aboutsummaryrefslogtreecommitdiff
path: root/test/common_plat/validation/api/traffic_mngr/traffic_mngr.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/common_plat/validation/api/traffic_mngr/traffic_mngr.c')
-rw-r--r--test/common_plat/validation/api/traffic_mngr/traffic_mngr.c4009
1 files changed, 4009 insertions, 0 deletions
diff --git a/test/common_plat/validation/api/traffic_mngr/traffic_mngr.c b/test/common_plat/validation/api/traffic_mngr/traffic_mngr.c
new file mode 100644
index 000000000..1c4e90bf3
--- /dev/null
+++ b/test/common_plat/validation/api/traffic_mngr/traffic_mngr.c
@@ -0,0 +1,4009 @@
+/* Copyright (c) 2015, Linaro Limited
+ * All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#define _GNU_SOURCE
+
+#include <stdlib.h>
+#include <stddef.h>
+#include <string.h>
+#include <unistd.h>
+#include <math.h>
+#include <odp.h>
+#include <odp/helper/eth.h>
+#include <odp/helper/ip.h>
+#include <odp/helper/udp.h>
+#include <odp/helper/tcp.h>
+#include <odp/helper/chksum.h>
+#include <test_debug.h>
+#include "odp_cunit_common.h"
+#include "traffic_mngr.h"
+
+#define TM_DEBUG 0
+
+#define MAX_CAPABILITIES 16
+#define MAX_NUM_IFACES 2
+#define MAX_TM_SYSTEMS 3
+#define NUM_LEVELS 3
+#define NUM_PRIORITIES 4
+#define NUM_QUEUES_PER_NODE NUM_PRIORITIES
+#define FANIN_RATIO 8
+#define NUM_LEVEL0_TM_NODES 1
+#define NUM_LEVEL1_TM_NODES FANIN_RATIO
+#define NUM_LEVEL2_TM_NODES (FANIN_RATIO * FANIN_RATIO)
+#define NUM_TM_QUEUES (NUM_LEVEL2_TM_NODES * NUM_QUEUES_PER_NODE)
+#define NUM_SHAPER_PROFILES 64
+#define NUM_SCHED_PROFILES 64
+#define NUM_THRESHOLD_PROFILES 64
+#define NUM_WRED_PROFILES 64
+#define NUM_SHAPER_TEST_PROFILES 8
+#define NUM_SCHED_TEST_PROFILES 8
+#define NUM_THRESH_TEST_PROFILES 8
+#define NUM_WRED_TEST_PROFILES 8
+
+#define ODP_NUM_PKT_COLORS ODP_NUM_PACKET_COLORS
+#define PKT_GREEN ODP_PACKET_GREEN
+#define PKT_YELLOW ODP_PACKET_YELLOW
+#define PKT_RED ODP_PACKET_RED
+
+#define MIN_COMMIT_BW (64 * 1024)
+#define MIN_COMMIT_BURST 8000
+#define MIN_PEAK_BW 2000000
+#define MIN_PEAK_BURST 16000
+
+#define INITIAL_RCV_GAP_DROP 10 /* This is a percent of rcvd pkts */
+#define ENDING_RCV_GAP_DROP 20 /* This is a percent of rcvd pkts */
+
+#define MIN_SHAPER_BW_RCV_GAP 80 /* Percent of expected_rcv_gap */
+#define MAX_SHAPER_BW_RCV_GAP 125 /* Percent of expected_rcv_gap */
+
+#define MIN_PKT_THRESHOLD 10
+#define MIN_BYTE_THRESHOLD 2048
+
+#define MIN_WRED_THRESH 5
+#define MED_WRED_THRESH 10
+#define MED_DROP_PROB 4
+#define MAX_DROP_PROB 8
+
+#define MAX_PKTS 1000
+#define PKT_BUF_SIZE 1460
+#define MAX_PAYLOAD 1400
+#define USE_IPV4 false
+#define USE_IPV6 true
+#define USE_UDP false
+#define USE_TCP true
+#define LOW_DROP_PRECEDENCE 0x02
+#define MEDIUM_DROP_PRECEDENCE 0x04
+#define HIGH_DROP_PRECEDENCE 0x06
+#define DROP_PRECEDENCE_MASK 0x06
+#define DSCP_CLASS1 0x08
+#define DSCP_CLASS2 0x10
+#define DSCP_CLASS3 0x18
+#define DSCP_CLASS4 0x20
+#define DEFAULT_DSCP (DSCP_CLASS2 | LOW_DROP_PRECEDENCE)
+#define DEFAULT_ECN ODPH_IP_ECN_ECT0
+#define DEFAULT_TOS ((DEFAULT_DSCP << ODPH_IP_TOS_DSCP_SHIFT) | \
+ DEFAULT_ECN)
+#define DEFAULT_TTL 128
+#define DEFAULT_UDP_SRC_PORT 12049
+#define DEFAULT_UDP_DST_PORT 12050
+#define DEFAULT_TCP_SRC_PORT 0xDEAD
+#define DEFAULT_TCP_DST_PORT 0xBABE
+#define DEFAULT_TCP_SEQ_NUM 0x12345678
+#define DEFAULT_TCP_ACK_NUM 0x12340000
+#define DEFAULT_TCP_WINDOW 0x4000
+#define VLAN_PRIORITY_BK 1 /* Background - lowest priority */
+#define VLAN_PRIORITY_BE 0 /* Best Effort */
+#define VLAN_PRIORITY_EE 2 /* Excellent Effort */
+#define VLAN_PRIORITY_NC 7 /* Network Control - highest priority */
+#define VLAN_DEFAULT_VID 12
+#define VLAN_NO_DEI ((VLAN_PRIORITY_EE << 13) | VLAN_DEFAULT_VID)
+#define ETHERNET_IFG 12 /* Ethernet Interframe Gap */
+#define ETHERNET_PREAMBLE 8
+#define ETHERNET_OVHD_LEN (ETHERNET_IFG + ETHERNET_PREAMBLE)
+#define CRC_LEN 4
+#define SHAPER_LEN_ADJ ETHERNET_OVHD_LEN
+#define TM_NAME_LEN 32
+#define BILLION 1000000000ULL
+#define MS 1000000 /* Millisecond in units of NS */
+#define MBPS 1000000
+#define GBPS 1000000000
+
+#define MIN(a, b) (((a) <= (b)) ? (a) : (b))
+#define MAX(a, b) (((a) <= (b)) ? (b) : (a))
+
+#define TM_PERCENT(percent) ((uint32_t)(100 * percent))
+
+typedef enum {
+ SHAPER_PROFILE, SCHED_PROFILE, THRESHOLD_PROFILE, WRED_PROFILE
+} profile_kind_t;
+
+typedef struct {
+ uint32_t num_queues;
+ odp_tm_queue_t tm_queues[0];
+} tm_queue_desc_t;
+
+typedef struct tm_node_desc_s tm_node_desc_t;
+
+struct tm_node_desc_s {
+ uint32_t level;
+ uint32_t node_idx;
+ uint32_t num_children;
+ char *node_name;
+ odp_tm_node_t node;
+ odp_tm_node_t parent_node;
+ tm_queue_desc_t *queue_desc;
+ tm_node_desc_t *children[0];
+};
+
+typedef struct {
+ uint32_t num_samples;
+ uint32_t min_rcv_gap;
+ uint32_t max_rcv_gap;
+ uint32_t total_rcv_gap;
+ uint64_t total_rcv_gap_squared;
+ uint32_t avg_rcv_gap;
+ uint32_t std_dev_gap;
+} rcv_stats_t;
+
+typedef struct {
+ odp_time_t xmt_time;
+ odp_time_t rcv_time;
+ uint64_t delta_ns;
+ odp_tm_queue_t tm_queue;
+ uint16_t pkt_len;
+ uint16_t xmt_unique_id;
+ uint16_t xmt_idx;
+ uint8_t pkt_class;
+ uint8_t was_rcvd;
+} xmt_pkt_desc_t;
+
+typedef struct {
+ odp_time_t rcv_time;
+ xmt_pkt_desc_t *xmt_pkt_desc;
+ uint16_t rcv_unique_id;
+ uint16_t xmt_idx;
+ uint8_t errors;
+ uint8_t matched;
+ uint8_t pkt_class;
+ uint8_t is_ipv4_pkt;
+} rcv_pkt_desc_t;
+
+typedef struct {
+ odp_tm_percent_t confidence_percent;
+ odp_tm_percent_t drop_percent;
+ uint32_t min_cnt;
+ uint32_t max_cnt;
+} wred_pkt_cnts_t;
+
+typedef struct {
+ uint32_t num_queues;
+ uint32_t priority;
+ odp_tm_queue_t tm_queues[NUM_LEVEL2_TM_NODES];
+} queue_array_t;
+
+typedef struct {
+ queue_array_t queue_array[NUM_PRIORITIES];
+} queues_set_t;
+
+typedef struct {
+ uint16_t vlan_tci;
+ uint8_t pkt_class;
+ uint8_t ip_tos; /* TOS for IPv4 and TC for IPv6 */
+ odp_packet_color_t pkt_color;
+ odp_bool_t drop_eligible;
+ odp_bool_t use_vlan; /* Else no VLAN header */
+ odp_bool_t use_ipv6; /* Else use IPv4 */
+ odp_bool_t use_tcp; /* Else use UDP */
+} pkt_info_t;
+
+static const char ALPHABET[] =
+ "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";
+
+/* The following constant table determines the minimum and maximum number of
+ * pkts that will be received when sending 100 pkts through a system with a
+ * drop probability of p% (using a uniform probability distribution), with a
+ * confidence of 99.9% 99.99% and 99.999%. The confidence is interepreted as
+ * follows: a 99.99% confidence says that receiving LESS pkts than the given
+ * minimum or receiving MORE pkts than the given maximum (assuming a uniform
+ * drop percent of p) will happen less than 1 time in 10,000 trials.
+ * Mathematically the minimum pkt cnt is the largest value of cnt
+ * that satisfies the following equation:
+ * "(1 - cf/100)/2 <= Sum(binomial(100,k) * (1-p)^k * p^(100-k), k=0..cnt)",
+ * where cf is the confidence, caret (^) represents exponentiation,
+ * binomial(n,k) is the binomial coefficient defined as n! / (k! * (n-k)!).
+ * and p is the drop probability. Similarly the maximum pkt cnt is the
+ * smallest value of cnt that satisfies the equation:
+ * "(1 - cf/100)/2 <= Sum(binomial(100,k) * (1-p)^k * p^(100-k), k=cnt..100)".
+ * As a consequence of this, it should be the case that:
+ * cf/100 <= Sum(binomial(100,k) * (1-p)^k * p^(100-k), k=min..max)".
+ */
+static wred_pkt_cnts_t EXPECTED_PKT_RCVD[] = {
+ { TM_PERCENT(99.0), TM_PERCENT(10.0), 82, 97 },
+ { TM_PERCENT(99.0), TM_PERCENT(20.0), 69, 90 },
+ { TM_PERCENT(99.0), TM_PERCENT(30.0), 58, 81 },
+ { TM_PERCENT(99.0), TM_PERCENT(40.0), 47, 72 },
+ { TM_PERCENT(99.0), TM_PERCENT(50.0), 37, 63 },
+ { TM_PERCENT(99.0), TM_PERCENT(60.0), 28, 53 },
+ { TM_PERCENT(99.0), TM_PERCENT(70.0), 19, 42 },
+ { TM_PERCENT(99.0), TM_PERCENT(80.0), 10, 31 },
+ { TM_PERCENT(99.0), TM_PERCENT(90.0), 3, 18 },
+
+ { TM_PERCENT(99.9), TM_PERCENT(10.0), 79, 98 },
+ { TM_PERCENT(99.9), TM_PERCENT(20.0), 66, 92 },
+ { TM_PERCENT(99.9), TM_PERCENT(30.0), 54, 84 },
+ { TM_PERCENT(99.9), TM_PERCENT(40.0), 44, 76 },
+ { TM_PERCENT(99.9), TM_PERCENT(50.0), 34, 66 },
+ { TM_PERCENT(99.9), TM_PERCENT(60.0), 24, 56 },
+ { TM_PERCENT(99.9), TM_PERCENT(70.0), 16, 46 },
+ { TM_PERCENT(99.9), TM_PERCENT(80.0), 8, 34 },
+ { TM_PERCENT(99.9), TM_PERCENT(90.0), 2, 21 },
+
+ { TM_PERCENT(99.99), TM_PERCENT(10.0), 77, 99 },
+ { TM_PERCENT(99.99), TM_PERCENT(20.0), 63, 94 },
+ { TM_PERCENT(99.99), TM_PERCENT(30.0), 51, 87 },
+ { TM_PERCENT(99.99), TM_PERCENT(40.0), 41, 78 },
+ { TM_PERCENT(99.99), TM_PERCENT(50.0), 31, 69 },
+ { TM_PERCENT(99.99), TM_PERCENT(60.0), 22, 59 },
+ { TM_PERCENT(99.99), TM_PERCENT(70.0), 13, 49 },
+ { TM_PERCENT(99.99), TM_PERCENT(80.0), 6, 37 },
+ { TM_PERCENT(99.99), TM_PERCENT(90.0), 1, 23 },
+};
+
+static uint8_t EQUAL_WEIGHTS[FANIN_RATIO] = {
+ 16, 16, 16, 16, 16, 16, 16, 16
+};
+
+static uint8_t INCREASING_WEIGHTS[FANIN_RATIO] = {
+ 8, 12, 16, 24, 32, 48, 64, 96
+};
+
+static uint8_t IPV4_SRC_ADDR[ODPH_IPV4ADDR_LEN] = {
+ 10, 0, 0, 1 /* I.e. 10.0.0.1 */
+};
+
+static uint8_t IPV4_DST_ADDR[ODPH_IPV4ADDR_LEN] = {
+ 10, 0, 0, 100 /* I.e. 10.0.0.100 */
+};
+
+static uint8_t IPV6_SRC_ADDR[ODPH_IPV6ADDR_LEN] = {
+ /* I.e. ::ffff:10.0.0.1 */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, 10, 0, 0, 1
+};
+
+static uint8_t IPV6_DST_ADDR[ODPH_IPV6ADDR_LEN] = {
+ /* I.e. ::ffff:10.0.0.100 */
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, 10, 0, 0, 100
+};
+
+static odp_tm_t odp_tm_systems[MAX_TM_SYSTEMS];
+static tm_node_desc_t *root_node_descs[MAX_TM_SYSTEMS];
+static uint32_t num_odp_tm_systems;
+
+static odp_tm_capabilities_t tm_capabilities;
+
+static odp_tm_shaper_t shaper_profiles[NUM_SHAPER_PROFILES];
+static odp_tm_sched_t sched_profiles[NUM_SCHED_PROFILES];
+static odp_tm_threshold_t threshold_profiles[NUM_THRESHOLD_PROFILES];
+static odp_tm_wred_t wred_profiles[NUM_WRED_PROFILES][ODP_NUM_PKT_COLORS];
+
+static uint32_t num_shaper_profiles;
+static uint32_t num_sched_profiles;
+static uint32_t num_threshold_profiles;
+static uint32_t num_wred_profiles;
+
+static uint8_t payload_data[MAX_PAYLOAD];
+
+static odp_packet_t xmt_pkts[MAX_PKTS];
+static xmt_pkt_desc_t xmt_pkt_descs[MAX_PKTS];
+static uint32_t num_pkts_made;
+static uint32_t num_pkts_sent;
+
+static odp_packet_t rcv_pkts[MAX_PKTS];
+static rcv_pkt_desc_t rcv_pkt_descs[MAX_PKTS];
+static uint32_t num_rcv_pkts;
+
+static uint32_t rcv_gaps[MAX_PKTS];
+static uint32_t rcv_gap_cnt;
+
+static queues_set_t queues_set;
+static uint32_t unique_id_list[MAX_PKTS];
+
+/* interface names used for testing */
+static const char *iface_name[MAX_NUM_IFACES];
+
+/** number of interfaces being used (1=loopback, 2=pair) */
+static uint32_t num_ifaces;
+
+static odp_pool_t pools[MAX_NUM_IFACES] = {ODP_POOL_INVALID, ODP_POOL_INVALID};
+
+static odp_pktio_t pktios[MAX_NUM_IFACES];
+static odp_pktin_queue_t pktins[MAX_NUM_IFACES];
+static odp_pktout_queue_t pktouts[MAX_NUM_IFACES];
+static odp_pktin_queue_t rcv_pktin;
+static odp_pktout_queue_t xmt_pktout;
+
+static odph_ethaddr_t src_mac;
+static odph_ethaddr_t dst_mac;
+
+static uint32_t cpu_unique_id;
+static uint32_t cpu_tcp_seq_num;
+
+static void busy_wait(uint64_t nanoseconds)
+{
+ odp_time_t start_time, end_time;
+
+ start_time = odp_time_local();
+ end_time = odp_time_sum(start_time,
+ odp_time_local_from_ns(nanoseconds));
+
+ while (odp_time_cmp(odp_time_local(), end_time) < 0)
+ odp_cpu_pause();
+}
+
+static odp_bool_t approx_eq32(uint32_t val, uint32_t correct)
+{
+ uint64_t low_bound, val_times_100, high_bound;
+
+ if (val == correct)
+ return true;
+
+ low_bound = 98 * (uint64_t)correct;
+ val_times_100 = 100 * (uint64_t)val;
+ high_bound = 102 * (uint64_t)correct;
+
+ if ((low_bound <= val_times_100) && (val_times_100 <= high_bound))
+ return true;
+ else
+ return false;
+}
+
+static odp_bool_t approx_eq64(uint64_t val, uint64_t correct)
+{
+ uint64_t low_bound, val_times_100, high_bound;
+
+ if (val == correct)
+ return true;
+
+ low_bound = 98 * correct;
+ val_times_100 = 100 * val;
+ high_bound = 102 * correct;
+
+ if ((low_bound <= val_times_100) && (val_times_100 <= high_bound))
+ return true;
+ else
+ return false;
+}
+
+static int test_overall_capabilities(void)
+{
+ odp_tm_level_capabilities_t *per_level;
+ odp_tm_capabilities_t capabilities_array[MAX_CAPABILITIES];
+ odp_tm_capabilities_t *cap_ptr;
+ uint32_t num_records, idx, num_levels, level;
+ int rc;
+
+ rc = odp_tm_capabilities(capabilities_array, MAX_CAPABILITIES);
+ if (rc < 0) {
+ CU_ASSERT(rc < 0);
+ return -1;
+ }
+
+ /* Now test the return code (which did not indicate a failure code)
+ * to make sure that there is at least ONE capabilities record
+ * returned */
+ if (rc == 0) {
+ CU_ASSERT(rc != 0);
+ return -1;
+ }
+
+ /* Now test the return code to see if there were more capabilities
+ * records than the call above allowed for. This is not an error,
+ * just an interesting fact.
