aboutsummaryrefslogtreecommitdiff
path: root/tools/mpy_ld.py
blob: 31c3912991c4851b11bd395c0a4aae187cdf12ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
#!/usr/bin/env python3
#
# This file is part of the MicroPython project, http://micropython.org/
#
# The MIT License (MIT)
#
# Copyright (c) 2019 Damien P. George
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.

"""
Link .o files to .mpy
"""

import sys, os, struct, re
from elftools.elf import elffile

sys.path.append(os.path.dirname(__file__) + '/../py')
import makeqstrdata as qstrutil

# MicroPython constants
MPY_VERSION = 5
MP_NATIVE_ARCH_X86 = 1
MP_NATIVE_ARCH_X64 = 2
MP_NATIVE_ARCH_ARMV7M = 5
MP_NATIVE_ARCH_ARMV7EMSP = 7
MP_NATIVE_ARCH_ARMV7EMDP = 8
MP_NATIVE_ARCH_XTENSA = 9
MP_NATIVE_ARCH_XTENSAWIN = 10
MP_CODE_BYTECODE = 2
MP_CODE_NATIVE_VIPER = 4
MP_SCOPE_FLAG_VIPERRELOC = 0x10
MP_SCOPE_FLAG_VIPERRODATA = 0x20
MP_SCOPE_FLAG_VIPERBSS = 0x40
MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE = 1
MICROPY_PY_BUILTINS_STR_UNICODE = 2
MP_SMALL_INT_BITS = 31
QSTR_WINDOW_SIZE = 32

# ELF constants
R_386_32 = 1
R_X86_64_64 = 1
R_XTENSA_32 = 1
R_386_PC32 = 2
R_X86_64_PC32 = 2
R_ARM_ABS32 = 2
R_386_GOT32 = 3
R_ARM_REL32 = 3
R_386_PLT32 = 4
R_X86_64_PLT32 = 4
R_XTENSA_PLT = 6
R_386_GOTOFF = 9
R_386_GOTPC = 10
R_ARM_THM_CALL = 10
R_XTENSA_DIFF32 = 19
R_XTENSA_SLOT0_OP = 20
R_ARM_BASE_PREL = 25 # aka R_ARM_GOTPC
R_ARM_GOT_BREL = 26 # aka R_ARM_GOT32
R_ARM_THM_JUMP24 = 30
R_X86_64_REX_GOTPCRELX = 42
R_386_GOT32X = 43

################################################################################
# Architecture configuration

def asm_jump_x86(entry):
    return struct.pack('<BI', 0xe9, entry - 5)

def asm_jump_arm(entry):
    b_off = entry - 4
    if b_off >> 11 == 0 or b_off >> 11 == -1:
        # Signed value fits in 12 bits
        b0 = 0xe000 | (b_off >> 1 & 0x07ff)
        b1 = 0
    else:
        # Use large jump
        b0 = 0xf000 | (b_off >> 12 & 0x07ff)
        b1 = 0xb800 | (b_off >> 1 & 0x7ff)
    return struct.pack('<HH', b0, b1)

def asm_jump_xtensa(entry):
    jump_offset = entry - 4
    jump_op = jump_offset << 6 | 6
    return struct.pack('<BH', jump_op & 0xff, jump_op >> 8)

class ArchData:
    def __init__(self, name, mpy_feature, qstr_entry_size, word_size, arch_got, asm_jump):
        self.name = name
        self.mpy_feature = mpy_feature
        self.qstr_entry_size = qstr_entry_size
        self.word_size = word_size
        self.arch_got = arch_got
        self.asm_jump = asm_jump
        self.separate_rodata = name == 'EM_XTENSA' and qstr_entry_size == 4

