = 0;
	CU_ASSERT_FATAL(make_pkts(num_pkts, pkt_len, &pkt_info) == 0);

	pkts_sent = send_pkts_lso(tm_queue, num_pkts, ODP_LSO_PROTO_IPV4, pkt_len / 2);
	CU_ASSERT(pkts_sent == num_pkts);

	expect = 2 * pkts_sent;
	ret = receive_loop(odp_tm_systems[0], rcv_pktin, expect, 1000 * ODP_TIME_MSEC_IN_NS);
	CU_ASSERT(ret > 0);

	num_rcv_pkts = ret;

	/* As packet size is small, there should not be a reason to
	 * split each packet into more than two segments. */
	CU_ASSERT(ret == expect)
	if (ret != expect) {
		ODPH_ERR("\nReceived %i packets, expected %i\n", ret, expect);

		if (ret < 0)
			num_rcv_pkts = 0;
	}

	flush_leftover_pkts(odp_tm_systems[0], rcv_pktin);
	CU_ASSERT(odp_tm_is_idle(odp_tm_systems[0]));
}

static void traffic_mngr_test_destroy(void)
{
	CU_ASSERT(destroy_tm_systems() == 0);
}

odp_testinfo_t traffic_mngr_suite[] = {
	ODP_TEST_INFO(traffic_mngr_test_default_values),
	ODP_TEST_INFO(traffic_mngr_test_capabilities),
	ODP_TEST_INFO(traffic_mngr_test_tm_create),
	ODP_TEST_INFO(traffic_mngr_test_shaper_profile),
	ODP_TEST_INFO(traffic_mngr_test_sched_profile),
	ODP_TEST_INFO_CONDITIONAL(traffic_mngr_test_threshold_profile_byte,
				  traffic_mngr_check_thresholds_byte),
	ODP_TEST_INFO_CONDITIONAL(traffic_mngr_test_threshold_profile_packet,
				  traffic_mngr_check_thresholds_packet),
	ODP_TEST_INFO_CONDITIONAL(traffic_mngr_test_threshold_profile_byte_and_packet,
				  traffic_mngr_check_thresholds_byte_and_packet),
	ODP_TEST_INFO_CONDITIONAL(traffic_mngr_test_wred_profile,
				  traffic_mngr_check_wred),
	ODP_TEST_INFO_CONDITIONAL(traffic_mngr_test_shaper,
				  traffic_mngr_check_shaper),
	ODP_TEST_INFO_CONDITIONAL(traffic_mngr_test_scheduler,
				  traffic_mngr_check_scheduler),
	ODP_TEST_INFO_CONDITIONAL(traffic_mngr_test_thresholds_byte,
				  traffic_mngr_check_thresholds_byte),
	ODP_TEST_INFO_CONDITIONAL(traffic_mngr_test_thresholds_packet,
				  traffic_mngr_check_thresholds_packet),
	ODP_TEST_INFO_CONDITIONAL(traffic_mngr_test_thresholds_byte_and_packet,
				  traffic_mngr_check_thresholds_byte_and_packet),
	ODP_TEST_INFO_CONDITIONAL(traffic_mngr_test_byte_wred,
				  traffic_mngr_check_byte_wred),
	ODP_TEST_INFO_CONDITIONAL(traffic_mngr_test_pkt_wred,
				  traffic_mngr_check_pkt_wred),
	ODP_TEST_INFO_CONDITIONAL(traffic_mngr_test_query,
				  traffic_mngr_check_query),
	ODP_TEST_INFO_CONDITIONAL(traffic_mngr_test_queue_stats,
				  traffic_mngr_check_queue_stats),
	ODP_TEST_INFO_CONDITIONAL(traffic_mngr_test_vlan_marking,
				  traffic_mngr_check_vlan_marking),
	ODP_TEST_INFO_CONDITIONAL(traffic_mngr_test_ecn_marking,
				  traffic_mngr_check_ecn_marking),
	ODP_TEST_INFO_CONDITIONAL(traffic_mngr_test_drop_prec_marking,
				  traffic_mngr_check_drop_prec_marking),
	ODP_TEST_INFO_CONDITIONAL(traffic_mngr_test_ecn_drop_prec_marking,
				  traffic_mngr_check_ecn_drop_prec_marking),
	ODP_TEST_INFO_CONDITIONAL(traffic_mngr_test_tx_aging_no_drop,
				  traffic_mngr_check_tx_aging),
	ODP_TEST_INFO_CONDITIONAL(traffic_mngr_test_tx_aging_drop,
				  traffic_mngr_check_tx_aging),
	ODP_TEST_INFO(traffic_mngr_test_fanin_info),
	ODP_TEST_INFO_CONDITIONAL(traffic_mngr_test_lso_ipv4, traffic_mngr_check_lso_ipv4),
	ODP_TEST_INFO(traffic_mngr_test_destroy),
	ODP_TEST_INFO_NULL,
};

odp_suiteinfo_t traffic_mngr_suites[] = {
	{ "traffic_mngr tests", traffic_mngr_suite_init,
	  traffic_mngr_suite_term, traffic_mngr_suite },
	ODP_SUITE_INFO_NULL
};

int main(int argc, char *argv[])
{
	/* parse common options: */
	if (odp_cunit_parse_options(&argc, argv))
		return -1;

	int ret = odp_cunit_register(traffic_mngr_suites);

	if (ret == 0)
		ret = odp_cunit_run();

	/* Exit with 77 in order to indicate that test is skipped completely */
	if (!ret && suite_inactive == (ODPH_ARRAY_SIZE(traffic_mngr_suites) - 1))
		return 77;
	return ret;
}