+ */
+ num_records = MAX_CAPABILITIES;
+ if (MAX_CAPABILITIES < rc)
+ LOG_DBG("There were more than %u capabilities (%u)\n",
+ MAX_CAPABILITIES, rc);
+ else
+ num_records = rc;
+
+ /* Loop through the returned capabilities (there MUST be at least one)
+ * and do some basic checks to prove that it isn't just an empty
+ * record. */
+ for (idx = 0; idx < num_records; idx++) {
+ cap_ptr = &capabilities_array[idx];
+ if (cap_ptr->max_tm_queues == 0) {
+ CU_ASSERT(cap_ptr->max_tm_queues != 0);
+ return -1;
+ }
+
+ if (cap_ptr->max_levels == 0) {
+ CU_ASSERT(cap_ptr->max_levels != 0);
+ return -1;
+ }
+
+ num_levels = cap_ptr->max_levels;
+ for (level = 0; level < num_levels; level++) {
+ per_level = &cap_ptr->per_level[level];
+
+ if (per_level->max_num_tm_nodes == 0) {
+ CU_ASSERT(per_level->max_num_tm_nodes != 0);
+ return -1;
+ }
+
+ if (per_level->max_fanin_per_node == 0) {
+ CU_ASSERT(per_level->max_fanin_per_node != 0);
+ return -1;
+ }
+
+ if (per_level->max_priority == 0) {
+ CU_ASSERT(per_level->max_priority != 0);
+ return -1;
+ }
+ }
+ }
+
+ return 0;
+}
+
+static int wait_linkup(odp_pktio_t pktio)
+{
+ /* wait 1 second for link up */
+ uint64_t wait_ns = (10 * ODP_TIME_MSEC_IN_NS);
+ int wait_num = 100;
+ int i;
+ int ret = -1;
+
+ for (i = 0; i < wait_num; i++) {
+ ret = odp_pktio_link_status(pktio);
+ if (ret < 0 || ret == 1)
+ break;
+ /* link is down, call status again after delay */
+ odp_time_wait_ns(wait_ns);
+ }
+
+ return ret;
+}
+
+static int open_pktios(void)
+{
+ odp_pktio_param_t pktio_param;
+ odp_pool_param_t pool_param;
+ odp_pktio_t pktio;
+ odp_pool_t pkt_pool;
+ uint32_t iface;
+ char pool_name[ODP_POOL_NAME_LEN];
+ int rc, ret;
+
+ odp_pool_param_init(&pool_param);
+ pool_param.pkt.num = 10 * MAX_PKTS;
+ pool_param.type = ODP_POOL_PACKET;
+
+ odp_pktio_param_init(&pktio_param);
+ pktio_param.in_mode = ODP_PKTIN_MODE_DIRECT;
+ pktio_param.out_mode = ODP_PKTOUT_MODE_DIRECT;
+
+ for (iface = 0; iface < num_ifaces; iface++) {
+ snprintf(pool_name, sizeof(pool_name), "pkt_pool_%s",
+ iface_name[iface]);
+
+ pkt_pool = odp_pool_create(pool_name, &pool_param);
+ if (pkt_pool == ODP_POOL_INVALID) {
+ CU_FAIL("unable to create pool");
+ return -1;
+ }
+
+ pools[iface] = pkt_pool;
+ pktio = odp_pktio_open(iface_name[iface], pkt_pool,
+ &pktio_param);
+ if (pktio == ODP_PKTIO_INVALID)
+ pktio = odp_pktio_lookup(iface_name[iface]);
+ if (pktio == ODP_PKTIO_INVALID) {
+ LOG_ERR("odp_pktio_open() failed\n");
+ return -1;
+ }
+
+ /* Set defaults for PktIn and PktOut queues */
+ (void)odp_pktin_queue_config(pktio, NULL);
+ (void)odp_pktout_queue_config(pktio, NULL);
+ rc = odp_pktio_promisc_mode_set(pktio, true);
+ if (rc != 0)
+ printf("****** promisc_mode_set failed ******\n");
+
+ pktios[iface] = pktio;
+
+ if (odp_pktin_queue(pktio, &pktins[iface], 1) != 1) {
+ odp_pktio_close(pktio);
+ LOG_ERR("odp_pktio_open() failed: no pktin queue\n");
+ return -1;
+ }
+
+ if (odp_pktout_queue(pktio, &pktouts[iface], 1) != 1) {
+ odp_pktio_close(pktio);
+ LOG_ERR("odp_pktio_open() failed: no pktout queue\n");
+ return -1;
+ }
+
+ rc = -1;
+ if (iface == 0)
+ rc = odp_pktio_mac_addr(pktio, &src_mac,
+ ODPH_ETHADDR_LEN);
+
+ if ((iface == 1) || (num_ifaces == 1))
+ rc = odp_pktio_mac_addr(pktio, &dst_mac,
+ ODPH_ETHADDR_LEN);
+
+ if (rc != ODPH_ETHADDR_LEN) {
+ LOG_ERR("odp_pktio_mac_addr() failed\n");
+ return -1;
+ }
+ }
+
+ if (2 <= num_ifaces) {
+ xmt_pktout = pktouts[0];
+ rcv_pktin = pktins[1];
+ ret = odp_pktio_start(pktios[1]);
+ if (ret != 0) {
+ LOG_ERR("odp_pktio_start() failed\n");
+ return -1;
+ }
+ } else {
+ xmt_pktout = pktouts[0];
+ rcv_pktin = pktins[0];
+ }
+
+ ret = odp_pktio_start(pktios[0]);
+ if (ret != 0) {
+ LOG_ERR("odp_pktio_start() failed\n");
+ return -1;
+ }
+
+ /* Now wait until the link or links are up. */
+ rc = wait_linkup(pktios[0]);
+ if (rc != 1) {
+ LOG_ERR("link %" PRIX64 " not up\n",
+ odp_pktio_to_u64(pktios[0]));
+ return -1;
+ }
+
+ if (num_ifaces < 2)
+ return 0;
+
+ /* Wait for 2nd link to be up */
+ rc = wait_linkup(pktios[1]);
+ if (rc != 1) {
+ LOG_ERR("link %" PRIX64 " not up\n",
+ odp_pktio_to_u64(pktios[0]));
+ return -1;
+ }
+
+ return 0;
+}
+
+static int get_unique_id(odp_packet_t odp_pkt,
+ uint16_t *unique_id_ptr,
+ uint8_t *is_ipv4_pkt_ptr)
+{
+ odp_u32be_t be_ver_tc_flow;
+ odp_u16be_t be_ip_ident;
+ odp_bool_t is_ipv4;
+ uint32_t l3_offset, ident_offset, flow_offset, ver_tc_flow;
+ uint16_t unique_id;
+
+ l3_offset = odp_packet_l3_offset(odp_pkt);
+
+ if (odp_packet_has_ipv4(odp_pkt)) {
+ /* For IPv4 pkts use the ident field to store the unique_id. */
+ ident_offset = l3_offset + offsetof(odph_ipv4hdr_t, id);
+
+ odp_packet_copy_to_mem(odp_pkt, ident_offset, 2, &be_ip_ident);
+ unique_id = odp_be_to_cpu_16(be_ip_ident);
+ is_ipv4 = true;
+ } else if (odp_packet_has_ipv6(odp_pkt)) {
+ /* For IPv6 pkts use the flow field to store the unique_id. */
+ flow_offset = l3_offset + offsetof(odph_ipv6hdr_t, ver_tc_flow);
+
+ odp_packet_copy_to_mem(odp_pkt, flow_offset, 4,
+ &be_ver_tc_flow);
+ ver_tc_flow = odp_be_to_cpu_32(be_ver_tc_flow);
+ unique_id = ver_tc_flow & ODPH_IPV6HDR_FLOW_LABEL_MASK;
+ is_ipv4 = false;
+ } else {
+ return -1;
+ }
+
+ if (unique_id_ptr != NULL)
+ *unique_id_ptr = unique_id;
+
+ if (is_ipv4_pkt_ptr != NULL)
+ *is_ipv4_pkt_ptr = is_ipv4;
+
+ return 0;
+}
+
+static int get_vlan_tci(odp_packet_t odp_pkt, uint16_t *vlan_tci_ptr)
+{
+ odph_vlanhdr_t *vlan_hdr;
+ odph_ethhdr_t *ether_hdr;
+ uint32_t hdr_len;
+ uint16_t vlan_tci;
+
+ if (!odp_packet_has_vlan(odp_pkt))
+ return -1;
+
+ /* *TBD* check value of hdr_len? */
+ ether_hdr = odp_packet_l2_ptr(odp_pkt, &hdr_len);
+ vlan_hdr = (odph_vlanhdr_t *)(ether_hdr + 1);
+ vlan_tci = odp_be_to_cpu_16(vlan_hdr->tci);
+ if (vlan_tci_ptr != NULL)
+ *vlan_tci_ptr = vlan_tci;
+
+ return 0;
+}
+
+/* Returns either the TOS field for IPv4 pkts or the TC field for IPv6 pkts. */
+static int get_ip_tos(odp_packet_t odp_pkt, uint8_t *tos_ptr)
+{
+ odph_ipv4hdr_t *ipv4_hdr;
+ odph_ipv6hdr_t *ipv6_hdr;
+ uint32_t hdr_len, ver_tc_flow;
+ uint8_t tos, tc;
+
+ if (odp_packet_has_ipv4(odp_pkt)) {
+ ipv4_hdr = odp_packet_l3_ptr(odp_pkt, &hdr_len);
+ if (hdr_len < 12)
+ return -1;
+
+ tos = ipv4_hdr->tos;
+ } else if (odp_packet_has_ipv6(odp_pkt)) {
+ ipv6_hdr = odp_packet_l3_ptr(odp_pkt, &hdr_len);
+ if (hdr_len < 4)
+ return -1;
+
+ ver_tc_flow = odp_be_to_cpu_32(ipv6_hdr->ver_tc_flow);
+ tc = (ver_tc_flow & ODPH_IPV6HDR_TC_MASK)
+ >> ODPH_IPV6HDR_TC_SHIFT;
+ tos = tc;
+ } else {
+ return -1;
+ }
+
+ if (tos_ptr != NULL)
+ *tos_ptr = tos;
+
+ return 0;
+}
+
+static odp_packet_t make_pkt(odp_pool_t pkt_pool,
+ uint32_t payload_len,
+ uint16_t unique_id,
+ pkt_info_t *pkt_info)
+{
+ odph_vlanhdr_t *vlan_hdr;
+ odph_ipv4hdr_t *ipv4_hdr;
+ odph_ipv6hdr_t *ipv6_hdr;
+ odph_ethhdr_t *eth_hdr;
+ odph_udphdr_t *udp_hdr;
+ odph_tcphdr_t *tcp_hdr;
+ odp_packet_t odp_pkt;
+ uint32_t l4_hdr_len, l3_hdr_len, vlan_hdr_len, l2_hdr_len;
+ uint32_t l4_len, l3_len, l2_len, pkt_len, l3_offset, l4_offset;
+ uint32_t version, tc, flow, ver_tc_flow, app_offset;
+ uint16_t final_ether_type;
+ uint8_t *buf, *pkt_class_ptr, next_hdr;
+ int rc;
+
+ l4_hdr_len = pkt_info->use_tcp ? ODPH_TCPHDR_LEN : ODPH_UDPHDR_LEN;
+ l3_hdr_len = pkt_info->use_ipv6 ? ODPH_IPV6HDR_LEN : ODPH_IPV4HDR_LEN;
+ vlan_hdr_len = pkt_info->use_vlan ? ODPH_VLANHDR_LEN : 0;
+ l2_hdr_len = ODPH_ETHHDR_LEN + vlan_hdr_len;
+ l4_len = l4_hdr_len + payload_len;
+ l3_len = l3_hdr_len + l4_len;
+ l2_len = l2_hdr_len + l3_len;
+ pkt_len = l2_len;
+ if (unique_id == 0) {
+ LOG_ERR("make_pkt called with invalid unique_id of 0\n");
+ return ODP_PACKET_INVALID;
+ }
+
+ odp_pkt = odp_packet_alloc(pkt_pool, pkt_len);
+ if (odp_pkt == ODP_PACKET_INVALID)
+ return ODP_PACKET_INVALID;
+
+ buf = odp_packet_data(odp_pkt);
+
+ /* Ethernet Header */
+ odp_packet_l2_offset_set(odp_pkt, 0);
+ eth_hdr = (odph_ethhdr_t *)buf;
+ final_ether_type = pkt_info->use_ipv6 ? ODPH_ETHTYPE_IPV6
+ : ODPH_ETHTYPE_IPV4;
+ memcpy(eth_hdr->src.addr, &src_mac, ODPH_ETHADDR_LEN);
+ memcpy(eth_hdr->dst.addr, &dst_mac, ODPH_ETHADDR_LEN);
+
+ /* Vlan Header */
+ if (pkt_info->use_vlan) {
+ odp_packet_has_vlan_set(odp_pkt, 1);
+ eth_hdr->type = odp_cpu_to_be_16(ODPH_ETHTYPE_VLAN);
+ vlan_hdr = (odph_vlanhdr_t *)(eth_hdr + 1);
+ vlan_hdr->tci = odp_cpu_to_be_16(pkt_info->vlan_tci);
+ vlan_hdr->type = odp_cpu_to_be_16(final_ether_type);
+ } else {
+ eth_hdr->type = odp_cpu_to_be_16(final_ether_type);
+ }
+
+ l3_offset = l2_hdr_len;
+ next_hdr = pkt_info->use_tcp ? ODPH_IPPROTO_TCP : ODPH_IPPROTO_UDP;
+ odp_packet_l3_offset_set(odp_pkt, l3_offset);
+ if (pkt_info->use_ipv6) {
+ /* IPv6 Header */
+ odp_packet_has_ipv6_set(odp_pkt, 1);
+ version = ODPH_IPV6 << ODPH_IPV6HDR_VERSION_SHIFT;
+ tc = pkt_info->ip_tos << ODPH_IPV6HDR_TC_SHIFT;
+ flow = unique_id << ODPH_IPV6HDR_FLOW_LABEL_SHIFT;
+ ver_tc_flow = version | tc | flow;
+
+ ipv6_hdr = (odph_ipv6hdr_t *)(buf + l3_offset);
+ ipv6_hdr->ver_tc_flow = odp_cpu_to_be_32(ver_tc_flow);
+ ipv6_hdr->payload_len = odp_cpu_to_be_16(l4_len);
+ ipv6_hdr->next_hdr = next_hdr;
+ ipv6_hdr->hop_limit = DEFAULT_TTL;
+ memcpy(ipv6_hdr->src_addr, IPV6_SRC_ADDR, ODPH_IPV6ADDR_LEN);
+ memcpy(ipv6_hdr->dst_addr, IPV6_DST_ADDR, ODPH_IPV6ADDR_LEN);
+ } else {
+ /* IPv4 Header */
+ odp_packet_has_ipv4_set(odp_pkt, 1);
+ ipv4_hdr = (odph_ipv4hdr_t *)(buf + l3_offset);
+ ipv4_hdr->ver_ihl = (ODPH_IPV4 << 4) | ODPH_IPV4HDR_IHL_MIN;
+ ipv4_hdr->tos = pkt_info->ip_tos;
+ ipv4_hdr->tot_len = odp_cpu_to_be_16(l3_len);
+ ipv4_hdr->id = odp_cpu_to_be_16(unique_id);
+ ipv4_hdr->frag_offset = 0;
+ ipv4_hdr->ttl = DEFAULT_TTL;
+ ipv4_hdr->proto = next_hdr;
+ ipv4_hdr->chksum = 0;
+ memcpy(&ipv4_hdr->src_addr, IPV4_SRC_ADDR, ODPH_IPV4ADDR_LEN);
+ memcpy(&ipv4_hdr->dst_addr, IPV4_DST_ADDR, ODPH_IPV4ADDR_LEN);
+ }
+
+ l4_offset = l3_offset + l3_hdr_len;
+ odp_packet_l4_offset_set(odp_pkt, l4_offset);
+ tcp_hdr = (odph_tcphdr_t *)(buf + l4_offset);
+ udp_hdr = (odph_udphdr_t *)(buf + l4_offset);
+
+ if (pkt_info->use_tcp) {
+ /* TCP Header */
+ odp_packet_has_tcp_set(odp_pkt, 1);
+ tcp_hdr->src_port = odp_cpu_to_be_16(DEFAULT_TCP_SRC_PORT);
+ tcp_hdr->dst_port = odp_cpu_to_be_16(DEFAULT_TCP_DST_PORT);
+ tcp_hdr->seq_no = odp_cpu_to_be_32(cpu_tcp_seq_num);
+ tcp_hdr->ack_no = odp_cpu_to_be_32(DEFAULT_TCP_ACK_NUM);
+ tcp_hdr->window = odp_cpu_to_be_16(DEFAULT_TCP_WINDOW);
+ tcp_hdr->cksm = 0;
+ tcp_hdr->urgptr = 0;
+
+ tcp_hdr->doffset_flags = 0;
+ tcp_hdr->hl = 5;
+ tcp_hdr->ack = 1;
+ cpu_tcp_seq_num += payload_len;
+ } else {
+ /* UDP Header */
+ odp_packet_has_udp_set(odp_pkt, 1);
+ udp_hdr->src_port = odp_cpu_to_be_16(DEFAULT_UDP_SRC_PORT);
+ udp_hdr->dst_port = odp_cpu_to_be_16(DEFAULT_UDP_DST_PORT);
+ udp_hdr->length = odp_cpu_to_be_16(l4_len);
+ udp_hdr->chksum = 0;
+ }
+
+ app_offset = l4_offset + l4_hdr_len;
+ rc = odp_packet_copy_from_mem(odp_pkt, app_offset, payload_len,
+ payload_data);
+ CU_ASSERT_FATAL(rc == 0);
+
+ pkt_class_ptr = odp_packet_offset(odp_pkt, app_offset, NULL, NULL);
+ CU_ASSERT_FATAL(pkt_class_ptr != NULL);
+ *pkt_class_ptr = pkt_info->pkt_class;
+
+ /* Calculate and insert checksums. First the IPv4 header checksum. */
+ if (!pkt_info->use_ipv6)
+ odph_ipv4_csum_update(odp_pkt);
+
+ /* Next the UDP/TCP checksum. */
+ if (odph_udp_tcp_chksum(odp_pkt, ODPH_CHKSUM_GENERATE, NULL) != 0)
+ LOG_ERR("odph_udp_tcp_chksum failed\n");
+
+ return odp_pkt;
+}
+
+static xmt_pkt_desc_t *find_matching_xmt_pkt_desc(uint16_t unique_id)
+{
+ xmt_pkt_desc_t *xmt_pkt_desc;
+ uint32_t xmt_pkt_idx;
+
+ if (unique_id == 0)
+ return NULL;
+
+ for (xmt_pkt_idx = 0; xmt_pkt_idx < num_pkts_sent; xmt_pkt_idx++) {
+ xmt_pkt_desc = &xmt_pkt_descs[xmt_pkt_idx];
+ if (xmt_pkt_desc->xmt_unique_id == unique_id)
+ return xmt_pkt_desc;
+ }
+
+ return NULL;
+}
+
+static int receive_pkts(odp_tm_t odp_tm,
+ odp_pktin_queue_t pktin,
+ uint32_t num_pkts,
+ uint64_t rate_bps)
+{
+ xmt_pkt_desc_t *xmt_pkt_desc;
+ rcv_pkt_desc_t *rcv_pkt_desc;
+ odp_packet_t rcv_pkt;
+ odp_time_t start_time, current_time, duration, xmt_time;
+ odp_time_t rcv_time, delta_time;
+ uint64_t temp1, timeout_ns, duration_ns, delta_ns;
+ uint32_t pkts_rcvd, rcv_idx, l4_offset, l4_hdr_len, app_offset;
+ uint16_t unique_id;
+ uint8_t *pkt_class_ptr, pkt_class, is_ipv4_pkt;
+ int rc;
+
+ temp1 = (1000000ULL * 10000ULL * (uint64_t)num_pkts) / rate_bps;
+ timeout_ns = 1000ULL * ((4ULL * temp1) + 10000ULL);
+
+ pkts_rcvd = 0;
+ start_time = odp_time_local();
+ duration_ns = 0;
+
+ while ((pkts_rcvd < num_pkts) || (!odp_tm_is_idle(odp_tm))) {
+ rc = odp_pktin_recv(pktin, &rcv_pkts[pkts_rcvd], 1);
+ if (rc < 0)
+ return rc;
+
+ current_time = odp_time_local();
+ duration = odp_time_diff(current_time, start_time);
+ duration_ns = odp_time_to_ns(duration);
+ if (rc == 1)
+ rcv_pkt_descs[pkts_rcvd++].rcv_time = current_time;
+ else if (timeout_ns < duration_ns)
+ break;
+ }
+
+ /* Now go through matching the rcv pkts to the xmt pkts, determining
+ * which xmt_pkts were lost and for the ones that did arrive, how
+ * long did they take. We don't do this work while receiving the pkts
+ * in the loop above because we want to try to get as accurate a
+ * rcv timestamp as possible. */
+ for (rcv_idx = 0; rcv_idx < pkts_rcvd; rcv_idx++) {
+ rcv_pkt = rcv_pkts[rcv_idx];
+ rcv_pkt_desc = &rcv_pkt_descs[rcv_idx];
+
+ if (odp_packet_has_error(rcv_pkt)) {
+ rcv_pkt_desc->errors = 0x01 |
+ (odp_packet_has_l2_error(rcv_pkt) << 1) |
+ (odp_packet_has_l3_error(rcv_pkt) << 2) |
+ (odp_packet_has_l4_error(rcv_pkt) << 3);
+
+ LOG_ERR("received a pkt with the following errors\n");
+ LOG_ERR(" l2_err=%u l3_err=%u l4_err=%u. Skipping\n",
+ (rcv_pkt_desc->errors >> 1) & 0x1,
+ (rcv_pkt_desc->errors >> 2) & 0x1,
+ (rcv_pkt_desc->errors >> 3) & 0x1);
+ }
+
+ unique_id = 0;
+ rc = get_unique_id(rcv_pkt, &unique_id, &is_ipv4_pkt);
+ if (rc != 0) {
+ LOG_ERR("received a non IPv4/IPv6 pkt\n");
+ return -1;
+ }
+
+ rcv_pkt_desc->rcv_unique_id = unique_id;
+ rcv_pkt_desc->is_ipv4_pkt = is_ipv4_pkt;
+ if (odp_packet_has_udp(rcv_pkt))
+ l4_hdr_len = ODPH_UDPHDR_LEN;
+ else if (odp_packet_has_tcp(rcv_pkt))
+ l4_hdr_len = ODPH_TCPHDR_LEN;
+ else
+ l4_hdr_len = 0;
+
+ l4_offset = odp_packet_l4_offset(rcv_pkt);
+ app_offset = l4_offset + l4_hdr_len;
+ pkt_class_ptr = odp_packet_offset(rcv_pkt, app_offset,
+ NULL, NULL);
+ if (pkt_class_ptr != NULL)
+ rcv_pkt_desc->pkt_class = *pkt_class_ptr;
+
+ xmt_pkt_desc = find_matching_xmt_pkt_desc(unique_id);
+ if (xmt_pkt_desc != NULL) {
+ rcv_pkt_desc->xmt_pkt_desc = xmt_pkt_desc;
+ rcv_pkt_desc->matched = true;
+
+ xmt_time = xmt_pkt_desc->xmt_time;
+ rcv_time = rcv_pkt_desc->rcv_time;
+ pkt_class = rcv_pkt_desc->pkt_class;
+ delta_time = odp_time_diff(rcv_time, xmt_time);
+ delta_ns = odp_time_to_ns(delta_time);
+
+ rcv_pkt_desc->xmt_idx = xmt_pkt_desc->xmt_idx;
+ xmt_pkt_desc->rcv_time = rcv_time;
+ xmt_pkt_desc->delta_ns = delta_ns;
+ xmt_pkt_desc->pkt_class = pkt_class;
+ xmt_pkt_desc->was_rcvd = 1;
+ }
+ }
+
+ return pkts_rcvd;
+}
+
+static void dump_rcvd_pkts(uint32_t first_rcv_idx, uint32_t last_rcv_idx)
+{
+ rcv_pkt_desc_t *rcv_pkt_desc;
+ odp_packet_t rcv_pkt;
+ uint32_t rcv_idx;
+ int32_t xmt_idx;
+ uint16_t unique_id;
+ uint8_t is_ipv4;
+ int rc;
+
+ for (rcv_idx = first_rcv_idx; rcv_idx <= last_rcv_idx; rcv_idx++) {
+ rcv_pkt = rcv_pkts[rcv_idx];
+ rcv_pkt_desc = &rcv_pkt_descs[rcv_idx];