ARCH_DATA = {
    'x86': ArchData(
        'EM_386',
        MP_NATIVE_ARCH_X86 << 2 | MICROPY_PY_BUILTINS_STR_UNICODE | MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE,
        2, 4, (R_386_PC32, R_386_GOT32, R_386_GOT32X), asm_jump_x86,
    ),
    'x64': ArchData(
        'EM_X86_64',
        MP_NATIVE_ARCH_X64 << 2 | MICROPY_PY_BUILTINS_STR_UNICODE | MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE,
        2, 8, (R_X86_64_REX_GOTPCRELX,), asm_jump_x86,
    ),
    'armv7m': ArchData(
        'EM_ARM',
        MP_NATIVE_ARCH_ARMV7M << 2 | MICROPY_PY_BUILTINS_STR_UNICODE,
        2, 4, (R_ARM_GOT_BREL,), asm_jump_arm,
    ),
    'armv7emsp': ArchData(
        'EM_ARM',
        MP_NATIVE_ARCH_ARMV7EMSP << 2 | MICROPY_PY_BUILTINS_STR_UNICODE,
        2, 4, (R_ARM_GOT_BREL,), asm_jump_arm,
    ),
    'armv7emdp': ArchData(
        'EM_ARM',
        MP_NATIVE_ARCH_ARMV7EMDP << 2 | MICROPY_PY_BUILTINS_STR_UNICODE,
        2, 4, (R_ARM_GOT_BREL,), asm_jump_arm,
    ),
    'xtensa': ArchData(
        'EM_XTENSA',
        MP_NATIVE_ARCH_XTENSA << 2 | MICROPY_PY_BUILTINS_STR_UNICODE,
        2, 4, (R_XTENSA_32, R_XTENSA_PLT), asm_jump_xtensa,
    ),
    'xtensawin': ArchData(
        'EM_XTENSA',
        MP_NATIVE_ARCH_XTENSAWIN << 2 | MICROPY_PY_BUILTINS_STR_UNICODE,
        4, 4, (R_XTENSA_32, R_XTENSA_PLT), asm_jump_xtensa,
    ),
}

################################################################################
# Helper functions

def align_to(value, align):
    return (value + align - 1) & ~(align - 1)

def unpack_u24le(data, offset):
    return data[offset] | data[offset + 1] << 8 | data[offset + 2] << 16

def pack_u24le(data, offset, value):
    data[offset] = value & 0xff
    data[offset + 1] = value >> 8 & 0xff
    data[offset + 2] = value >> 16 & 0xff

def xxd(text):
    for i in range(0, len(text), 16):
        print('{:08x}:'.format(i), end='')
        for j in range(4):
            off = i + j * 4
            if off < len(text):
                d = int.from_bytes(text[off:off + 4], 'little')
                print(' {:08x}'.format(d), end='')
        print()

# Smaller numbers are enabled first
LOG_LEVEL_1 = 1
LOG_LEVEL_2 = 2
LOG_LEVEL_3 = 3
log_level = LOG_LEVEL_1

def log(level, msg):
    if level <= log_level:
        print(msg)

################################################################################
# Qstr extraction

def extract_qstrs(source_files):
    def read_qstrs(f):
        with open(f) as f:
            vals = set()
            objs = set()
            for line in f:
                while line:
                    m = re.search(r'MP_OBJ_NEW_QSTR\((MP_QSTR_[A-Za-z0-9_]*)\)', line)
                    if m:
                        objs.add(m.group(1))
                    else:
                        m = re.search(r'MP_QSTR_[A-Za-z0-9_]*', line)
                        if m:
                            vals.add(m.group())
                    if m:
                        s = m.span()
                        line = line[:s[0]] + line[s[1]:]
                    else:
                        line = ''
            return vals, objs

    static_qstrs = ['MP_QSTR_' + qstrutil.qstr_escape(q) for q in qstrutil.static_qstr_list]

    qstr_vals = set()
    qstr_objs = set()
    for f in source_files:
        vals, objs = read_qstrs(f)
        qstr_vals.update(vals)
        qstr_objs.update(objs)
    qstr_vals.difference_update(static_qstrs)

    return static_qstrs, qstr_vals, qstr_objs

################################################################################
# Linker

class LinkError(Exception):
    pass

class Section:
    def __init__(self, name, data, alignment, filename=None):
        self.filename = filename
        self.name = name
        self.data = data
        self.alignment = alignment
        self.addr = 0
        self.reloc = []