+ rc = get_unique_id(rcv_pkt, &unique_id, &is_ipv4);
+ xmt_idx = -1;
+ if (rcv_pkt_desc->matched)
+ xmt_idx = rcv_pkt_desc->xmt_pkt_desc->xmt_idx;
+
+ printf("rcv_idx=%u odp_pkt=0x%" PRIX64 " xmt_idx=%d "
+ "pkt_class=%u is_ipv4=%u unique_id=0x%X (rc=%d)\n",
+ rcv_idx, odp_packet_to_u64(rcv_pkt), xmt_idx,
+ rcv_pkt_desc->pkt_class, is_ipv4, unique_id, rc);
+ }
+}
+
+static void free_rcvd_pkts(void)
+{
+ odp_packet_t rcv_pkt;
+ uint32_t rcv_idx;
+
+ /* Go through all of the received pkts and free them. */
+ for (rcv_idx = 0; rcv_idx < num_rcv_pkts; rcv_idx++) {
+ rcv_pkt = rcv_pkts[rcv_idx];
+ if (rcv_pkt != ODP_PACKET_INVALID) {
+ odp_packet_free(rcv_pkt);
+ rcv_pkts[rcv_idx] = ODP_PACKET_INVALID;
+ }
+ }
+}
+
+static void flush_leftover_pkts(odp_tm_t odp_tm, odp_pktin_queue_t pktin)
+{
+ odp_packet_t rcv_pkt;
+ odp_time_t start_time, current_time, duration;
+ uint64_t min_timeout_ns, max_timeout_ns, duration_ns;
+ int rc;
+
+ /* Set the timeout to be at least 10 milliseconds and at most 100
+ * milliseconds */
+ min_timeout_ns = 10 * ODP_TIME_MSEC_IN_NS;
+ max_timeout_ns = 100 * ODP_TIME_MSEC_IN_NS;
+ start_time = odp_time_local();
+
+ while (true) {
+ rc = odp_pktin_recv(pktin, &rcv_pkt, 1);
+ if (rc == 1)
+ odp_packet_free(rcv_pkt);
+
+ current_time = odp_time_local();
+ duration = odp_time_diff(current_time, start_time);
+ duration_ns = odp_time_to_ns(duration);
+
+ if (max_timeout_ns <= duration_ns)
+ break;
+ else if (duration_ns < min_timeout_ns)
+ ;
+ else if ((odp_tm_is_idle(odp_tm)) && (rc == 0))
+ break;
+
+ /* Busy wait here a little bit to prevent overwhelming the
+ * odp_pktin_recv logic. */
+ busy_wait(10000);
+ }
+}
+
+static void init_xmt_pkts(pkt_info_t *pkt_info)
+{
+ memset(xmt_pkts, 0, sizeof(xmt_pkts));
+ memset(xmt_pkt_descs, 0, sizeof(xmt_pkt_descs));
+ num_pkts_made = 0;
+ num_pkts_sent = 0;
+
+ free_rcvd_pkts();
+ memset(rcv_pkts, 0, sizeof(rcv_pkts));
+ memset(rcv_pkt_descs, 0, sizeof(rcv_pkt_descs));
+ num_rcv_pkts = 0;
+
+ memset(rcv_gaps, 0, sizeof(rcv_gaps));
+ rcv_gap_cnt = 0;
+ memset(pkt_info, 0, sizeof(pkt_info_t));
+ pkt_info->ip_tos = DEFAULT_TOS;
+}
+
+static int make_pkts(uint32_t num_pkts,
+ uint32_t pkt_len,
+ pkt_info_t *pkt_info)
+{
+ xmt_pkt_desc_t *xmt_pkt_desc;
+ odp_packet_t odp_pkt;
+ uint32_t l4_hdr_len, l3_hdr_len, vlan_hdr_len, l2_hdr_len;
+ uint32_t hdrs_len, payload_len, idx, unique_id, xmt_pkt_idx;
+
+ l4_hdr_len = pkt_info->use_tcp ? ODPH_TCPHDR_LEN : ODPH_UDPHDR_LEN;
+ l3_hdr_len = pkt_info->use_ipv6 ? ODPH_IPV6HDR_LEN : ODPH_IPV4HDR_LEN;
+ vlan_hdr_len = pkt_info->use_vlan ? ODPH_VLANHDR_LEN : 0;
+ l2_hdr_len = ODPH_ETHHDR_LEN + vlan_hdr_len;
+
+ hdrs_len = l2_hdr_len + l3_hdr_len + l4_hdr_len;
+ payload_len = pkt_len - hdrs_len;
+
+ for (idx = 0; idx < num_pkts; idx++) {
+ unique_id = cpu_unique_id++;
+ xmt_pkt_idx = num_pkts_made++;
+ xmt_pkt_desc = &xmt_pkt_descs[xmt_pkt_idx];
+ xmt_pkt_desc->pkt_len = pkt_len;
+ xmt_pkt_desc->xmt_unique_id = unique_id;
+ xmt_pkt_desc->pkt_class = pkt_info->pkt_class;
+
+ odp_pkt = make_pkt(pools[0], payload_len, unique_id, pkt_info);
+ if (odp_pkt == ODP_PACKET_INVALID)
+ return -1;
+
+ odp_packet_color_set(odp_pkt, pkt_info->pkt_color);
+ odp_packet_drop_eligible_set(odp_pkt, pkt_info->drop_eligible);
+ odp_packet_shaper_len_adjust_set(odp_pkt, SHAPER_LEN_ADJ);
+
+ xmt_pkts[xmt_pkt_idx] = odp_pkt;
+ }
+
+ return 0;
+}
+
+static uint32_t send_pkts(odp_tm_queue_t tm_queue, uint32_t num_pkts)
+{
+ xmt_pkt_desc_t *xmt_pkt_desc;
+ odp_packet_t odp_pkt;
+ uint32_t idx, xmt_pkt_idx, pkts_sent;
+ int rc;
+
+ /* Now send the pkts as fast as we can. */
+ pkts_sent = 0;
+ for (idx = 0; idx < num_pkts; idx++) {
+ xmt_pkt_idx = num_pkts_sent;
+ odp_pkt = xmt_pkts[xmt_pkt_idx];
+ xmt_pkt_desc = &xmt_pkt_descs[xmt_pkt_idx];
+
+ /* Alternate calling with odp_tm_enq and odp_tm_enq_with_cnt */
+ if ((idx & 1) == 0)
+ rc = odp_tm_enq(tm_queue, odp_pkt);
+ else
+ rc = odp_tm_enq_with_cnt(tm_queue, odp_pkt);
+
+ xmt_pkt_desc->xmt_idx = xmt_pkt_idx;
+ if (0 <= rc) {
+ xmt_pkt_desc->xmt_time = odp_time_local();
+ xmt_pkt_desc->tm_queue = tm_queue;
+ pkts_sent++;
+ } else {
+ odp_packet_free(odp_pkt);
+ xmt_pkts[xmt_pkt_idx] = ODP_PACKET_INVALID;
+ }
+
+ num_pkts_sent++;
+ }
+
+ return pkts_sent;
+}
+
+static uint32_t pkts_rcvd_in_send_order(void)
+{
+ xmt_pkt_desc_t *xmt_pkt_desc;
+ odp_time_t last_rcv_time, rcv_time;
+ uint32_t xmt_pkt_idx, pkts_rcvd;
+
+ pkts_rcvd = 0;
+ last_rcv_time = ODP_TIME_NULL;
+ for (xmt_pkt_idx = 0; xmt_pkt_idx < num_pkts_sent; xmt_pkt_idx++) {
+ xmt_pkt_desc = &xmt_pkt_descs[xmt_pkt_idx];
+ rcv_time = xmt_pkt_desc->rcv_time;
+ if (xmt_pkt_desc->was_rcvd != 0) {
+ if ((pkts_rcvd != 0) &&
+ (odp_time_cmp(rcv_time, last_rcv_time) < 0))
+ return 0;
+
+ pkts_rcvd++;
+ last_rcv_time = xmt_pkt_desc->rcv_time;
+ }
+ }
+
+ return pkts_rcvd;
+}
+
+static int unique_id_list_idx(uint32_t unique_id,
+ uint32_t unique_id_list[],
+ uint32_t unique_id_list_len)
+{
+ uint32_t idx;
+
+ for (idx = 0; idx < unique_id_list_len; idx++)
+ if (unique_id_list[idx] == unique_id)
+ return idx;
+
+ return -1;
+}
+
+static uint32_t pkts_rcvd_in_given_order(uint32_t unique_id_list[],
+ uint32_t unique_id_list_len,
+ uint8_t pkt_class,
+ odp_bool_t match_pkt_class,
+ odp_bool_t ignore_pkt_class)
+{
+ rcv_pkt_desc_t *rcv_pkt_desc;
+ odp_bool_t is_match;
+ uint32_t rcv_pkt_idx, pkts_in_order, pkts_out_of_order;
+ uint32_t rcv_unique_id;
+ int last_pkt_idx, pkt_idx;
+
+ pkts_in_order = 1;
+ pkts_out_of_order = 0;
+ last_pkt_idx = -1;
+ pkt_idx = -1;
+
+ for (rcv_pkt_idx = 0; rcv_pkt_idx < num_rcv_pkts; rcv_pkt_idx++) {
+ rcv_pkt_desc = &rcv_pkt_descs[rcv_pkt_idx];
+
+ if (ignore_pkt_class)
+ is_match = true;
+ else if (match_pkt_class)
+ is_match = rcv_pkt_desc->pkt_class == pkt_class;
+ else
+ is_match = rcv_pkt_desc->pkt_class != pkt_class;
+
+ if (is_match) {
+ rcv_unique_id = rcv_pkt_desc->rcv_unique_id;
+ pkt_idx = unique_id_list_idx(rcv_unique_id,
+ unique_id_list,
+ unique_id_list_len);
+ if (0 <= pkt_idx) {
+ if (0 <= last_pkt_idx) {
+ if (last_pkt_idx < pkt_idx)
+ pkts_in_order++;
+ else
+ pkts_out_of_order++;
+ }
+
+ last_pkt_idx = pkt_idx;
+ }
+ }
+ }
+
+ return pkts_in_order;
+}
+
+static inline void record_rcv_gap(odp_time_t rcv_time, odp_time_t last_rcv_time)
+{
+ odp_time_t delta_time;
+ uint64_t delta_ns;
+ uint32_t rcv_gap;
+
+ rcv_gap = 0;
+ if (odp_time_cmp(last_rcv_time, rcv_time) <= 0) {
+ delta_time = odp_time_diff(rcv_time, last_rcv_time);
+ delta_ns = odp_time_to_ns(delta_time);
+ rcv_gap = delta_ns / 1000;
+ }
+
+ /* Note that rcv_gap is in units of microseconds. */
+ rcv_gaps[rcv_gap_cnt++] = rcv_gap;
+}
+
+static int rcv_gap_cmp(const void *left_ptr, const void *right_ptr)
+{
+ uint32_t left_value, right_value;
+
+ left_value = * (const uint32_t *)left_ptr;
+ right_value = * (const uint32_t *)right_ptr;
+
+ if (left_value < right_value)
+ return -1;
+ else if (left_value == right_value)
+ return 0;
+ else
+ return 1;
+}
+
+static inline void calc_rcv_stats(rcv_stats_t *rcv_stats,
+ uint32_t initial_drop_percent,
+ uint32_t ending_drop_percent)
+{
+ uint32_t first_rcv_gap_idx, last_rcv_gap_idx, idx, rcv_gap;
+
+ /* Sort the rcv_gaps, and then drop the outlying x values before doing
+ * doing the rcv stats on the remaining */
+ qsort(&rcv_gaps[0], rcv_gap_cnt, sizeof(uint32_t), rcv_gap_cmp);
+
+ /* Next we drop the outlying values before doing doing the rcv stats
+ * on the remaining rcv_gap values. The number of initial (very low)
+ * rcv_gaps dropped and the number of ending (very high) rcv_gaps
+ * drops is based on the percentages passed in. */
+ first_rcv_gap_idx = (rcv_gap_cnt * initial_drop_percent) / 100;
+ last_rcv_gap_idx = (rcv_gap_cnt * (100 - ending_drop_percent)) / 100;
+ for (idx = first_rcv_gap_idx; idx <= last_rcv_gap_idx; idx++) {
+ rcv_gap = rcv_gaps[idx];
+ rcv_stats->min_rcv_gap = MIN(rcv_stats->min_rcv_gap, rcv_gap);
+ rcv_stats->max_rcv_gap = MAX(rcv_stats->max_rcv_gap, rcv_gap);
+ rcv_stats->total_rcv_gap += rcv_gap;
+ rcv_stats->total_rcv_gap_squared += rcv_gap * rcv_gap;
+ rcv_stats->num_samples++;
+ }
+}
+
+static int rcv_rate_stats(rcv_stats_t *rcv_stats, uint8_t pkt_class)
+{
+ xmt_pkt_desc_t *xmt_pkt_desc;
+ odp_time_t last_rcv_time, rcv_time;
+ uint32_t pkt_idx, pkts_rcvd, num;
+ uint32_t avg, variance, std_dev;
+
+ pkts_rcvd = 0;
+ last_rcv_time = ODP_TIME_NULL;
+ memset(rcv_stats, 0, sizeof(rcv_stats_t));
+ rcv_stats->min_rcv_gap = 1000000000;
+
+ for (pkt_idx = 0; pkt_idx < num_pkts_sent; pkt_idx++) {
+ xmt_pkt_desc = &xmt_pkt_descs[pkt_idx];
+ if ((xmt_pkt_desc->was_rcvd != 0) &&
+ (xmt_pkt_desc->pkt_class == pkt_class)) {
+ rcv_time = xmt_pkt_desc->rcv_time;
+ if (pkts_rcvd != 0)
+ record_rcv_gap(rcv_time, last_rcv_time);
+ pkts_rcvd++;
+ last_rcv_time = rcv_time;
+ }
+ }
+
+ if (pkts_rcvd == 0)
+ return -1;
+
+ calc_rcv_stats(rcv_stats, INITIAL_RCV_GAP_DROP, ENDING_RCV_GAP_DROP);
+ num = rcv_stats->num_samples;
+ if (num == 0)
+ return -1;
+
+ avg = rcv_stats->total_rcv_gap / num;
+ variance = (rcv_stats->total_rcv_gap_squared / num) - avg * avg;
+ std_dev = (uint32_t)sqrt((double)variance);
+
+ rcv_stats->avg_rcv_gap = avg;
+ rcv_stats->std_dev_gap = std_dev;
+ return 0;
+}
+
+static int create_tm_queue(odp_tm_t odp_tm,
+ odp_tm_node_t tm_node,
+ uint32_t node_idx,
+ tm_queue_desc_t *queue_desc,
+ uint32_t priority)
+{
+ odp_tm_queue_params_t queue_params;
+ odp_tm_queue_t tm_queue;
+ odp_tm_wred_t green_profile, yellow_profile, red_profile;
+ int rc;
+
+ odp_tm_queue_params_init(&queue_params);
+ queue_params.priority = priority;
+ if (priority == 0) {
+ green_profile = wred_profiles[node_idx][PKT_GREEN];
+ yellow_profile = wred_profiles[node_idx][PKT_YELLOW];
+ red_profile = wred_profiles[node_idx][PKT_RED];
+
+ queue_params.shaper_profile = shaper_profiles[0];
+ queue_params.threshold_profile = threshold_profiles[0];
+ queue_params.wred_profile[PKT_GREEN] = green_profile;
+ queue_params.wred_profile[PKT_YELLOW] = yellow_profile;
+ queue_params.wred_profile[PKT_RED] = red_profile;
+ }
+
+ tm_queue = odp_tm_queue_create(odp_tm, &queue_params);
+ if (tm_queue == ODP_TM_INVALID) {
+ LOG_ERR("odp_tm_queue_create() failed\n");
+ return -1;
+ }
+
+ queue_desc->tm_queues[priority] = tm_queue;
+ rc = odp_tm_queue_connect(tm_queue, tm_node);
+ if (rc != 0) {
+ LOG_ERR("odp_tm_queue_connect() failed\n");
+ odp_tm_queue_destroy(tm_queue);
+ return -1;
+ }
+
+ return 0;
+}
+
+static int destroy_tm_queue(odp_tm_queue_t tm_queue)
+{
+ odp_tm_queue_disconnect(tm_queue);
+ return odp_tm_queue_destroy(tm_queue);
+}
+
+static tm_node_desc_t *create_tm_node(odp_tm_t odp_tm,
+ uint32_t level,
+ uint32_t num_levels,
+ uint32_t node_idx,
+ tm_node_desc_t *parent_node_desc)
+{
+ odp_tm_node_params_t node_params;
+ tm_queue_desc_t *queue_desc;
+ tm_node_desc_t *node_desc;
+ odp_tm_wred_t green_profile, yellow_profile, red_profile;
+ odp_tm_node_t tm_node, parent_node;
+ uint32_t node_desc_size, queue_desc_size, priority;
+ char node_name[TM_NAME_LEN];
+ int rc;
+
+ odp_tm_node_params_init(&node_params);
+ node_params.shaper_profile = ODP_TM_INVALID;
+ node_params.threshold_profile = ODP_TM_INVALID;
+ node_params.wred_profile[PKT_GREEN] = ODP_TM_INVALID;
+ node_params.wred_profile[PKT_YELLOW] = ODP_TM_INVALID;
+ node_params.wred_profile[PKT_RED] = ODP_TM_INVALID;
+ if (node_idx == 0) {
+ node_params.shaper_profile = shaper_profiles[0];
+ node_params.threshold_profile = threshold_profiles[0];
+ if (level == num_levels) {
+ green_profile = wred_profiles[node_idx][PKT_GREEN];
+ yellow_profile = wred_profiles[node_idx][PKT_YELLOW];
+ red_profile = wred_profiles[node_idx][PKT_RED];
+
+ node_params.wred_profile[PKT_GREEN] = green_profile;
+ node_params.wred_profile[PKT_YELLOW] = yellow_profile;
+ node_params.wred_profile[PKT_RED] = red_profile;
+ }
+ }
+
+ node_params.max_fanin = FANIN_RATIO;
+ node_params.level = level;
+ if (parent_node_desc == NULL)
+ snprintf(node_name, sizeof(node_name), "node_%u",
+ node_idx + 1);
+ else
+ snprintf(node_name, sizeof(node_name), "%s_%u",
+ parent_node_desc->node_name, node_idx + 1);
+
+ tm_node = odp_tm_node_create(odp_tm, node_name, &node_params);
+ if (tm_node == ODP_TM_INVALID) {
+ LOG_ERR("odp_tm_node_create() failed @ level=%u\n",
+ level);
+ return NULL;
+ }
+
+ /* Now connect this node to the lower level "parent" node. */
+ if (level == 0 || !parent_node_desc)
+ parent_node = ODP_TM_ROOT;
+ else
+ parent_node = parent_node_desc->node;
+
+ rc = odp_tm_node_connect(tm_node, parent_node);
+ if (rc != 0) {
+ LOG_ERR("odp_tm_node_connect() failed @ level=%u\n",
+ level);
+ odp_tm_node_destroy(tm_node);
+ return NULL;
+ }
+
+ node_desc_size = sizeof(tm_node_desc_t) +
+ sizeof(odp_tm_node_t) * FANIN_RATIO;
+ node_desc = malloc(node_desc_size);
+ memset(node_desc, 0, node_desc_size);
+ node_desc->level = level;
+ node_desc->node_idx = node_idx;
+ node_desc->num_children = FANIN_RATIO;
+ node_desc->node = tm_node;
+ node_desc->parent_node = parent_node;
+ node_desc->node_name = strdup(node_name);
+
+ /* Finally if the level is the highest then make fanin_ratio tm_queues
+ * feeding this node. */
+ if (level < (num_levels - 1))
+ return node_desc;
+
+ node_desc->num_children = 0;
+ queue_desc_size = sizeof(tm_queue_desc_t) +
+ sizeof(odp_tm_queue_t) * NUM_QUEUES_PER_NODE;
+ queue_desc = malloc(queue_desc_size);
+ memset(queue_desc, 0, queue_desc_size);
+ queue_desc->num_queues = NUM_QUEUES_PER_NODE;
+ node_desc->queue_desc = queue_desc;
+
+ for (priority = 0; priority < NUM_QUEUES_PER_NODE; priority++) {
+ rc = create_tm_queue(odp_tm, tm_node, node_idx, queue_desc,
+ priority);
+ if (rc != 0) {
+ LOG_ERR("create_tm_queue() failed @ level=%u\n",
+ level);
+ while (priority > 0)
+ (void)destroy_tm_queue
+ (queue_desc->tm_queues[--priority]);
+ free(queue_desc);
+ free(node_desc);
+ return NULL;
+ }
+ }
+
+ return node_desc;
+}
+
+static tm_node_desc_t *create_tm_subtree(odp_tm_t odp_tm,
+ uint32_t level,
+ uint32_t num_levels,
+ uint32_t node_idx,
+ tm_node_desc_t *parent_node)
+{
+ tm_node_desc_t *node_desc, *child_desc;
+ uint32_t child_idx;
+
+ node_desc = create_tm_node(odp_tm, level, num_levels,
+ node_idx, parent_node);
+ if (node_desc == NULL) {
+ LOG_ERR("create_tm_node() failed @ level=%u\n", level);
+ return NULL;
+ }
+
+ if (level < (num_levels - 1)) {
+ for (child_idx = 0; child_idx < FANIN_RATIO; child_idx++) {
+ child_desc = create_tm_subtree(odp_tm, level + 1,
+ num_levels, child_idx,
+ node_desc);
+ if (child_desc == NULL) {
+ LOG_ERR("create_tm_subtree failed level=%u\n",
+ level);
+
+ return NULL;
+ }
+
+ node_desc->children[child_idx] = child_desc;
+ }
+ }
+
+ return node_desc;
+}
+
+static odp_tm_node_t find_tm_node(uint8_t tm_system_idx, const char *node_name)
+{
+ return odp_tm_node_lookup(odp_tm_systems[tm_system_idx], node_name);
+}
+
+static tm_node_desc_t *find_node_desc(uint8_t tm_system_idx,
+ const char *node_name)
+{
+ tm_node_desc_t *node_desc;
+ uint32_t child_num;
+ char *name_ptr;
+
+ /* Assume node_name is "node_" followed by a sequence of integers
+ * separated by underscores, where each integer is the child number to
+ * get to the next level node. */
+ node_desc = root_node_descs[tm_system_idx];
+ name_ptr = strchr(node_name, '_');
+ if (name_ptr == NULL)
+ return NULL;
+
+ /* Skip over the first integer */
+ name_ptr++;
+ name_ptr = strchr(name_ptr, '_');
+ if (name_ptr != NULL)
+ name_ptr++;
+
+ while (node_desc != NULL) {
+ if (strcmp(node_desc->node_name, node_name) == 0)
+ return node_desc;
+
+ if (name_ptr == NULL)
+ return NULL;
+
+ child_num = atoi(name_ptr);
+ if (node_desc->num_children < child_num)
+ return NULL;
+
+ node_desc = node_desc->children[child_num - 1];
+ name_ptr = strchr(name_ptr, '_');
+ if (name_ptr != NULL)
+ name_ptr++;
+ }
+
+ return NULL;
+}
+
+static odp_tm_queue_t find_tm_queue(uint8_t tm_system_idx,
+ const char *node_name,
+ uint8_t priority)
+{
+ tm_queue_desc_t *queue_desc;
+ tm_node_desc_t *node_desc;
+
+ node_desc = find_node_desc(tm_system_idx, node_name);
+ if (node_desc == NULL)
+ return ODP_TM_INVALID;
+
+ queue_desc = node_desc->queue_desc;
+ if (queue_desc == NULL)
+ return ODP_TM_INVALID;
+
+ return queue_desc->tm_queues[priority];
+}
+
+static uint32_t find_child_queues(uint8_t tm_system_idx,
+ tm_node_desc_t *node_desc,
+ uint8_t priority,
+ odp_tm_queue_t tm_queues[],
+ uint32_t max_queues)
+{
+ tm_queue_desc_t *queue_desc;
+ tm_node_desc_t *child_node_desc;
+ uint32_t num_children, num_queues, child_idx, rem_queues;
+
+ if (max_queues == 0)
+ return 0;
+
+ queue_desc = node_desc->queue_desc;
+ if (queue_desc != NULL) {
+ tm_queues[0] = queue_desc->tm_queues[priority];
+ return 1;
+ }
+
+ num_children = node_desc->num_children;
+ num_queues = 0;
+
+ for (child_idx = 0; child_idx < num_children; child_idx++) {
+ child_node_desc = node_desc->children[child_idx];
+ rem_queues = max_queues - num_queues;
+ num_queues += find_child_queues(tm_system_idx, child_node_desc,
+ priority,
+ &tm_queues[num_queues],
+ rem_queues);
+ if (num_queues == max_queues)
+ break;
+ }
+
+ return num_queues;
+}
+
+static int create_tm_system(void)
+{
+ odp_tm_level_requirements_t *per_level;
+ odp_tm_requirements_t requirements;
+ odp_tm_egress_t egress;
+ odp_packet_color_t color;
+ tm_node_desc_t *root_node_desc;
+ uint32_t level, max_nodes[ODP_TM_MAX_LEVELS];
+ odp_tm_t odp_tm, found_odp_tm;
+ char tm_name[TM_NAME_LEN];
+ int rc;
+
+ odp_tm_requirements_init(&requirements);
+ odp_tm_egress_init(&egress);
+
+ requirements.max_tm_queues = NUM_TM_QUEUES + 1;
+ requirements.num_levels = NUM_LEVELS;
+ requirements.tm_queue_shaper_needed = true;
+ requirements.tm_queue_wred_needed = true;
+ requirements.tm_queue_dual_slope_needed = true;
+ requirements.vlan_marking_needed = false;
+ requirements.ecn_marking_needed = true;
+ requirements.drop_prec_marking_needed = true;
+ for (color = 0; color < ODP_NUM_PACKET_COLORS; color++)
+ requirements.marking_colors_needed[color] = true;
+
+ /* Set the max_num_tm_nodes to be double the expected number of nodes
+ * at that level */
+ memset(max_nodes, 0, sizeof(max_nodes));
+ max_nodes[0] = 2 * NUM_LEVEL0_TM_NODES;
+ max_nodes[1] = 2 * NUM_LEVEL1_TM_NODES;
+ max_nodes[2] = 2 * NUM_LEVEL2_TM_NODES;
+ max_nodes[3] = 2 * NUM_LEVEL2_TM_NODES * FANIN_RATIO;
+
+ for (level = 0; level < NUM_LEVELS; level++) {
+ per_level = &requirements.per_level[level];
+ per_level->max_priority = NUM_PRIORITIES - 1;
+ per_level->max_num_tm_nodes = max_nodes[level];
+ per_level->max_fanin_per_node = FANIN_RATIO;
+ per_level->tm_node_shaper_needed = true;
+ per_level->tm_node_wred_needed = false;
+ per_level->tm_node_dual_slope_needed = false;
+ per_level->fair_queuing_needed = true;
+ per_level->weights_needed = true;
+ }
+
+ egress.egress_kind = ODP_TM_EGRESS_PKT_IO;
+ egress.pktout = xmt_pktout;
+
+ snprintf(tm_name, sizeof(tm_name), "TM_system_%u", num_odp_tm_systems);
+ odp_tm = odp_tm_create(tm_name, &requirements, &egress);
+ if (odp_tm == ODP_TM_INVALID) {
+ LOG_ERR("odp_tm_create() failed\n");
+ return -1;
+ }
+
+ odp_tm_systems[num_odp_tm_systems] = odp_tm;
+
+ root_node_desc = create_tm_subtree(odp_tm, 0, NUM_LEVELS, 0, NULL);
+ root_node_descs[num_odp_tm_systems] = root_node_desc;
+ if (root_node_desc == NULL) {
+ LOG_ERR("create_tm_subtree() failed\n");
+ return -1;
+ }
+
+ num_odp_tm_systems++;
+
+ /* Test odp_tm_capability and odp_tm_find. */
+ rc = odp_tm_capability(odp_tm, &tm_capabilities);
+ if (rc != 0) {
+ LOG_ERR("odp_tm_capability() failed\n");
+ return -1;
+ }
+
+ found_odp_tm = odp_tm_find(tm_name, &requirements, &egress);
+ if ((found_odp_tm == ODP_TM_INVALID) || (found_odp_tm != odp_tm)) {
+ LOG_ERR("odp_tm_find() failed\n");
+ return -1;
+ }
+
+ return 0;
+}
+
+static void dump_tm_subtree(tm_node_desc_t *node_desc)
+{
+ odp_tm_node_info_t node_info;
+ uint32_t idx, num_queues, child_idx;
+ int rc;
+
+ for (idx = 0; idx < node_desc->level; idx++)
+ printf(" ");
+
+ rc = odp_tm_node_info(node_desc->node, &node_info);
+ if (rc != 0) {
+ LOG_ERR("odp_tm_node_info failed for tm_node=0x%" PRIX64 "\n",
+ node_desc->node);
+ }
+
+ num_queues = 0;
+ if (node_desc->queue_desc != NULL)
+ num_queues = node_desc->queue_desc->num_queues;
+
+ printf("node_desc=%p name='%s' tm_node=0x%" PRIX64 " idx=%u level=%u "
+ "parent=0x%" PRIX64 " children=%u queues=%u queue_fanin=%u "
+ "node_fanin=%u\n",
+ node_desc, node_desc->node_name, node_desc->node,
+ node_desc->node_idx, node_desc->level, node_desc->parent_node,
+ node_desc->num_children, num_queues, node_info.tm_queue_fanin,
+ node_info.tm_node_fanin);
+
+ for (child_idx = 0; child_idx < node_desc->num_children; child_idx++)
+ dump_tm_subtree(node_desc->children[child_idx]);
+}
+
+static void dump_tm_tree(uint32_t tm_idx)
+{
+ tm_node_desc_t *root_node_desc;
+
+ if (!TM_DEBUG)
+ return;
+
+ root_node_desc = root_node_descs[tm_idx];
+ dump_tm_subtree(root_node_desc);
+}
+
+static int unconfig_tm_queue_profiles(odp_tm_queue_t tm_queue)
+{
+ odp_tm_queue_info_t queue_info;
+ odp_tm_wred_t wred_profile;
+ uint32_t color;
+ int rc;
+
+ rc = odp_tm_queue_info(tm_queue, &queue_info);
+ if (rc != 0) {
+ LOG_ERR("odp_tm_queue_info failed code=%d\n", rc);
+ return rc;
+ }
+
+ if (queue_info.shaper_profile != ODP_TM_INVALID) {
+ rc = odp_tm_queue_shaper_config(tm_queue, ODP_TM_INVALID);
+ if (rc != 0) {
+ LOG_ERR("odp_tm_queue_shaper_config failed code=%d\n",
+ rc);
+ return rc;
+ }
+ }
+
+ if (queue_info.threshold_profile != ODP_TM_INVALID) {
+ rc = odp_tm_queue_threshold_config(tm_queue, ODP_TM_INVALID);
+ if (rc != 0) {
+ LOG_ERR("odp_tm_queue_threshold_config failed "
+ "code=%d\n", rc);
+ return rc;
+ }
+ }
+
+ for (color = 0; color < ODP_NUM_PACKET_COLORS; color++) {
+ wred_profile = queue_info.wred_profile[color];
+ if (wred_profile != ODP_TM_INVALID) {
+ rc = odp_tm_queue_wred_config(tm_queue, color,
+ ODP_TM_INVALID);
+ if (rc != 0) {
+ LOG_ERR("odp_tm_queue_wred_config failed "
+ "color=%u code=%d\n", color, rc);
+ return rc;
+ }
+ }
+ }
+
+ return 0;
+}
+
+static int destroy_tm_queues(tm_queue_desc_t *queue_desc)
+{
+ odp_tm_queue_t tm_queue;
+ uint32_t num_queues, queue_idx;
+ int rc;
+
+ num_queues = queue_desc->num_queues;
+ for (queue_idx = 0; queue_idx < num_queues; queue_idx++) {
+ tm_queue = queue_desc->tm_queues[queue_idx];
+ if (tm_queue != ODP_TM_INVALID) {
+ rc = odp_tm_queue_disconnect(tm_queue);
+ if (rc != 0) {
+ LOG_ERR("odp_tm_queue_disconnect failed "
+ "idx=%u code=%d\n", queue_idx, rc);
+ return rc;
+ }
+
+ rc = unconfig_tm_queue_profiles(tm_queue);
+ if (rc != 0) {
+ LOG_ERR("unconfig_tm_queue_profiles failed "
+ "idx=%u code=%d\n", queue_idx, rc);
+ return rc;
+ }
+
+ rc = odp_tm_queue_destroy(tm_queue);
+ if (rc != 0) {
+ LOG_ERR("odp_tm_queue_destroy failed "
+ "idx=%u code=%d\n", queue_idx, rc);
+ return rc;
+ }
+ }
+ }
+
+ free(queue_desc);
+ return 0;
+}
+
+static int unconfig_tm_node_profiles(odp_tm_node_t tm_node)
+{
+ odp_tm_node_info_t node_info;
+ odp_tm_wred_t wred_profile;
+ uint32_t color;
+ int rc;
+
+ rc = odp_tm_node_info(tm_node, &node_info);
+ if (rc != 0) {
+ LOG_ERR("odp_tm_node_info failed code=%d\n", rc);
+ return rc;
+ }
+
+ if (node_info.shaper_profile != ODP_TM_INVALID) {
+ rc = odp_tm_node_shaper_config(tm_node, ODP_TM_INVALID);
+ if (rc != 0) {
+ LOG_ERR("odp_tm_node_shaper_config failed code=%d\n",
+ rc);
+ return rc;
+ }
+ }
+
+ if (node_info.threshold_profile != ODP_TM_INVALID) {
+ rc = odp_tm_node_threshold_config(tm_node, ODP_TM_INVALID);
+ if (rc != 0) {
+ LOG_ERR("odp_tm_node_threshold_config failed "
+ "code=%d\n", rc);
+ return rc;
+ }
+ }
+
+ for (color = 0; color < ODP_NUM_PACKET_COLORS; color++) {
+ wred_profile = node_info.wred_profile[color];
+ if (wred_profile != ODP_TM_INVALID) {
+ rc = odp_tm_node_wred_config(tm_node, color,
+ ODP_TM_INVALID);
+ if (rc != 0) {
+ LOG_ERR("odp_tm_node_wred_config failed "
+ "color=%u code=%d\n", color, rc);
+ return rc;
+ }
+ }
+ }
+
+ return 0;
+}
+
+static int destroy_tm_subtree(tm_node_desc_t *node_desc)
+{
+ tm_queue_desc_t *queue_desc;
+ tm_node_desc_t *child_desc;
+ odp_tm_node_t tm_node;
+ uint32_t num_children, child_num;
+ int rc;
+
+ num_children = node_desc->num_children;
+ for (child_num = 0; child_num < num_children; child_num++) {
+ child_desc = node_desc->children[child_num];
+ if (child_desc != NULL) {
+ rc = destroy_tm_subtree(child_desc);
+ if (rc != 0) {
+ LOG_ERR("destroy_tm_subtree failed "
+ "child_num=%u code=%d\n",
+ child_num, rc);
+ return rc;
+ }
+ }
+ }
+
+ queue_desc = node_desc->queue_desc;
+ if (queue_desc != NULL) {
+ rc = destroy_tm_queues(queue_desc);
+ if (rc != 0) {
+ LOG_ERR("destroy_tm_queues failed code=%d\n", rc);
+ return rc;
+ }
+ }
+
+ tm_node = node_desc->node;
+ rc = odp_tm_node_disconnect(tm_node);
+ if (rc != 0) {
+ LOG_ERR("odp_tm_node_disconnect failed code=%d\n", rc);
+ return rc;
+ }
+
+ rc = unconfig_tm_node_profiles(tm_node);
+ if (rc != 0) {
+ LOG_ERR("unconfig_tm_node_profiles failed code=%d\n", rc);
+ return rc;
+ }
+
+ rc = odp_tm_node_destroy(tm_node);
+ if (rc != 0) {
+ LOG_ERR("odp_tm_node_destroy failed code=%d\n", rc);
+ return rc;
+ }
+
+ if (node_desc->node_name)
+ free(node_desc->node_name);
+
+ free(node_desc);
+ return 0;
+}
+
+static int destroy_all_shaper_profiles(void)
+{
+ odp_tm_shaper_t shaper_profile;
+ uint32_t idx;
+ int rc;
+
+ for (idx = 0; idx < NUM_SHAPER_PROFILES; idx++) {
+ shaper_profile = shaper_profiles[idx];
+ if (shaper_profile != ODP_TM_INVALID) {
+ rc = odp_tm_shaper_destroy(shaper_profile);
+ if (rc != 0) {
+ LOG_ERR("odp_tm_sched_destroy failed "
+ "idx=%u code=%d\n", idx, rc);
+ return rc;
+ }
+ shaper_profiles[idx] = ODP_TM_INVALID;
+ }
+ }
+
+ return 0;
+}
+
+static int destroy_all_sched_profiles(void)
+{
+ odp_tm_sched_t sched_profile;
+ uint32_t idx;
+ int rc;
+
+ for (idx = 0; idx < NUM_SCHED_PROFILES; idx++) {
+ sched_profile = sched_profiles[idx];
+ if (sched_profile != ODP_TM_INVALID) {
+ rc = odp_tm_sched_destroy(sched_profile);
+ if (rc != 0) {
+ LOG_ERR("odp_tm_sched_destroy failed "
+ "idx=%u code=%d\n", idx, rc);
+ return rc;
+ }
+ sched_profiles[idx] = ODP_TM_INVALID;
+ }
+ }
+
+ return 0;
+}
+
+static int destroy_all_threshold_profiles(void)
+{
+ odp_tm_threshold_t threshold_profile;
+ uint32_t idx;
+ int rc;
+
+ for (idx = 0; idx < NUM_THRESHOLD_PROFILES; idx++) {
+ threshold_profile = threshold_profiles[idx];
+ if (threshold_profile != ODP_TM_INVALID) {
+ rc = odp_tm_threshold_destroy(threshold_profile);
+ if (rc != 0) {
+ LOG_ERR("odp_tm_threshold_destroy failed "
+ "idx=%u code=%d\n", idx, rc);
+ return rc;
+ }
+ threshold_profiles[idx] = ODP_TM_INVALID;
+ }
+ }
+
+ return 0;
+}
+
+static int destroy_all_wred_profiles(void)
+{
+ odp_tm_wred_t wred_profile;
+ uint32_t idx, color;
+ int rc;
+
+ for (idx = 0; idx < NUM_WRED_PROFILES; idx++) {
+ for (color = 0; color < ODP_NUM_PKT_COLORS; color++) {
+ wred_profile = wred_profiles[idx][color];
+ if (wred_profile != ODP_TM_INVALID) {
+ rc = odp_tm_wred_destroy(wred_profile);
+ if (rc != 0) {
+ LOG_ERR("odp_tm_wred_destroy failed "
+ "idx=%u color=%u code=%d\n",
+ idx, color, rc);
+ return rc;
+ }
+ wred_profiles[idx][color] = ODP_TM_INVALID;
+ }
+ }
+ }
+
+ return 0;
+}
+
+static int destroy_all_profiles(void)
+{
+ int rc;
+
+ rc = destroy_all_shaper_profiles();
+ if (rc != 0) {
+ LOG_ERR("destroy_all_shaper_profiles failed code=%d\n", rc);
+ return rc;
+ }
+
+ rc = destroy_all_sched_profiles();
+ if (rc != 0) {
+ LOG_ERR("destroy_all_sched_profiles failed code=%d\n", rc);
+ return rc;
+ }
+
+ rc = destroy_all_threshold_profiles();
+ if (rc != 0) {
+ LOG_ERR("destroy_all_threshold_profiles failed code=%d\n", rc);
+ return rc;
+ }
+
+ rc = destroy_all_wred_profiles();
+ if (rc != 0) {
+ LOG_ERR("destroy_all_wred_profiles failed code=%d\n", rc);
+ return rc;
+ }
+
+ return 0;
+}
+
+static int destroy_tm_systems(void)
+{
+ uint32_t idx;
+
+ /* Close/free the TM systems. */
+ for (idx = 0; idx < num_odp_tm_systems; idx++) {
+ if (destroy_tm_subtree(root_node_descs[idx]) != 0)
+ return -1;
+
+ if (odp_tm_destroy(odp_tm_systems[idx]) != 0)
+ return -1;
+ }
+
+ /* Close/free the TM profiles. */
+ if (destroy_all_profiles() != 0)
+ return -1;
+
+ return 0;
+}
+
+int traffic_mngr_suite_init(void)
+{
+ uint32_t payload_len, copy_len;
+
+ /* Initialize some global variables. */
+ num_pkts_made = 0;
+ num_pkts_sent = 0;
+ num_rcv_pkts = 0;
+ cpu_unique_id = 1;
+ cpu_tcp_seq_num = DEFAULT_TCP_SEQ_NUM;
+ memset(xmt_pkts, 0, sizeof(xmt_pkts));
+ memset(rcv_pkts, 0, sizeof(rcv_pkts));
+
+ payload_len = 0;
+ while (payload_len < MAX_PAYLOAD) {
+ copy_len = MIN(MAX_PAYLOAD - payload_len, sizeof(ALPHABET));
+ memcpy(&payload_data[payload_len], ALPHABET, copy_len);
+ payload_len += copy_len;
+ }
+
+ /* Next open a single or pair of interfaces. This should be the same
+ * logic as in the pktio_suite_init() function in the
+ * test/validation/pktio.c file. */
+ iface_name[0] = getenv("ODP_PKTIO_IF0");
+ iface_name[1] = getenv("ODP_PKTIO_IF1");
+ num_ifaces = 1;
+
+ if (!iface_name[0]) {
+ printf("No interfaces specified, using default \"loop\".\n");
+ iface_name[0] = "loop";
+ } else if (!iface_name[1]) {
+ printf("Using loopback interface: %s\n", iface_name[0]);
+ } else {
+ num_ifaces = 2;
+ printf("Using paired interfaces: %s %s\n",
+ iface_name[0], iface_name[1]);
+ }
+
+ if (open_pktios() != 0)
+ return -1;
+
+ return 0;
+}
+
+int traffic_mngr_suite_term(void)
+{
+ uint32_t iface;
+
+ /* Close the pktios and associated packet pools. */
+ free_rcvd_pkts();
+ for (iface = 0; iface < num_ifaces; iface++) {
+ if (odp_pktio_stop(pktios[iface]) != 0)
+ return -1;
+
+ if (odp_pktio_close(pktios[iface]) != 0)
+ return -1;
+
+ if (odp_pool_destroy(pools[iface]) != 0)
+ return -1;
+ }
+
+ return 0;
+}
+
+static void check_shaper_profile(char *shaper_name, uint32_t shaper_idx)
+{
+ odp_tm_shaper_params_t shaper_params;
+ odp_tm_shaper_t profile;
+
+ profile = odp_tm_shaper_lookup(shaper_name);
+ CU_ASSERT(profile != ODP_TM_INVALID);
+ CU_ASSERT(profile == shaper_profiles[shaper_idx - 1]);
+ if (profile != shaper_profiles[shaper_idx - 1])
+ return;
+
+ odp_tm_shaper_params_read(profile, &shaper_params);
+ CU_ASSERT(approx_eq64(shaper_params.commit_bps,
+ shaper_idx * MIN_COMMIT_BW));
+ CU_ASSERT(approx_eq64(shaper_params.peak_bps,
+ shaper_idx * MIN_PEAK_BW));
+ CU_ASSERT(approx_eq32(shaper_params.commit_burst,
+ shaper_idx * MIN_COMMIT_BURST));
+ CU_ASSERT(approx_eq32(shaper_params.peak_burst,
+ shaper_idx * MIN_PEAK_BURST));
+
+ CU_ASSERT(shaper_params.shaper_len_adjust == SHAPER_LEN_ADJ);
+ CU_ASSERT(shaper_params.dual_rate == 0);
+}
+
+void traffic_mngr_test_shaper_profile(void)
+{
+ odp_tm_shaper_params_t shaper_params;
+ odp_tm_shaper_t profile;
+ uint32_t idx, shaper_idx, i;
+ char shaper_name[TM_NAME_LEN];
+
+ odp_tm_shaper_params_init(&shaper_params);
+ shaper_params.shaper_len_adjust = SHAPER_LEN_ADJ;
+ shaper_params.dual_rate = 0;
+
+ for (idx = 1; idx <= NUM_SHAPER_TEST_PROFILES; idx++) {
+ snprintf(shaper_name, sizeof(shaper_name),
+ "shaper_profile_%u", idx);
+ shaper_params.commit_bps = idx * MIN_COMMIT_BW;
+ shaper_params.peak_bps = idx * MIN_PEAK_BW;
+ shaper_params.commit_burst = idx * MIN_COMMIT_BURST;
+ shaper_params.peak_burst = idx * MIN_PEAK_BURST;
+
+ profile = odp_tm_shaper_create(shaper_name, &shaper_params);
+ CU_ASSERT_FATAL(profile != ODP_TM_INVALID);
+
+ /* Make sure profile handle is unique */
+ for (i = 1; i < idx - 1; i++)
+ CU_ASSERT(profile != shaper_profiles[i - 1]);
+
+ shaper_profiles[idx - 1] = profile;
+ num_shaper_profiles++;
+ }
+
+ /* Now test odp_tm_shaper_lookup */
+ for (idx = 1; idx <= NUM_SHAPER_TEST_PROFILES; idx++) {
+ /* The following equation is designed is somewhat randomize
+ * the lookup of the profiles to catch any implementations
+ *taking shortcuts. */
+ shaper_idx = ((3 + 7 * idx) % NUM_SHAPER_TEST_PROFILES) + 1;
+ snprintf(shaper_name, sizeof(shaper_name),
+ "shaper_profile_%u", shaper_idx);
+
+ check_shaper_profile(shaper_name, shaper_idx);
+ }
+}
+
+static void check_sched_profile(char *sched_name, uint32_t sched_idx)
+{
+ odp_tm_sched_params_t sched_params;
+ odp_tm_sched_t profile;
+ uint32_t priority;
+
+ profile = odp_tm_sched_lookup(sched_name);
+ CU_ASSERT(profile != ODP_TM_INVALID);
+ CU_ASSERT(profile == sched_profiles[sched_idx - 1]);
+ if (profile != sched_profiles[sched_idx - 1])
+ return;
+
+ odp_tm_sched_params_read(profile, &sched_params);
+ for (priority = 0; priority < NUM_PRIORITIES; priority++) {
+ CU_ASSERT(sched_params.sched_modes[priority] ==
+ ODP_TM_BYTE_BASED_WEIGHTS);
+ CU_ASSERT(approx_eq32(sched_params.sched_weights[priority],
+ 8 + sched_idx + priority));
+ }
+}
+
+void traffic_mngr_test_sched_profile(void)
+{
+ odp_tm_sched_params_t sched_params;
+ odp_tm_sched_t profile;
+ uint32_t idx, priority, sched_idx, i;
+ char sched_name[TM_NAME_LEN];
+
+ odp_tm_sched_params_init(&sched_params);
+
+ for (idx = 1; idx <= NUM_SCHED_TEST_PROFILES; idx++) {
+ snprintf(sched_name, sizeof(sched_name),
+ "sched_profile_%u", idx);
+ for (priority = 0; priority < 16; priority++) {
+ sched_params.sched_modes[priority] =
+ ODP_TM_BYTE_BASED_WEIGHTS;
+ sched_params.sched_weights[priority] = 8 + idx +
+ priority;
+ }
+
+ profile = odp_tm_sched_create(sched_name, &sched_params);
+ CU_ASSERT_FATAL(profile != ODP_TM_INVALID);
+
+ /* Make sure profile handle is unique */
+ for (i = 1; i < idx - 1; i++)
+ CU_ASSERT(profile != sched_profiles[i - 1]);
+
+ sched_profiles[idx - 1] = profile;
+ num_sched_profiles++;
+ }
+
+ /* Now test odp_tm_sched_lookup */
+ for (idx = 1; idx <= NUM_SCHED_TEST_PROFILES; idx++) {
+ /* The following equation is designed is somewhat randomize
+ * the lookup of the profiles to catch any implementations
+ * taking shortcuts. */
+ sched_idx = ((3 + 7 * idx) % NUM_SCHED_TEST_PROFILES) + 1;
+ snprintf(sched_name, sizeof(sched_name), "sched_profile_%u",
+ sched_idx);
+ check_sched_profile(sched_name, sched_idx);
+ }
+}
+
+static void check_threshold_profile(char *threshold_name,
+ uint32_t threshold_idx)
+{
+ odp_tm_threshold_params_t threshold_params;
+ odp_tm_threshold_t profile;
+
+ profile = odp_tm_thresholds_lookup(threshold_name);
+ CU_ASSERT(profile != ODP_TM_INVALID);
+ CU_ASSERT(profile == threshold_profiles[threshold_idx - 1]);
+
+ if (profile == threshold_profiles[threshold_idx - 1])
+ return;
+
+ odp_tm_thresholds_params_read(profile, &threshold_params);
+ CU_ASSERT(threshold_params.max_pkts ==
+ threshold_idx * MIN_PKT_THRESHOLD);
+ CU_ASSERT(threshold_params.max_bytes ==
+ threshold_idx * MIN_BYTE_THRESHOLD);
+ CU_ASSERT(threshold_params.enable_max_pkts == 1);
+ CU_ASSERT(threshold_params.enable_max_bytes == 1);
+}
+
+void traffic_mngr_test_threshold_profile(void)
+{
+ odp_tm_threshold_params_t threshold_params;
+ odp_tm_threshold_t profile;
+ uint32_t idx, threshold_idx, i;
+ char threshold_name[TM_NAME_LEN];
+
+ odp_tm_threshold_params_init(&threshold_params);
+ threshold_params.enable_max_pkts = 1;
+ threshold_params.enable_max_bytes = 1;
+
+ for (idx = 1; idx <= NUM_THRESH_TEST_PROFILES; idx++) {
+ snprintf(threshold_name, sizeof(threshold_name),
+ "threshold_profile_%u", idx);
+ threshold_params.max_pkts = idx * MIN_PKT_THRESHOLD;
+ threshold_params.max_bytes = idx * MIN_BYTE_THRESHOLD;
+
+ profile = odp_tm_threshold_create(threshold_name,
+ &threshold_params);
+ CU_ASSERT_FATAL(profile != ODP_TM_INVALID);
+
+ /* Make sure profile handle is unique */
+ for (i = 1; i < idx - 1; i++)
+ CU_ASSERT(profile != threshold_profiles[i - 1]);
+
+ threshold_profiles[idx - 1] = profile;
+ num_threshold_profiles++;
+ }
+
+ /* Now test odp_tm_threshold_lookup */
+ for (idx = 1; idx <= NUM_THRESH_TEST_PROFILES; idx++) {
+ /* The following equation is designed is somewhat randomize
+ * the lookup of the profiles to catch any implementations
+ * taking shortcuts. */
+ threshold_idx = ((3 + 7 * idx) % NUM_THRESH_TEST_PROFILES) + 1;
+ snprintf(threshold_name, sizeof(threshold_name),
+ "threshold_profile_%u", threshold_idx);
+ check_threshold_profile(threshold_name, threshold_idx);
+ }
+}
+
+static void check_wred_profile(char *wred_name,
+ uint32_t wred_idx,
+ uint32_t color)
+{
+ odp_tm_wred_params_t wred_params;
+ odp_tm_wred_t profile;
+
+ profile = odp_tm_wred_lookup(wred_name);
+ CU_ASSERT(profile != ODP_TM_INVALID);
+ CU_ASSERT(profile == wred_profiles[wred_idx - 1][color]);
+ if (profile != wred_profiles[wred_idx - 1][color])
+ return;
+
+ odp_tm_wred_params_read(profile, &wred_params);
+ CU_ASSERT(wred_params.min_threshold == wred_idx * MIN_WRED_THRESH);
+ CU_ASSERT(wred_params.med_threshold == wred_idx * MED_WRED_THRESH);
+ CU_ASSERT(wred_params.med_drop_prob == wred_idx * MED_DROP_PROB);
+ CU_ASSERT(wred_params.max_drop_prob == wred_idx * MAX_DROP_PROB);
+
+ CU_ASSERT(wred_params.enable_wred == 1);
+ CU_ASSERT(wred_params.use_byte_fullness == 0);
+}
+
+void traffic_mngr_test_wred_profile(void)
+{
+ odp_tm_wred_params_t wred_params;
+ odp_tm_wred_t profile;
+ uint32_t idx, color, wred_idx, i, c;
+ char wred_name[TM_NAME_LEN];
+
+ odp_tm_wred_params_init(&wred_params);
+ wred_params.enable_wred = 1;
+ wred_params.use_byte_fullness = 0;
+
+ for (idx = 1; idx <= NUM_WRED_TEST_PROFILES; idx++) {
+ for (color = 0; color < ODP_NUM_PKT_COLORS; color++) {
+ snprintf(wred_name, sizeof(wred_name),
+ "wred_profile_%u_%u", idx, color);
+ wred_params.min_threshold = idx * MIN_WRED_THRESH;
+ wred_params.med_threshold = idx * MED_WRED_THRESH;
+ wred_params.med_drop_prob = idx * MED_DROP_PROB;
+ wred_params.max_drop_prob = idx * MAX_DROP_PROB;
+
+ profile = odp_tm_wred_create(wred_name, &wred_params);
+ CU_ASSERT_FATAL(profile != ODP_TM_INVALID);
+
+ /* Make sure profile handle is unique */
+ for (i = 1; i < idx - 1; i++)
+ for (c = 0; c < ODP_NUM_PKT_COLORS; c++)
+ CU_ASSERT(profile !=
+ wred_profiles[i - 1][c]);
+
+ wred_profiles[idx - 1][color] = profile;
+ }
+
+ num_wred_profiles++;
+ }
+
+ /* Now test odp_tm_wred_lookup */
+ for (idx = 1; idx <= NUM_WRED_TEST_PROFILES; idx++) {
+ /* The following equation is designed is somewhat randomize
+ * the lookup of the profiles to catch any implementations
+ * taking shortcuts. */
+ wred_idx = ((3 + 7 * idx) % NUM_WRED_TEST_PROFILES) + 1;
+
+ for (color = 0; color < ODP_NUM_PKT_COLORS; color++) {
+ snprintf(wred_name, sizeof(wred_name),
+ "wred_profile_%u_%u", wred_idx, color);
+ check_wred_profile(wred_name, wred_idx, color);
+ }
+ }
+}
+
+static int set_shaper(const char *node_name,
+ const char *shaper_name,
+ const uint64_t commit_bps,
+ const uint64_t commit_burst_in_bits)
+{
+ odp_tm_shaper_params_t shaper_params;
+ odp_tm_shaper_t shaper_profile;
+ odp_tm_node_t tm_node;
+
+ tm_node = find_tm_node(0, node_name);
+ if (tm_node == ODP_TM_INVALID) {
+ LOG_ERR("find_tm_node(%s) failed\n", node_name);
+ CU_ASSERT_FATAL(tm_node != ODP_TM_INVALID);
+ return -1;
+ }
+
+ odp_tm_shaper_params_init(&shaper_params);
+ shaper_params.commit_bps = commit_bps;
+ shaper_params.peak_bps = 0;
+ shaper_params.commit_burst = commit_burst_in_bits;
+ shaper_params.peak_burst = 0;
+ shaper_params.shaper_len_adjust = 0;
+ shaper_params.dual_rate = 0;
+
+ /* First see if a shaper profile already exists with this name, in
+ * which case we use that profile, else create a new one. */
+ shaper_profile = odp_tm_shaper_lookup(shaper_name);
+ if (shaper_profile != ODP_TM_INVALID) {
+ odp_tm_shaper_params_update(shaper_profile, &shaper_params);
+ } else {
+ shaper_profile = odp_tm_shaper_create(shaper_name,
+ &shaper_params);
+ shaper_profiles[num_shaper_profiles] = shaper_profile;
+ num_shaper_profiles++;
+ }
+
+ return odp_tm_node_shaper_config(tm_node, shaper_profile);
+}
+
+int traffic_mngr_check_shaper(void)
+{
+ odp_cpumask_t cpumask;
+ int cpucount = odp_cpumask_all_available(&cpumask);
+
+ if (cpucount < 2) {
+ LOG_DBG("\nSkipping shaper test because cpucount = %d "
+ "is less then min number 2 required\n", cpucount);
+ LOG_DBG("Rerun with more cpu resources\n");
+ return ODP_TEST_INACTIVE;
+ }
+
+ return ODP_TEST_ACTIVE;
+}
+
+int traffic_mngr_check_scheduler(void)
+{
+ odp_cpumask_t cpumask;
+ int cpucount = odp_cpumask_all_available(&cpumask);
+
+ if (cpucount < 2) {
+ LOG_DBG("\nSkipping scheduler test because cpucount = %d "
+ "is less then min number 2 required\n", cpucount);
+ LOG_DBG("Rerun with more cpu resources\n");
+ return ODP_TEST_INACTIVE;
+ }
+
+ return ODP_TEST_ACTIVE;
+}
+
+static int test_shaper_bw(const char *shaper_name,
+ const char *node_name,
+ uint8_t priority,
+ uint64_t commit_bps)
+{
+ odp_tm_queue_t tm_queue;
+ rcv_stats_t rcv_stats;
+ pkt_info_t pkt_info;
+ uint64_t expected_rcv_gap_us;
+ uint32_t num_pkts, pkt_len, pkts_rcvd_in_order, avg_rcv_gap;
+ uint32_t min_rcv_gap, max_rcv_gap, pkts_sent;
+ int rc, ret_code;
+
+ /* This test can support a commit_bps from 64K to 2 Gbps and possibly
+ * up to a max of 10 Gbps, but no higher. */
+ CU_ASSERT_FATAL(commit_bps <= (10ULL * 1000000000ULL));
+
+ /* Pick a tm_queue and set the parent node's shaper BW to be commit_bps
+ * with a small burst tolerance. Then send the traffic with a pkt_len
+ * such that the pkt start time to next pkt start time is 10,000 bit
+ * times and then measure the average inter-arrival receive "gap" in
+ * microseconds. */
+ tm_queue = find_tm_queue(0, node_name, priority);
+ if (set_shaper(node_name, shaper_name, commit_bps, 10000) != 0)
+ return -1;
+
+ init_xmt_pkts(&pkt_info);
+ num_pkts = 50;
+ pkt_len = (10000 / 8) - (ETHERNET_OVHD_LEN + CRC_LEN);
+ pkt_info.pkt_class = 1;
+ if (make_pkts(num_pkts, pkt_len, &pkt_info) != 0)
+ return -1;
+
+ pkts_sent = send_pkts(tm_queue, num_pkts);
+
+ /* The expected inter arrival receive gap in seconds is equal to
+ * "10,000 bits / commit_bps". To get the gap time in microseconds
+ * we multiply this by one million. The timeout we use is 50 times
+ * this gap time (since we send 50 pkts) multiplied by 4 to be
+ * conservative, plus a constant time of 1 millisecond to account for
+ * testing delays. This then needs to be expressed in nanoseconds by
+ * multiplying by 1000. */
+ expected_rcv_gap_us = (1000000ULL * 10000ULL) / commit_bps;
+ num_rcv_pkts = receive_pkts(odp_tm_systems[0], rcv_pktin, pkts_sent,
+ commit_bps);
+ pkts_rcvd_in_order = pkts_rcvd_in_send_order();
+ ret_code = -1;
+
+ /* First verify that MOST of the pkts were received in any order. */
+ if (num_rcv_pkts <= (pkts_sent / 2)) {
+ /* This is fairly major failure in that most of the pkts didn't
+ * even get received, regardless of rate or order. Log the error
+ * to assist with debugging */
+ LOG_ERR("Sent %u pkts but only %u came back\n",
+ pkts_sent, num_rcv_pkts);
+ CU_ASSERT(num_rcv_pkts <= (pkts_sent / 2));
+ } else if (pkts_rcvd_in_order <= 32) {
+ LOG_ERR("Sent %u pkts but only %u came back (%u in order)\n",
+ pkts_sent, num_rcv_pkts, pkts_rcvd_in_order);
+ CU_ASSERT(pkts_rcvd_in_order <= 32);
+ } else {
+ if (pkts_rcvd_in_order < pkts_sent)
+ LOG_DBG("Info: of %u pkts sent %u came back (%u "
+ "in order)\n", pkts_sent,
+ num_rcv_pkts, pkts_rcvd_in_order);
+
+ /* Next determine the inter arrival receive pkt statistics. */
+ rc = rcv_rate_stats(&rcv_stats, pkt_info.pkt_class);
+ CU_ASSERT(rc == 0);
+
+ /* Next verify that the rcvd pkts have an average inter-receive
+ * gap of "expected_rcv_gap_us" microseconds, +/- 25%. */
+ avg_rcv_gap = rcv_stats.avg_rcv_gap;
+ min_rcv_gap = ((MIN_SHAPER_BW_RCV_GAP * expected_rcv_gap_us) /
+ 100) - 2;
+ max_rcv_gap = ((MAX_SHAPER_BW_RCV_GAP * expected_rcv_gap_us) /
+ 100) + 2;
+ if ((avg_rcv_gap < min_rcv_gap) ||
+ (max_rcv_gap < avg_rcv_gap)) {
+ LOG_ERR("min=%u avg_rcv_gap=%u max=%u "
+ "std_dev_gap=%u\n",
+ rcv_stats.min_rcv_gap, avg_rcv_gap,
+ rcv_stats.max_rcv_gap, rcv_stats.std_dev_gap);
+ LOG_ERR(" expected_rcv_gap=%" PRIu64 " acceptable "
+ "rcv_gap range=%u..%u\n",
+ expected_rcv_gap_us, min_rcv_gap, max_rcv_gap);
+ } else if (expected_rcv_gap_us < rcv_stats.std_dev_gap) {
+ LOG_ERR("min=%u avg_rcv_gap=%u max=%u "
+ "std_dev_gap=%u\n",
+ rcv_stats.min_rcv_gap, avg_rcv_gap,
+ rcv_stats.max_rcv_gap, rcv_stats.std_dev_gap);
+ LOG_ERR(" expected_rcv_gap=%" PRIu64 " acceptable "
+ "rcv_gap range=%u..%u\n",
+ expected_rcv_gap_us, min_rcv_gap, max_rcv_gap);
+ ret_code = 0;
+ } else {
+ ret_code = 0;
+ }
+
+ CU_ASSERT((min_rcv_gap <= avg_rcv_gap) &&
+ (avg_rcv_gap <= max_rcv_gap));
+ CU_ASSERT(rcv_stats.std_dev_gap <= expected_rcv_gap_us);
+ }
+
+ /* Disable the shaper, so as to get the pkts out quicker. */
+ set_shaper(node_name, shaper_name, 0, 0);
+ flush_leftover_pkts(odp_tm_systems[0], rcv_pktin);
+ CU_ASSERT(odp_tm_is_idle(odp_tm_systems[0]));
+ return ret_code;
+}
+
+static int set_sched_fanin(const char *node_name,
+ const char *sched_base_name,
+ odp_tm_sched_mode_t sched_mode,
+ uint8_t sched_weights[FANIN_RATIO])
+{
+ odp_tm_sched_params_t sched_params;
+ odp_tm_sched_t sched_profile;
+ tm_node_desc_t *node_desc, *child_desc;
+ odp_tm_node_t tm_node, fanin_node;
+ uint32_t fanin_cnt, fanin, priority;
+ uint8_t sched_weight;
+ char sched_name[TM_NAME_LEN];
+ int rc;
+
+ node_desc = find_node_desc(0, node_name);
+ if (node_desc == NULL)
+ return -1;
+
+ fanin_cnt = MIN(node_desc->num_children, FANIN_RATIO);
+ for (fanin = 0; fanin < fanin_cnt; fanin++) {
+ odp_tm_sched_params_init(&sched_params);
+ sched_weight = sched_weights[fanin];
+
+ /* Set the weights and mode the same for all priorities */
+ for (priority = 0; priority < NUM_PRIORITIES; priority++) {
+ sched_params.sched_modes[priority] = sched_mode;
+ sched_params.sched_weights[priority] = sched_weight;
+ }
+
+ /* Create the scheduler profile name using the sched_base_name
+ * and the fanin index */
+ snprintf(sched_name, sizeof(sched_name), "%s_%u",
+ sched_base_name, fanin);
+
+ /* First see if a sched profile already exists with this name,
+ * in which case we use that profile, else create a new one. */
+ sched_profile = odp_tm_sched_lookup(sched_name);
+ if (sched_profile != ODP_TM_INVALID) {
+ odp_tm_sched_params_update(sched_profile,
+ &sched_params);
+ } else {
+ sched_profile = odp_tm_sched_create(sched_name,
+ &sched_params);
+ sched_profiles[num_sched_profiles] = sched_profile;
+ num_sched_profiles++;
+ }
+
+ /* Apply the weights to the nodes fan-in. */
+ child_desc = node_desc->children[fanin];
+ tm_node = node_desc->node;
+ fanin_node = child_desc->node;
+ rc = odp_tm_node_sched_config(tm_node, fanin_node,
+ sched_profile);
+ if (rc != 0)
+ return -1;
+ }
+
+ return 0;
+}
+
+static int test_sched_queue_priority(const char *shaper_name,
+ const char *node_name,
+ uint32_t num_pkts)
+{
+ odp_tm_queue_t tm_queues[NUM_PRIORITIES];
+ pkt_info_t pkt_info;
+ uint32_t pkt_cnt, pkts_in_order, base_idx;
+ uint32_t idx, unique_id, pkt_len, base_pkt_len, pkts_sent;
+ int priority;
+
+ memset(unique_id_list, 0, sizeof(unique_id_list));
+ for (priority = 0; priority < NUM_PRIORITIES; priority++)
+ tm_queues[priority] = find_tm_queue(0, node_name, priority);
+
+ /* Enable the shaper to be low bandwidth. */
+ pkt_len = 1400;
+ set_shaper(node_name, shaper_name, 64 * 1000, 4 * pkt_len);
+
+ /* Make a couple of low priority dummy pkts first. */
+ init_xmt_pkts(&pkt_info);
+ if (make_pkts(4, pkt_len, &pkt_info) != 0)
+ return -1;
+
+ /* Now make "num_pkts" first at the lowest priority, then "num_pkts"
+ * at the second lowest priority, etc until "num_pkts" are made last
+ * at the highest priority (which is always priority 0). */
+ pkt_cnt = NUM_PRIORITIES * num_pkts;
+ base_pkt_len = 256;
+ for (priority = NUM_PRIORITIES - 1; 0 <= priority; priority--) {
+ unique_id = cpu_unique_id;
+ pkt_info.pkt_class = priority + 1;
+ pkt_len = base_pkt_len + 64 * priority;
+ if (make_pkts(num_pkts, pkt_len, &pkt_info) != 0)
+ return -1;
+
+ base_idx = priority * num_pkts;
+ for (idx = 0; idx < num_pkts; idx++)
+ unique_id_list[base_idx + idx] = unique_id++;
+ }
+
+ /* Send the low priority dummy pkts first. The arrival order of
+ * these pkts will be ignored. */
+ pkts_sent = send_pkts(tm_queues[NUM_PRIORITIES - 1], 4);
+
+ /* Now send "num_pkts" first at the lowest priority, then "num_pkts"
+ * at the second lowest priority, etc until "num_pkts" are sent last
+ * at the highest priority. */
+ for (priority = NUM_PRIORITIES - 1; 0 <= priority; priority--)
+ pkts_sent += send_pkts(tm_queues[priority], num_pkts);
+
+ busy_wait(1000000); /* wait 1 millisecond */
+
+ /* Disable the shaper, so as to get the pkts out quicker. */
+ set_shaper(node_name, shaper_name, 0, 0);
+
+ num_rcv_pkts = receive_pkts(odp_tm_systems[0], rcv_pktin,
+ pkt_cnt + 4, 64 * 1000);
+
+ /* Check rcvd packet arrivals to make sure that pkts arrived in
+ * priority order, except for perhaps the first few lowest priority
+ * dummy pkts. */
+ pkts_in_order = pkts_rcvd_in_given_order(unique_id_list, pkt_cnt, 0,
+ false, false);
+ if (pkts_in_order != pkt_cnt) {
+ LOG_ERR("pkts_sent=%u pkt_cnt=%u num_rcv_pkts=%u"
+ " rcvd_in_order=%u\n", pkts_sent, pkt_cnt, num_rcv_pkts,
+ pkts_in_order);
+ }
+
+ CU_ASSERT(pkts_in_order == pkt_cnt);
+
+ flush_leftover_pkts(odp_tm_systems[0], rcv_pktin);
+ CU_ASSERT(odp_tm_is_idle(odp_tm_systems[0]));
+ return 0;
+}
+
+static int test_sched_node_priority(const char *shaper_name,
+ const char *node_name,
+ uint32_t num_pkts)
+{
+ odp_tm_queue_t *tm_queues, tm_queue;
+ tm_node_desc_t *node_desc;
+ queue_array_t *queue_array;
+ pkt_info_t pkt_info;
+ uint32_t total_num_queues, max_queues, num_queues, pkt_cnt;
+ uint32_t pkts_in_order, base_idx, queue_idx, idx, unique_id;
+ uint32_t pkt_len, base_pkt_len, total_pkt_cnt, pkts_sent;
+ int priority;
+
+ memset(unique_id_list, 0, sizeof(unique_id_list));
+ node_desc = find_node_desc(0, node_name);
+ if (node_desc == NULL)
+ return -1;
+
+ total_num_queues = 0;
+ for (priority = 0; priority < NUM_PRIORITIES; priority++) {
+ max_queues = NUM_LEVEL2_TM_NODES;
+ queue_array = &queues_set.queue_array[priority];
+ tm_queues = queue_array->tm_queues;
+ num_queues = find_child_queues(0, node_desc, priority,
+ tm_queues, max_queues);
+ queue_array->num_queues = num_queues;
+ queue_array->priority = priority;
+ total_num_queues += num_queues;
+ }
+
+ /* Enable the shaper to be low bandwidth. */
+ pkt_len = 1400;
+ set_shaper(node_name, shaper_name, 64 * 1000, 4 * pkt_len);
+
+ /* Make a couple of low priority large dummy pkts first. */
+ init_xmt_pkts(&pkt_info);
+ if (make_pkts(4, pkt_len, &pkt_info) != 0)
+ return -1;
+
+ /* Now make "num_pkts" for each tm_queue at the lowest priority, then
+ * "num_pkts" for each tm_queue at the second lowest priority, etc.
+ * until "num_pkts" for each tm_queue at the highest priority are made
+ * last. Note that the highest priority is always priority 0. */
+ total_pkt_cnt = total_num_queues * num_pkts;
+ base_pkt_len = 256;
+ base_idx = 0;
+ for (priority = NUM_PRIORITIES - 1; 0 <= priority; priority--) {
+ unique_id = cpu_unique_id;
+ queue_array = &queues_set.queue_array[priority];
+ num_queues = queue_array->num_queues;
+ pkt_cnt = num_queues * num_pkts;
+ pkt_info.pkt_class = priority + 1;
+ pkt_len = base_pkt_len + 64 * priority;
+ if (make_pkts(pkt_cnt, pkt_len, &pkt_info) != 0)
+ return -1;
+
+ base_idx = priority * num_pkts;
+ for (idx = 0; idx < pkt_cnt; idx++)
+ unique_id_list[base_idx + idx] = unique_id++;
+ }
+
+ /* Send the low priority dummy pkts first. The arrival order of
+ * these pkts will be ignored. */
+ queue_array = &queues_set.queue_array[NUM_PRIORITIES - 1];
+ tm_queue = queue_array->tm_queues[0];
+ pkts_sent = send_pkts(tm_queue, 4);
+
+ /* Now send "num_pkts" for each tm_queue at the lowest priority, then
+ * "num_pkts" for each tm_queue at the second lowest priority, etc.
+ * until "num_pkts" for each tm_queue at the highest priority are sent
+ * last. */
+ for (priority = NUM_PRIORITIES - 1; 0 <= priority; priority--) {
+ queue_array = &queues_set.queue_array[priority];
+ num_queues = queue_array->num_queues;
+ for (queue_idx = 0; queue_idx < num_queues; queue_idx++) {
+ tm_queue = queue_array->tm_queues[queue_idx];
+ pkts_sent += send_pkts(tm_queue, num_pkts);
+ }
+ }
+
+ busy_wait(1000000); /* wait 1 millisecond */
+
+ /* Disable the shaper, so as to get the pkts out quicker. */
+ set_shaper(node_name, shaper_name, 0, 0);
+
+ num_rcv_pkts = receive_pkts(odp_tm_systems[0], rcv_pktin,
+ pkts_sent, 64 * 1000);
+
+ /* Check rcvd packet arrivals to make sure that pkts arrived in
+ * priority order, except for perhaps the first few lowest priority
+ * dummy pkts. */
+ pkts_in_order = pkts_rcvd_in_given_order(unique_id_list, total_pkt_cnt,
+ 0, false, false);
+ CU_ASSERT(pkts_in_order == total_pkt_cnt);
+
+ flush_leftover_pkts(odp_tm_systems[0], rcv_pktin);
+ CU_ASSERT(odp_tm_is_idle(odp_tm_systems[0]));
+ return 0;
+}
+
+static int test_sched_wfq(const char *sched_base_name,
+ const char *shaper_name,
+ const char *node_name,
+ odp_tm_sched_mode_t sched_mode,
+ uint8_t sched_weights[FANIN_RATIO])
+{
+ odp_tm_queue_t tm_queues[FANIN_RATIO], tm_queue;
+ tm_node_desc_t *node_desc, *child_desc;
+ rcv_stats_t rcv_stats[FANIN_RATIO];
+ pkt_info_t pkt_info;
+ uint32_t fanin_cnt, fanin, num_queues, pkt_cnt;
+ uint32_t pkt_len, pkts_sent, pkt_idx;
+ uint8_t pkt_class;
+ int priority, rc;
+
+ memset(tm_queues, 0, sizeof(tm_queues));
+ node_desc = find_node_desc(0, node_name);
+ if (node_desc == NULL)
+ return -1;
+
+ rc = set_sched_fanin(node_name, sched_base_name, sched_mode,
+ sched_weights);
+ if (rc != 0)
+ return -1;
+
+ /* Now determine at least one tm_queue that feeds into each fanin/
+ * child node. */
+ priority = 0;
+ fanin_cnt = MIN(node_desc->num_children, FANIN_RATIO);
+ for (fanin = 0; fanin < fanin_cnt; fanin++) {
+ child_desc = node_desc->children[fanin];
+ num_queues = find_child_queues(0, child_desc, priority,
+ &tm_queues[fanin], 1);
+ if (num_queues != 1)
+ return -1;
+ }
+
+ /* Enable the shaper to be low bandwidth. */
+ pkt_len = 1400;
+ set_shaper(node_name, shaper_name, 64 * 1000, 8 * pkt_len);
+
+ /* Make a couple of low priority dummy pkts first. */
+ init_xmt_pkts(&pkt_info);
+ if (make_pkts(4, pkt_len, &pkt_info) != 0)
+ return -1;
+
+ /* Make 100 pkts for each fanin of this node, alternating amongst
+ * the inputs. */
+ pkt_cnt = FANIN_RATIO * 100;
+ fanin = 0;
+ for (pkt_idx = 0; pkt_idx < pkt_cnt; pkt_idx++) {
+ pkt_len = 128 + 128 * fanin;
+ pkt_info.pkt_class = 1 + fanin++;
+ if (make_pkts(1, pkt_len, &pkt_info) != 0)
+ return -1;
+
+ if (FANIN_RATIO <= fanin)
+ fanin = 0;
+ }
+
+ /* Send the low priority dummy pkts first. The arrival order of
+ * these pkts will be ignored. */
+ pkts_sent = send_pkts(tm_queues[NUM_PRIORITIES - 1], 4);
+
+ /* Now send the test pkts, alternating amongst the input queues. */
+ fanin = 0;
+ for (pkt_idx = 0; pkt_idx < pkt_cnt; pkt_idx++) {
+ tm_queue = tm_queues[fanin++];
+ pkts_sent += send_pkts(tm_queue, 1);
+ if (FANIN_RATIO <= fanin)
+ fanin = 0;
+ }
+
+ busy_wait(1000000); /* wait 1 millisecond */
+
+ /* Disable the shaper, so as to get the pkts out quicker. */
+ set_shaper(node_name, shaper_name, 0, 0);
+
+ num_rcv_pkts = receive_pkts(odp_tm_systems[0], rcv_pktin,
+ pkt_cnt + 4, 64 * 1000);
+
+ /* Check rcvd packet arrivals to make sure that pkts arrived in
+ * an order commensurate with their weights, sched mode and pkt_len. */
+ for (fanin = 0; fanin < fanin_cnt; fanin++) {
+ pkt_class = 1 + fanin;
+ CU_ASSERT(rcv_rate_stats(&rcv_stats[fanin], pkt_class) == 0);
+ }
+
+ flush_leftover_pkts(odp_tm_systems[0], rcv_pktin);
+ CU_ASSERT(odp_tm_is_idle(odp_tm_systems[0]));
+ return 0;
+}
+
+static int set_queue_thresholds(odp_tm_queue_t tm_queue,
+ const char *threshold_name,
+ odp_tm_threshold_params_t *threshold_params)
+{
+ odp_tm_threshold_t threshold_profile;
+
+ /* First see if a threshold profile already exists with this name, in
+ * which case we use that profile, else create a new one. */
+ threshold_profile = odp_tm_thresholds_lookup(threshold_name);
+ if (threshold_profile != ODP_TM_INVALID) {
+ odp_tm_thresholds_params_update(threshold_profile,
+ threshold_params);
+ } else {
+ threshold_profile = odp_tm_threshold_create(threshold_name,
+ threshold_params);
+ threshold_profiles[num_threshold_profiles] = threshold_profile;
+ num_threshold_profiles++;
+ }
+
+ return odp_tm_queue_threshold_config(tm_queue, threshold_profile);
+}
+
+static int test_threshold(const char *threshold_name,
+ const char *shaper_name,
+ const char *node_name,
+ uint8_t priority,
+ uint32_t max_pkts,
+ uint32_t max_bytes)
+{
+ odp_tm_threshold_params_t threshold_params;
+ odp_tm_queue_t tm_queue;
+ pkt_info_t pkt_info;
+ uint32_t num_pkts, pkt_len, pkts_sent;
+
+ odp_tm_threshold_params_init(&threshold_params);
+ if (max_pkts != 0) {
+ max_pkts = MIN(max_pkts, MAX_PKTS / 3);
+ threshold_params.max_pkts = max_pkts;
+ threshold_params.enable_max_pkts = true;
+ num_pkts = 2 * max_pkts;
+ pkt_len = 256;
+ } else if (max_bytes != 0) {
+ max_bytes = MIN(max_bytes, MAX_PKTS * MAX_PAYLOAD / 3);
+ threshold_params.max_bytes = max_bytes;
+ threshold_params.enable_max_bytes = true;
+ num_pkts = 2 * max_bytes / MAX_PAYLOAD;
+ pkt_len = MAX_PAYLOAD;
+ } else {
+ return -1;
+ }
+
+ /* Pick a tm_queue and set the tm_queue's threshold profile and then
+ * send in twice the amount of traffic as suggested by the thresholds
+ * and make sure at least SOME pkts get dropped. */
+ tm_queue = find_tm_queue(0, node_name, priority);
+ if (set_queue_thresholds(tm_queue, threshold_name,
+ &threshold_params) != 0) {
+ LOG_ERR("set_queue_thresholds failed\n");
+ return -1;
+ }
+
+ /* Enable the shaper to be very low bandwidth. */
+ set_shaper(node_name, shaper_name, 256 * 1000, 8 * pkt_len);
+
+ init_xmt_pkts(&pkt_info);
+ pkt_info.drop_eligible = true;
+ pkt_info.pkt_class = 1;
+ if (make_pkts(num_pkts, pkt_len, &pkt_info) != 0) {
+ LOG_ERR("make_pkts failed\n");
+ return -1;
+ }
+
+ pkts_sent = send_pkts(tm_queue, num_pkts);
+
+ num_rcv_pkts = receive_pkts(odp_tm_systems[0], rcv_pktin, pkts_sent,
+ 1 * GBPS);
+
+ /* Disable the shaper, so as to get the pkts out quicker. */
+ set_shaper(node_name, shaper_name, 0, 0);
+ flush_leftover_pkts(odp_tm_systems[0], rcv_pktin);
+ CU_ASSERT(odp_tm_is_idle(odp_tm_systems[0]));
+
+ if (num_rcv_pkts < num_pkts)
+ return 0;
+
+ CU_ASSERT(num_rcv_pkts < pkts_sent);
+ return 0;
+}
+
+static wred_pkt_cnts_t *search_expected_pkt_rcv_tbl(odp_tm_percent_t confidence,
+ odp_tm_percent_t drop_perc)
+{
+ wred_pkt_cnts_t *wred_pkt_cnts;
+ uint32_t idx, table_size;
+
+ /* Search the EXPECTED_PKT_RCVD table to find a matching entry */
+ table_size = sizeof(EXPECTED_PKT_RCVD) / sizeof(wred_pkt_cnts_t);
+ for (idx = 0; idx < table_size; idx++) {
+ wred_pkt_cnts = &EXPECTED_PKT_RCVD[idx];
+ if ((wred_pkt_cnts->confidence_percent == confidence) &&
+ (wred_pkt_cnts->drop_percent == drop_perc))
+ return wred_pkt_cnts;
+ }
+
+ return NULL;
+}
+
+static int set_queue_wred(odp_tm_queue_t tm_queue,
+ const char *wred_name,
+ uint8_t pkt_color,
+ odp_tm_percent_t drop_percent,
+ odp_bool_t use_byte_fullness,
+ odp_bool_t use_dual_slope)
+{
+ odp_tm_wred_params_t wred_params;
+ odp_tm_wred_t wred_profile;
+
+ odp_tm_wred_params_init(&wred_params);
+ if (use_dual_slope) {
+ wred_params.min_threshold = TM_PERCENT(20);
+ wred_params.med_threshold = TM_PERCENT(40);
+ wred_params.med_drop_prob = drop_percent;
+ wred_params.max_drop_prob = drop_percent;
+ } else {
+ wred_params.min_threshold = 0;
+ wred_params.med_threshold = TM_PERCENT(20);
+ wred_params.med_drop_prob = 0;
+ wred_params.max_drop_prob = 2 * drop_percent;
+ }
+
+ wred_params.enable_wred = true;
+ wred_params.use_byte_fullness = use_byte_fullness;
+
+ /* First see if a wred profile already exists with this name, in
+ * which case we use that profile, else create a new one. */
+ wred_profile = odp_tm_wred_lookup(wred_name);
+ if (wred_profile != ODP_TM_INVALID) {
+ odp_tm_wred_params_update(wred_profile, &wred_params);
+ } else {
+ wred_profile = odp_tm_wred_create(wred_name, &wred_params);
+ if (wred_profiles[num_wred_profiles - 1][pkt_color] ==
+ ODP_TM_INVALID) {
+ wred_profiles[num_wred_profiles - 1][pkt_color] =
+ wred_profile;
+ } else {
+ wred_profiles[num_wred_profiles][pkt_color] =
+ wred_profile;
+ num_wred_profiles++;
+ }
+ }
+
+ return odp_tm_queue_wred_config(tm_queue, pkt_color, wred_profile);
+}
+
+static int test_byte_wred(const char *wred_name,
+ const char *shaper_name,
+ const char *threshold_name,
+ const char *node_name,
+ uint8_t priority,
+ uint8_t pkt_color,
+ odp_tm_percent_t drop_percent,
+ odp_bool_t use_dual_slope)
+{
+ odp_tm_threshold_params_t threshold_params;
+ wred_pkt_cnts_t *wred_pkt_cnts;
+ odp_tm_queue_t tm_queue;
+ pkt_info_t pkt_info;
+ uint32_t num_fill_pkts, num_test_pkts, pkts_sent;
+
+ /* Pick the tm_queue and set the tm_queue's wred profile to drop the
+ * given percentage of traffic, then send 100 pkts and see how many
+ * pkts are received. */
+ tm_queue = find_tm_queue(0, node_name, priority);
+ set_queue_wred(tm_queue, wred_name, pkt_color, drop_percent,
+ true, use_dual_slope);
+
+ /* Enable the shaper to be very low bandwidth. */
+ set_shaper(node_name, shaper_name, 64 * 1000, 8 * PKT_BUF_SIZE);
+
+ /* Set the threshold to be byte based and to handle 200 pkts of
+ * size PKT_BUF_SIZE. This way the byte-fullness for the wred test
+ * pkts will be around 60%. */
+ odp_tm_threshold_params_init(&threshold_params);
+ threshold_params.max_bytes = 200 * PKT_BUF_SIZE;
+ threshold_params.enable_max_bytes = true;
+ if (set_queue_thresholds(tm_queue, threshold_name,
+ &threshold_params) != 0) {
+ LOG_ERR("set_queue_thresholds failed\n");
+ return -1;
+ }
+
+ /* Make and send the first batch of pkts whose job is to set the
+ * queue byte fullness to around 60% for the subsequent test packets.
+ * These packets MUST have drop_eligible false. */
+ init_xmt_pkts(&pkt_info);
+ num_fill_pkts = 120;
+ pkt_info.pkt_color = pkt_color;
+ pkt_info.pkt_class = 0;
+ pkt_info.drop_eligible = false;
+ if (make_pkts(num_fill_pkts, PKT_BUF_SIZE, &pkt_info) != 0)
+ return -1;
+
+ send_pkts(tm_queue, num_fill_pkts);
+
+ /* Now send the real test pkts, which are all small so as to try to
+ * keep the byte fullness still close to the 60% point. These pkts
+ * MUST have drop_eligible true. */
+ num_test_pkts = 100;
+ pkt_info.pkt_class = 1;
+ pkt_info.drop_eligible = true;
+ if (make_pkts(num_test_pkts, 128, &pkt_info) != 0)
+ return -1;
+
+ pkts_sent = send_pkts(tm_queue, num_test_pkts);
+
+ /* Disable the shaper, so as to get the pkts out quicker. */
+ set_shaper(node_name, shaper_name, 0, 0);
+ num_rcv_pkts = receive_pkts(odp_tm_systems[0], rcv_pktin,
+ num_fill_pkts + pkts_sent, 64 * 1000);
+
+ /* Search the EXPECTED_PKT_RCVD table to find a matching entry */
+ wred_pkt_cnts = search_expected_pkt_rcv_tbl(TM_PERCENT(99.9),
+ drop_percent);
+ if (wred_pkt_cnts == NULL)
+ return -1;
+
+ flush_leftover_pkts(odp_tm_systems[0], rcv_pktin);
+ CU_ASSERT(odp_tm_is_idle(odp_tm_systems[0]));
+
+ if ((wred_pkt_cnts->min_cnt <= pkts_sent) &&
+ (pkts_sent <= wred_pkt_cnts->max_cnt))
+ return 0;
+
+ CU_ASSERT((wred_pkt_cnts->min_cnt <= pkts_sent) &&
+ (pkts_sent <= wred_pkt_cnts->max_cnt));
+ return 0;
+}
+
+static int test_pkt_wred(const char *wred_name,
+ const char *shaper_name,
+ const char *threshold_name,
+ const char *node_name,
+ uint8_t priority,
+ uint8_t pkt_color,
+ odp_tm_percent_t drop_percent,
+ odp_bool_t use_dual_slope)
+{
+ odp_tm_threshold_params_t threshold_params;
+ wred_pkt_cnts_t *wred_pkt_cnts;
+ odp_tm_queue_t tm_queue;
+ pkt_info_t pkt_info;
+ uint32_t num_fill_pkts, num_test_pkts, pkts_sent;
+
+ /* Pick the tm_queue and set the tm_queue's wred profile to drop the
+ * given percentage of traffic, then send 100 pkts and see how many
+ * pkts are received. */
+ tm_queue = find_tm_queue(0, node_name, priority);
+ set_queue_wred(tm_queue, wred_name, pkt_color, drop_percent,
+ false, use_dual_slope);
+
+ /* Enable the shaper to be very low bandwidth. */
+ set_shaper(node_name, shaper_name, 64 * 1000, 1000);
+
+ /* Set the threshold to be pkt based and to handle 1000 pkts. This
+ * way the pkt-fullness for the wred test pkts will be around 60%. */
+ odp_tm_threshold_params_init(&threshold_params);
+ threshold_params.max_pkts = 1000;
+ threshold_params.enable_max_pkts = true;
+ if (set_queue_thresholds(tm_queue, threshold_name,
+ &threshold_params) != 0) {
+ LOG_ERR("set_queue_thresholds failed\n");
+ return -1;
+ }
+
+ /* Make and send the first batch of pkts whose job is to set the
+ * queue pkt fullness to around 60% for the subsequent test packets.
+ * These packets MUST have drop_eligible false. */
+ init_xmt_pkts(&pkt_info);
+ num_fill_pkts = 600;
+ pkt_info.pkt_color = pkt_color;
+ pkt_info.pkt_class = 0;
+ pkt_info.drop_eligible = false;
+ if (make_pkts(num_fill_pkts, 80, &pkt_info) != 0)
+ return -1;
+
+ send_pkts(tm_queue, num_fill_pkts);
+
+ /* Now send the real test pkts. These pkts MUST have drop_eligible
+ * true. */
+ num_test_pkts = 100;
+ pkt_info.pkt_class = 1;
+ pkt_info.drop_eligible = true;
+ if (make_pkts(num_test_pkts, 80, &pkt_info) != 0)
+ return -1;
+
+ pkts_sent = send_pkts(tm_queue, num_test_pkts);
+
+ /* Disable the shaper, so as to get the pkts out quicker. */
+ set_shaper(node_name, shaper_name, 0, 0);
+ num_rcv_pkts = receive_pkts(odp_tm_systems[0], rcv_pktin,
+ num_fill_pkts + pkts_sent, 64 * 1000);
+
+ /* Search the EXPECTED_PKT_RCVD table to find a matching entry */
+ wred_pkt_cnts = search_expected_pkt_rcv_tbl(TM_PERCENT(99.9),
+ drop_percent);
+ if (wred_pkt_cnts == NULL)
+ return -1;
+
+ flush_leftover_pkts(odp_tm_systems[0], rcv_pktin);
+ CU_ASSERT(odp_tm_is_idle(odp_tm_systems[0]));
+
+ if ((wred_pkt_cnts->min_cnt <= pkts_sent) &&
+ (pkts_sent <= wred_pkt_cnts->max_cnt))
+ return 0;
+
+ CU_ASSERT((wred_pkt_cnts->min_cnt <= pkts_sent) &&
+ (pkts_sent <= wred_pkt_cnts->max_cnt));
+ return 0;
+}
+
+static int test_query_functions(const char *shaper_name,
+ const char *node_name,
+ uint8_t priority,
+ uint32_t num_pkts)
+{
+ odp_tm_query_info_t query_info;
+ odp_tm_queue_t tm_queue;
+ pkt_info_t pkt_info;
+ uint64_t commit_bps, expected_pkt_cnt, expected_byte_cnt;
+ int rc;
+
+ /* Pick a tm_queue and set the egress node's shaper BW to be 64K bps
+ * with a small burst tolerance. Then send the traffic. */
+ tm_queue = find_tm_queue(0, node_name, priority);
+ commit_bps = 64 * 1000;
+ if (set_shaper(node_name, shaper_name, commit_bps, 1000) != 0)
+ return -1;
+
+ init_xmt_pkts(&pkt_info);
+ pkt_info.pkt_class = 1;
+ if (make_pkts(num_pkts, PKT_BUF_SIZE, &pkt_info) != 0)
+ return -1;
+
+ send_pkts(tm_queue, num_pkts);
+
+ /* Assume all but 2 of the pkts are still in the queue.*/
+ expected_pkt_cnt = num_pkts - 2;
+ expected_byte_cnt = expected_pkt_cnt * PKT_BUF_SIZE;
+
+ rc = odp_tm_queue_query(tm_queue,
+ ODP_TM_QUERY_PKT_CNT | ODP_TM_QUERY_BYTE_CNT,
+ &query_info);
+ CU_ASSERT(rc == 0);
+ CU_ASSERT(query_info.total_pkt_cnt_valid);
+ CU_ASSERT(expected_pkt_cnt < query_info.total_pkt_cnt);
+ CU_ASSERT(query_info.total_byte_cnt_valid);
+ CU_ASSERT(expected_byte_cnt < query_info.total_byte_cnt);
+
+ rc = odp_tm_priority_query(odp_tm_systems[0], priority,
+ ODP_TM_QUERY_PKT_CNT | ODP_TM_QUERY_BYTE_CNT,
+ &query_info);
+ CU_ASSERT(rc == 0);
+ CU_ASSERT(query_info.total_pkt_cnt_valid);
+ CU_ASSERT(expected_pkt_cnt < query_info.total_pkt_cnt);
+ CU_ASSERT(query_info.total_byte_cnt_valid);
+ CU_ASSERT(expected_byte_cnt < query_info.total_byte_cnt);
+
+ rc = odp_tm_total_query(odp_tm_systems[0],
+ ODP_TM_QUERY_PKT_CNT | ODP_TM_QUERY_BYTE_CNT,
+ &query_info);
+ CU_ASSERT(rc == 0);
+ CU_ASSERT(query_info.total_pkt_cnt_valid);
+ CU_ASSERT(expected_pkt_cnt < query_info.total_pkt_cnt);
+ CU_ASSERT(query_info.total_byte_cnt_valid);
+ CU_ASSERT(expected_byte_cnt < query_info.total_byte_cnt);
+
+ /* Disable the shaper, so as to get the pkts out quicker. */
+ set_shaper(node_name, shaper_name, 0, 0);
+ num_rcv_pkts = receive_pkts(odp_tm_systems[0], rcv_pktin, num_pkts,
+ commit_bps);
+
+ flush_leftover_pkts(odp_tm_systems[0], rcv_pktin);
+ CU_ASSERT(odp_tm_is_idle(odp_tm_systems[0]));
+ return 0;
+}
+
+static int check_vlan_marking_pkts(void)
+{
+ odp_packet_t rcv_pkt;
+ uint32_t rcv_pkt_idx, err_cnt;
+ uint16_t tci;
+ uint8_t pkt_class, dei, expected_dei;
+
+ /* Check rcvd packets to make sure that pkt_class 1 pkts continue to
+ * not have a VLAN header, pkt class 2 pkts have a VLAN header with the
+ * drop precedence not set and pkt class 3 pkts have a VLAN header with
+ * the DEI bit set. */
+ err_cnt = 0;
+ for (rcv_pkt_idx = 0; rcv_pkt_idx < num_rcv_pkts; rcv_pkt_idx++) {
+ rcv_pkt = rcv_pkts[rcv_pkt_idx];
+ pkt_class = rcv_pkt_descs[rcv_pkt_idx].pkt_class;
+
+ switch (pkt_class) {
+ case 1:
+ /* Make sure no VLAN header. */
+ if (odp_packet_has_vlan(rcv_pkt)) {
+ err_cnt++;
+ LOG_ERR("VLAN incorrectly added\n");
+ CU_ASSERT(odp_packet_has_vlan(rcv_pkt));
+ }
+ break;
+
+ case 2:
+ case 3:
+ /* Make sure it does have a VLAN header */
+ if (!odp_packet_has_vlan(rcv_pkt)) {
+ err_cnt++;
+ LOG_ERR("VLAN header missing\n");
+ CU_ASSERT(!odp_packet_has_vlan(rcv_pkt));
+ break;
+ }
+
+ /* Make sure DEI bit is 0 if pkt_class == 2, and 1 if
+ * pkt_class == 3. */
+ if (get_vlan_tci(rcv_pkt, &tci) != 0) {
+ err_cnt++;
+ LOG_ERR("VLAN header missing\n");
+ CU_ASSERT(!odp_packet_has_vlan(rcv_pkt));
+ break;
+ }
+
+ dei = (tci >> ODPH_VLANHDR_DEI_SHIFT) & 1;
+ expected_dei = (pkt_class == 2) ? 0 : 1;
+ if (dei != expected_dei) {
+ LOG_ERR("expected_dei=%u rcvd dei=%u\n",
+ expected_dei, dei);
+ err_cnt++;
+ CU_ASSERT(dei == expected_dei);
+ }
+ break;
+
+ default:
+ /* Log error but otherwise ignore, since it is
+ * probably a stray pkt from a previous test. */
+ LOG_ERR("Pkt rcvd with invalid pkt class\n");
+ }
+ }
+
+ return (err_cnt == 0) ? 0 : -1;
+}
+
+static int test_vlan_marking(const char *node_name,
+ odp_packet_color_t pkt_color)
+{
+ odp_packet_color_t color;
+ odp_tm_queue_t tm_queue;
+ pkt_info_t pkt_info;
+ odp_tm_t odp_tm;
+ uint32_t pkt_cnt, num_pkts, pkt_len, pkts_sent;
+ int rc;
+
+ /* First disable vlan marking for all colors. These "disable" calls
+ * should NEVER fail. */
+ odp_tm = odp_tm_systems[0];
+ for (color = 0; color < ODP_NUM_PKT_COLORS; color++) {
+ rc = odp_tm_vlan_marking(odp_tm, color, false);
+ if (rc != 0) {
+ LOG_ERR("disabling odp_tm_vlan_marking() failed\n");
+ return -1;
+ }
+ }
+
+ /* Next enable vlan marking for just the given color parameter */
+ rc = odp_tm_vlan_marking(odp_tm, pkt_color, true);
+
+ tm_queue = find_tm_queue(0, node_name, 0);
+ if (tm_queue == ODP_TM_INVALID) {
+ LOG_ERR("No tm_queue found for node_name='%s'\n", node_name);
+ return -1;
+ }
+
+ /* Next make 2*X pkts of each color, half with vlan headers -
+ * half without. */
+ init_xmt_pkts(&pkt_info);
+
+ pkt_cnt = 5;
+ num_pkts = 0;
+ pkt_len = 600;
+ pkt_info.pkt_class = 1;
+ for (color = 0; color < ODP_NUM_PKT_COLORS; color++) {
+ num_pkts += pkt_cnt;
+ pkt_info.pkt_color = color;
+ if (make_pkts(pkt_cnt, pkt_len, &pkt_info) != 0)
+ return -1;
+ }
+
+ for (color = 0; color < ODP_NUM_PKT_COLORS; color++) {
+ num_pkts += pkt_cnt;
+ pkt_info.pkt_color = color;
+ pkt_info.pkt_class = (color == pkt_color) ? 3 : 2;
+ pkt_info.use_vlan = true;
+ pkt_info.vlan_tci = VLAN_NO_DEI;
+ if (make_pkts(pkt_cnt, pkt_len, &pkt_info) != 0)
+ return -1;
+ }
+
+ pkts_sent = send_pkts(tm_queue, num_pkts);
+ num_rcv_pkts = receive_pkts(odp_tm_systems[0], rcv_pktin, pkts_sent,
+ 1000 * 1000);
+ if (num_rcv_pkts == 0) {
+ LOG_ERR("No pkts received\n");
+ rc = -1;
+ } else if (num_rcv_pkts != pkts_sent) {
+ LOG_ERR("pkts_sent=%u but num_rcv_pkts=%u\n",
+ pkts_sent, num_rcv_pkts);
+ dump_rcvd_pkts(0, num_rcv_pkts - 1);
+ CU_ASSERT(num_rcv_pkts == pkts_sent);
+ } else {
+ rc = check_vlan_marking_pkts();
+ }
+
+ flush_leftover_pkts(odp_tm_systems[0], rcv_pktin);
+ CU_ASSERT(odp_tm_is_idle(odp_tm_systems[0]));
+ return rc;
+}
+
+static int check_tos_marking_pkts(odp_bool_t use_ipv6,
+ odp_bool_t use_tcp,
+ odp_bool_t test_ecn,
+ odp_bool_t test_drop_prec,
+ uint8_t unmarked_tos,
+ uint8_t new_dscp,
+ uint8_t dscp_mask)
+{
+ odp_packet_t rcv_pkt;
+ uint32_t rcv_pkt_idx;
+ uint8_t unmarked_ecn, unmarked_dscp, shifted_dscp, pkt_class;
+ uint8_t tos, expected_tos;
+ int rc;
+
+ /* Turn off test_ecn for UDP pkts, since ECN marking should
+ * only happen for TCP pkts. */
+ if (!use_tcp)
+ test_ecn = false;
+
+ /* The expected_tos value is only the expected TOS/TC field for pkts
+ * that have been enabled for modification, as indicated by the
+ * pkt_class associated with this pkt. */
+ unmarked_ecn = (unmarked_tos & ODPH_IP_TOS_ECN_MASK)
+ >> ODPH_IP_TOS_ECN_SHIFT;
+ unmarked_dscp = (unmarked_tos & ODPH_IP_TOS_DSCP_MASK)
+ >> ODPH_IP_TOS_DSCP_SHIFT;
+ new_dscp = (new_dscp & dscp_mask) | (unmarked_dscp & ~dscp_mask);
+ shifted_dscp = new_dscp << ODPH_IP_TOS_DSCP_SHIFT;
+
+ if (test_ecn && test_drop_prec)
+ expected_tos = shifted_dscp | ODPH_IP_ECN_CE;
+ else if (test_ecn)
+ expected_tos = unmarked_tos | ODPH_IP_ECN_CE;
+ else if (test_drop_prec)
+ expected_tos = shifted_dscp | unmarked_ecn;
+ else
+ expected_tos = unmarked_tos;
+
+ for (rcv_pkt_idx = 0; rcv_pkt_idx < num_rcv_pkts; rcv_pkt_idx++) {
+ rcv_pkt = rcv_pkts[rcv_pkt_idx];
+ pkt_class = rcv_pkt_descs[rcv_pkt_idx].pkt_class;
+
+ /* Check that the pkts match the use_ipv6 setting */
+ if (use_ipv6)
+ rc = odp_packet_has_ipv6(rcv_pkt);
+ else
+ rc = odp_packet_has_ipv4(rcv_pkt);
+
+ if (rc != 1) {
+ if (use_ipv6)
+ LOG_ERR("Expected IPv6 pkt but got IPv4");
+ else
+ LOG_ERR("Expected IPv4 pkt but got IPv6");
+
+ return -1;
+ }
+
+ /* Check that the pkts match the use_tcp setting */
+ if (use_tcp)
+ rc = odp_packet_has_tcp(rcv_pkt);
+ else
+ rc = odp_packet_has_udp(rcv_pkt);
+
+ if (rc != 1) {
+ if (use_tcp)
+ LOG_ERR("Expected TCP pkt but got UDP");
+ else
+ LOG_ERR("Expected UDP pkt but got TCP");
+
+ return -1;
+ }
+
+ /* Now get the tos field to see if it was changed */
+ rc = get_ip_tos(rcv_pkt, &tos);
+ if (rc != 0) {
+ LOG_ERR("get_ip_tos failed\n");
+ return -1;
+ }
+
+ switch (pkt_class) {
+ case 2:
+ /* Tos field must be unchanged. */
+ if (unmarked_tos != tos) {
+ LOG_ERR("Tos was changed from 0x%X to 0x%X\n",
+ unmarked_tos, tos);
+ return -1;
+ }
+ break;
+
+ case 3:
+ /* Tos field must be changed. */
+ if (tos != expected_tos) {
+ LOG_ERR("tos=0x%X instead of expected 0x%X\n",
+ tos, expected_tos);
+ CU_ASSERT(tos == expected_tos);
+ }
+ break;
+
+ default:
+ /* Log error but otherwise ignore, since it is
+ * probably a stray pkt from a previous test. */
+ LOG_ERR("Pkt rcvd with invalid pkt class=%u\n",
+ pkt_class);
+ }
+ }
+
+ return 0;
+}
+
+static int test_ip_marking(const char *node_name,
+ odp_packet_color_t pkt_color,
+ odp_bool_t use_ipv6,
+ odp_bool_t use_tcp,
+ odp_bool_t test_ecn,
+ odp_bool_t test_drop_prec,
+ uint8_t new_dscp,
+ uint8_t dscp_mask)
+{
+ odp_packet_color_t color;
+ odp_tm_queue_t tm_queue;
+ pkt_info_t pkt_info;
+ odp_tm_t odp_tm;
+ uint32_t pkt_cnt, num_pkts, pkt_len, pkts_sent;
+ int rc, ret_code;
+
+ /* First disable IP TOS marking for all colors. These "disable" calls
+ * should NEVER fail. */
+ odp_tm = odp_tm_systems[0];
+ for (color = 0; color < ODP_NUM_PKT_COLORS; color++) {
+ rc = odp_tm_ecn_marking(odp_tm, color, false);
+ if (rc != 0) {
+ LOG_ERR("disabling odp_tm_ecn_marking() failed\n");
+ return -1;
+ }
+
+ rc = odp_tm_drop_prec_marking(odp_tm, color, false);
+ if (rc != 0) {
+ LOG_ERR("disabling odp_tm_drop_prec_marking failed\n");
+ return -1;
+ }
+ }
+
+ /* Next enable IP TOS marking for just the given color parameter */
+ if ((!test_ecn) && (!test_drop_prec))
+ return 0;
+
+ if (test_ecn) {
+ rc = odp_tm_ecn_marking(odp_tm, pkt_color, true);
+ if (rc != 0) {
+ LOG_ERR("odp_tm_ecn_marking() call failed\n");
+ return -1;
+ }
+ }
+
+ if (test_drop_prec) {
+ rc = odp_tm_drop_prec_marking(odp_tm, pkt_color, true);
+ if (rc != 0) {
+ LOG_ERR("odp_tm_drop_prec_marking() call failed\n");
+ return -1;
+ }
+ }
+
+ tm_queue = find_tm_queue(0, node_name, 0);
+ if (tm_queue == ODP_TM_INVALID) {
+ LOG_ERR("No tm_queue found for node_name='%s'\n", node_name);
+ return -1;
+ }
+
+ init_xmt_pkts(&pkt_info);
+ pkt_info.use_ipv6 = use_ipv6;
+ pkt_info.use_tcp = use_tcp;
+ pkt_info.ip_tos = DEFAULT_TOS;
+
+ pkt_cnt = 5;
+ num_pkts = 0;
+ pkt_len = 1340;
+ for (color = 0; color < ODP_NUM_PKT_COLORS; color++) {
+ num_pkts += pkt_cnt;
+ pkt_info.pkt_color = color;
+ if (test_drop_prec || (test_ecn && use_tcp))
+ pkt_info.pkt_class = (color == pkt_color) ? 3 : 2;
+ else
+ pkt_info.pkt_class = 2;
+
+ if (make_pkts(pkt_cnt, pkt_len, &pkt_info) != 0) {
+ LOG_ERR("make_pkts failed\n");
+ return -1;
+ }
+ }
+
+ pkts_sent = send_pkts(tm_queue, num_pkts);
+ num_rcv_pkts = receive_pkts(odp_tm_systems[0], rcv_pktin, pkts_sent,
+ 1000 * 1000);
+ ret_code = -1;
+
+ if (num_rcv_pkts == 0) {
+ LOG_ERR("No pkts received\n");
+ CU_ASSERT(num_rcv_pkts != 0);
+ ret_code = -1;
+ } else if (num_rcv_pkts != pkts_sent) {
+ LOG_ERR("pkts_sent=%u but num_rcv_pkts=%u\n",
+ pkts_sent, num_rcv_pkts);
+ dump_rcvd_pkts(0, num_rcv_pkts - 1);
+ CU_ASSERT(num_rcv_pkts == pkts_sent);
+ ret_code = -1;
+ } else {
+ rc = check_tos_marking_pkts(use_ipv6, use_tcp, test_ecn,
+ test_drop_prec, DEFAULT_TOS,
+ new_dscp, dscp_mask);
+ CU_ASSERT(rc == 0);
+ ret_code = (rc == 0) ? 0 : -1;
+ }
+
+ flush_leftover_pkts(odp_tm_systems[0], rcv_pktin);
+ CU_ASSERT(odp_tm_is_idle(odp_tm_systems[0]));
+ return ret_code;
+}
+
+static int test_protocol_marking(const char *node_name,
+ odp_packet_color_t pkt_color,
+ odp_bool_t test_ecn,
+ odp_bool_t test_drop_prec,
+ uint8_t new_dscp,
+ uint8_t dscp_mask)
+{
+ uint32_t errs = 0;
+ int rc;
+
+ /* Now call test_ip_marking once for all combinations of IPv4 or IPv6
+ * pkts AND for UDP or TCP. */
+ rc = test_ip_marking(node_name, pkt_color, USE_IPV4, USE_UDP,
+ test_ecn, test_drop_prec, new_dscp, dscp_mask);
+ CU_ASSERT(rc == 0);
+ if (rc != 0) {
+ LOG_ERR("test_ip_marking failed using IPV4/UDP pkts color=%u "
+ "test_ecn=%u test_drop_prec=%u\n",
+ pkt_color, test_ecn, test_drop_prec);
+ errs++;
+ }
+
+ rc = test_ip_marking(node_name, pkt_color, USE_IPV6, USE_UDP,
+ test_ecn, test_drop_prec, new_dscp, dscp_mask);
+ CU_ASSERT(rc == 0);
+ if (rc != 0) {
+ LOG_ERR("test_ip_marking failed using IPV6/UDP pkts color=%u "
+ "test_ecn=%u test_drop_prec=%u\n",
+ pkt_color, test_ecn, test_drop_prec);
+ errs++;
+ }
+
+ rc = test_ip_marking(node_name, pkt_color, USE_IPV4, USE_TCP,
+ test_ecn, test_drop_prec, new_dscp, dscp_mask);
+ CU_ASSERT(rc == 0);
+ if (rc != 0) {
+ LOG_ERR("test_ip_marking failed using IPV4/TCP pkts color=%u "
+ "test_ecn=%u test_drop_prec=%u\n",
+ pkt_color, test_ecn, test_drop_prec);
+ errs++;
+ }
+
+ rc = test_ip_marking(node_name, pkt_color, USE_IPV6, USE_TCP,
+ test_ecn, test_drop_prec, new_dscp, dscp_mask);
+ CU_ASSERT(rc == 0);
+ if (rc != 0) {
+ LOG_ERR("test_ip_marking failed using IPV6/TCP pkts color=%u "
+ "test_ecn=%u test_drop_prec=%u\n",
+ pkt_color, test_ecn, test_drop_prec);
+ errs++;
+ }
+
+ return (errs == 0) ? 0 : -1;
+}
+
+static int ip_marking_tests(const char *node_name,
+ odp_bool_t test_ecn,
+ odp_bool_t test_drop_prec)
+{
+ odp_packet_color_t color;
+ uint32_t errs = 0;
+ uint8_t new_dscp, dscp_mask;
+ int rc;
+
+ dscp_mask = DROP_PRECEDENCE_MASK;
+ for (color = 0; color < ODP_NUM_PKT_COLORS; color++) {
+ if (tm_capabilities.marking_colors_supported[color]) {
+ if (color == PKT_YELLOW)
+ new_dscp = MEDIUM_DROP_PRECEDENCE;
+ else if (color == PKT_RED)
+ new_dscp = HIGH_DROP_PRECEDENCE;
+ else
+ new_dscp = LOW_DROP_PRECEDENCE;
+
+ rc = test_protocol_marking(node_name, color, test_ecn,
+ test_drop_prec, new_dscp,
+ dscp_mask);
+ CU_ASSERT(rc == 0);
+ if (rc != 0)
+ errs++;
+ }
+ }
+
+ return (errs == 0) ? 0 : -1;
+}
+
+static int walk_tree_backwards(odp_tm_node_t tm_node)
+{
+ odp_tm_node_fanin_info_t fanin_info;
+ odp_tm_node_info_t node_info;
+ odp_tm_queue_t first_tm_queue;
+ odp_tm_node_t first_tm_node;
+ uint32_t tm_queue_fanin, tm_node_fanin;
+ int rc;
+
+ /* Start from the given tm_node and try to go backwards until a valid
+ * and active tm_queue is reached. */
+ rc = odp_tm_node_info(tm_node, &node_info);
+ if (rc != 0) {
+ LOG_ERR("odp_tm_node_info failed for tm_node=0x%" PRIX64 "\n",
+ tm_node);
+ return rc;
+ }
+
+ if ((node_info.tm_queue_fanin == 0) &&
+ (node_info.tm_node_fanin == 0)) {
+ LOG_ERR("odp_tm_node_info showed no fanin for this node\n");
+ return -1;
+ }
+
+ fanin_info.tm_queue = ODP_TM_INVALID;
+ fanin_info.tm_node = ODP_TM_INVALID;
+ fanin_info.is_last = false;
+
+ /* TBD* Loop over the entire fanin list verifying the fanin counts.
+ * Also remember the first tm_queue and tm_node seen. */
+ tm_queue_fanin = 0;
+ tm_node_fanin = 0;
+ first_tm_queue = ODP_TM_INVALID;
+ first_tm_node = ODP_TM_INVALID;
+
+ while (!fanin_info.is_last) {
+ rc = odp_tm_node_fanin_info(tm_node, &fanin_info);
+ if (rc != 0)
+ return rc;
+
+ if ((fanin_info.tm_queue != ODP_TM_INVALID) &&
+ (fanin_info.tm_node != ODP_TM_INVALID)) {
+ LOG_ERR("Both tm_queue and tm_node are set\n");
+ return -1;
+ } else if (fanin_info.tm_queue != ODP_TM_INVALID) {
+ tm_queue_fanin++;
+ if (first_tm_queue == ODP_TM_INVALID)
+ first_tm_queue = fanin_info.tm_queue;
+ } else if (fanin_info.tm_node != ODP_TM_INVALID) {
+ tm_node_fanin++;
+ if (first_tm_node == ODP_TM_INVALID)
+ first_tm_node = fanin_info.tm_node;
+ } else {
+ LOG_ERR("both tm_queue and tm_node are INVALID\n");
+ return -1;
+ }
+ }
+
+ if (tm_queue_fanin != node_info.tm_queue_fanin)
+ LOG_ERR("tm_queue_fanin count error\n");
+ else if (tm_node_fanin != node_info.tm_node_fanin)
+ LOG_ERR("tm_node_fanin count error\n");
+
+ /* If we have found a tm_queue then we are successfully done. */
+ if (first_tm_queue != ODP_TM_INVALID)
+ return 0;
+
+ /* Now recurse up a level */
+ return walk_tree_backwards(first_tm_node);
+}
+
+static int test_fanin_info(const char *node_name)
+{
+ tm_node_desc_t *node_desc;
+ odp_tm_node_t tm_node;
+
+ node_desc = find_node_desc(0, node_name);
+ if (node_desc == NULL) {
+ LOG_ERR("node_name %s not found\n", node_name);
+ return -1;
+ }
+
+ tm_node = node_desc->node;
+ if (tm_node == ODP_TM_INVALID) {
+ LOG_ERR("tm_node is ODP_TM_INVALID\n");
+ return -1;
+ }
+
+ return walk_tree_backwards(node_desc->node);
+}
+
+void traffic_mngr_test_capabilities(void)
+{
+ CU_ASSERT(test_overall_capabilities() == 0);
+}
+
+void traffic_mngr_test_tm_create(void)
+{
+ /* Create the first/primary TM system. */
+ CU_ASSERT_FATAL(create_tm_system() == 0);
+ dump_tm_tree(0);
+}
+
+void traffic_mngr_test_shaper(void)
+{
+ CU_ASSERT(test_shaper_bw("bw1", "node_1_1_1", 0, 1 * MBPS) == 0);
+ CU_ASSERT(test_shaper_bw("bw4", "node_1_1_1", 1, 4 * MBPS) == 0);
+ CU_ASSERT(test_shaper_bw("bw10", "node_1_1_1", 2, 10 * MBPS) == 0);
+ CU_ASSERT(test_shaper_bw("bw40", "node_1_1_1", 3, 40 * MBPS) == 0);
+ CU_ASSERT(test_shaper_bw("bw100", "node_1_1_2", 0, 100 * MBPS) == 0);
+}
+
+void traffic_mngr_test_scheduler(void)
+{
+ CU_ASSERT(test_sched_queue_priority("que_prio", "node_1_1_3", 10) == 0);
+ return;
+
+ /* The following tests are not quite ready for production use. */
+ CU_ASSERT(test_sched_node_priority("node_prio", "node_1_3", 4) == 0);
+
+ CU_ASSERT(test_sched_wfq("sched_rr", "shaper_rr", "node_1_3",
+ ODP_TM_FRAME_BASED_WEIGHTS,
+ EQUAL_WEIGHTS) == 0);
+ CU_ASSERT(test_sched_wfq("sched_wrr", "shaper_wrr", "node_1_3",
+ ODP_TM_FRAME_BASED_WEIGHTS,
+ INCREASING_WEIGHTS) == 0);
+ CU_ASSERT(test_sched_wfq("sched_wfq", "shaper_wfq", "node_1_3",
+ ODP_TM_BYTE_BASED_WEIGHTS,
+ INCREASING_WEIGHTS) == 0);
+}
+
+void traffic_mngr_test_thresholds(void)
+{
+ CU_ASSERT(test_threshold("thresh_A", "shaper_A", "node_1_2_1", 0,
+ 16, 0) == 0);
+ CU_ASSERT(test_threshold("thresh_B", "shaper_B", "node_1_2_1", 1,
+ 0, 6400) == 0);
+}
+
+void traffic_mngr_test_byte_wred(void)
+{
+ if (!tm_capabilities.tm_queue_wred_supported) {
+ LOG_DBG("\nwas not run because tm_capabilities indicates"
+ " no WRED support\n");
+ return;
+ }
+
+ CU_ASSERT(test_byte_wred("byte_wred_30G", "byte_bw_30G",
+ "byte_thresh_30G", "node_1_3_1", 1,
+ ODP_PACKET_GREEN, TM_PERCENT(30), true) == 0);
+ CU_ASSERT(test_byte_wred("byte_wred_50Y", "byte_bw_50Y",
+ "byte_thresh_50Y", "node_1_3_1", 2,
+ ODP_PACKET_YELLOW, TM_PERCENT(50), true) == 0);
+ CU_ASSERT(test_byte_wred("byte_wred_70R", "byte_bw_70R",
+ "byte_thresh_70R", "node_1_3_1", 3,
+ ODP_PACKET_RED, TM_PERCENT(70), true) == 0);
+
+ CU_ASSERT(test_byte_wred("byte_wred_40G", "byte_bw_40G",
+ "byte_thresh_40G", "node_1_3_1", 1,
+ ODP_PACKET_GREEN, TM_PERCENT(30), false) == 0);
+}
+
+void traffic_mngr_test_pkt_wred(void)
+{
+ int rc;
+
+ if (!tm_capabilities.tm_queue_wred_supported) {
+ LOG_DBG("\ntest_pkt_wred was not run because tm_capabilities "
+ "indicates no WRED support\n");
+ return;
+ }
+
+ CU_ASSERT(test_pkt_wred("pkt_wred_40G", "pkt_bw_40G",
+ "pkt_thresh_40G", "node_1_3_2", 1,
+ ODP_PACKET_GREEN, TM_PERCENT(30), false) == 0);
+
+ if (!tm_capabilities.tm_queue_dual_slope_supported) {
+ LOG_DBG("since tm_capabilities indicates no dual slope "
+ "WRED support these tests are skipped.\n");
+ return;
+ }
+
+ rc = test_pkt_wred("pkt_wred_30G", "pkt_bw_30G",
+ "pkt_thresh_30G", "node_1_3_2", 1,
+ ODP_PACKET_GREEN, TM_PERCENT(30), true);
+ CU_ASSERT(rc == 0);
+
+ CU_ASSERT(test_pkt_wred("pkt_wred_50Y", "pkt_bw_50Y",
+ "pkt_thresh_50Y", "node_1_3_2", 2,
+ ODP_PACKET_YELLOW, TM_PERCENT(50), true) == 0);
+ CU_ASSERT(test_pkt_wred("pkt_wred_70R", "pkt_bw_70R",
+ "pkt_thresh_70R", "node_1_3_2", 3,
+ ODP_PACKET_RED, TM_PERCENT(70), true) == 0);
+}
+
+void traffic_mngr_test_query(void)
+{
+ CU_ASSERT(test_query_functions("query_shaper", "node_1_3_3", 3, 10)
+ == 0);
+}
+
+void traffic_mngr_test_marking(void)
+{
+ odp_packet_color_t color;
+ odp_bool_t test_ecn, test_drop_prec;
+ int rc;
+
+ if (tm_capabilities.vlan_marking_supported) {
+ for (color = 0; color < ODP_NUM_PKT_COLORS; color++) {
+ rc = test_vlan_marking("node_1_3_1", color);
+ CU_ASSERT(rc == 0);
+ }
+ } else {
+ LOG_DBG("\ntest_vlan_marking was not run because "
+ "tm_capabilities indicates no vlan marking support\n");
+ }
+
+ if (tm_capabilities.ecn_marking_supported) {
+ test_ecn = true;
+ test_drop_prec = false;
+
+ rc = ip_marking_tests("node_1_3_2", test_ecn, test_drop_prec);
+ CU_ASSERT(rc == 0);
+ } else {
+ LOG_DBG("\necn_marking tests were not run because "
+ "tm_capabilities indicates no ecn marking support\n");
+ }
+
+ if (tm_capabilities.drop_prec_marking_supported) {
+ test_ecn = false;
+ test_drop_prec = true;
+
+ rc = ip_marking_tests("node_1_4_2", test_ecn, test_drop_prec);
+ CU_ASSERT(rc == 0);
+ } else {
+ LOG_DBG("\ndrop_prec marking tests were not run because "
+ "tm_capabilities indicates no drop precedence "
+ "marking support\n");
+ }
+
+ if (tm_capabilities.ecn_marking_supported &&
+ tm_capabilities.drop_prec_marking_supported) {
+ test_ecn = true;
+ test_drop_prec = true;
+
+ rc = ip_marking_tests("node_1_4_2", test_ecn, test_drop_prec);
+ CU_ASSERT(rc == 0);
+ }
+}
+
+void traffic_mngr_test_fanin_info(void)
+{
+ CU_ASSERT(test_fanin_info("node_1") == 0);
+ CU_ASSERT(test_fanin_info("node_1_2") == 0);
+ CU_ASSERT(test_fanin_info("node_1_3_7") == 0);
+}
+
+void traffic_mngr_test_destroy(void)
+{
+ CU_ASSERT(destroy_tm_systems() == 0);
+}
+
+odp_testinfo_t traffic_mngr_suite[] = {
+ ODP_TEST_INFO(traffic_mngr_test_capabilities),
+ ODP_TEST_INFO(traffic_mngr_test_tm_create),
+ ODP_TEST_INFO(traffic_mngr_test_shaper_profile),
+ ODP_TEST_INFO(traffic_mngr_test_sched_profile),
+ ODP_TEST_INFO(traffic_mngr_test_threshold_profile),
+ ODP_TEST_INFO(traffic_mngr_test_wred_profile),
+ ODP_TEST_INFO_CONDITIONAL(traffic_mngr_test_shaper,
+ traffic_mngr_check_shaper),
+ ODP_TEST_INFO_CONDITIONAL(traffic_mngr_test_scheduler,
+ traffic_mngr_check_scheduler),
+ ODP_TEST_INFO(traffic_mngr_test_thresholds),
+ ODP_TEST_INFO(traffic_mngr_test_byte_wred),
+ ODP_TEST_INFO(traffic_mngr_test_pkt_wred),
+ ODP_TEST_INFO(traffic_mngr_test_query),
+ ODP_TEST_INFO(traffic_mngr_test_marking),
+ ODP_TEST_INFO(traffic_mngr_test_fanin_info),
+ ODP_TEST_INFO(traffic_mngr_test_destroy),
+ ODP_TEST_INFO_NULL,
+};
+
+odp_suiteinfo_t traffic_mngr_suites[] = {
+ { "traffic_mngr tests", traffic_mngr_suite_init,
+ traffic_mngr_suite_term, traffic_mngr_suite },
+ ODP_SUITE_INFO_NULL
+};
+
+int traffic_mngr_main(int argc, char *argv[])
+{
+ /* parse common options: */
+ if (odp_cunit_parse_options(argc, argv))
+ return -1;
+
+ int ret = odp_cunit_register(traffic_mngr_suites);
+
+ if (ret == 0)
+ ret = odp_cunit_run();
+
+ return ret;
+}