    @staticmethod
    def from_elfsec(elfsec, filename):
        assert elfsec.header.sh_addr == 0
        return Section(elfsec.name, elfsec.data(), elfsec.data_alignment, filename)

class GOTEntry:
    def __init__(self, name, sym, link_addr=0):
        self.name = name
        self.sym = sym
        self.offset = None
        self.link_addr = link_addr

    def isexternal(self):
        return self.sec_name.startswith('.external')

    def istext(self):
        return self.sec_name.startswith('.text')

    def isrodata(self):
        return self.sec_name.startswith(('.rodata', '.data.rel.ro'))

    def isbss(self):
        return self.sec_name.startswith('.bss')

class LiteralEntry:
    def __init__(self, value, offset):
        self.value = value
        self.offset = offset

class LinkEnv:
    def __init__(self, arch):
        self.arch = ARCH_DATA[arch]
        self.sections = []          # list of sections in order of output
        self.literal_sections = []  # list of literal sections (xtensa only)
        self.known_syms = {}        # dict of symbols that are defined
        self.unresolved_syms = []   # list of unresolved symbols
        self.mpy_relocs = []        # list of relocations needed in the output .mpy file

    def check_arch(self, arch_name):
        if arch_name != self.arch.name:
            raise LinkError('incompatible arch')

    def print_sections(self):
        log(LOG_LEVEL_2, 'sections:')
        for sec in self.sections:
            log(LOG_LEVEL_2, '  {:08x} {} size={}'.format(sec.addr, sec.name, len(sec.data)))

    def find_addr(self, name):
        if name in self.known_syms:
            s = self.known_syms[name]
            return s.section.addr + s['st_value']
        raise LinkError('unknown symbol: {}'.format(name))

def build_got_generic(env):
    env.got_entries = {}
    for sec in env.sections:
        for r in sec.reloc:
            s = r.sym
            if not (s.entry['st_info']['bind'] == 'STB_GLOBAL' and r['r_info_type'] in env.arch.arch_got):
                continue
            s_type = s.entry['st_info']['type']
            assert s_type in ('STT_NOTYPE', 'STT_FUNC', 'STT_OBJECT'), s_type
            assert s.name
            if s.name in env.got_entries:
                continue
            env.got_entries[s.name] = GOTEntry(s.name, s)

def build_got_xtensa(env):
    env.got_entries = {}
    env.lit_entries = {}
    env.xt_literals = {}

    # Extract the values from the literal table
    for sec in env.literal_sections:
        assert len(sec.data) % env.arch.word_size == 0

        # Look through literal relocations to find any global pointers that should be GOT entries
        for r in sec.reloc:
            s = r.sym
            s_type = s.entry['st_info']['type']
            assert s_type in ('STT_NOTYPE', 'STT_FUNC', 'STT_OBJECT', 'STT_SECTION'), s_type
            assert r['r_info_type'] in env.arch.arch_got
            assert r['r_offset'] % env.arch.word_size == 0
            # This entry is a global pointer
            existing = struct.unpack_from('<I', sec.data, r['r_offset'])[0]
            if s_type == 'STT_SECTION':
                assert r['r_addend'] == 0
                name = "{}+0x{:x}".format(s.section.name, existing)
            else:
                assert existing == 0
                name = s.name
                if r['r_addend'] != 0:
                    name = "{}+0x{:x}".format(name, r['r_addend'])
            idx = '{}+0x{:x}'.format(sec.filename, r['r_offset'])
            env.xt_literals[idx] = name
            if name in env.got_entries:
                # Deduplicate GOT entries
                continue
            env.got_entries[name] = GOTEntry(name, s, existing)

        # Go through all literal entries finding those that aren't global pointers so must be actual literals
        for i in range(0, len(sec.data), env.arch.word_size):
            idx = '{}+0x{:x}'.format(sec.filename, i)
            if idx not in env.xt_literals:
                # This entry is an actual literal
                value = struct.unpack_from('<I', sec.data, i)[0]
                env.xt_literals[idx] = value
                if value in env.lit_entries:
                    # Deduplicate literals
                    continue
                env.lit_entries[value] = LiteralEntry(value, len(env.lit_entries) * env.arch.word_size)

def populate_got(env):
    # Compute GOT destination addresses
    for got_entry in env.got_entries.values():
        sym = got_entry.sym
        if hasattr(sym, 'resolved'):
            sym = sym.resolved
        sec = sym.section
        addr = sym['st_value']
        got_entry.sec_name = sec.name
        got_entry.link_addr += sec.addr + addr

    # Get sorted GOT, sorted by external, text, rodata, bss so relocations can be combined
    got_list = sorted(env.got_entries.values(),
        key=lambda g: g.isexternal() + 2 * g.istext() + 3 * g.isrodata() + 4 * g.isbss())

    # Layout and populate the GOT
    offset = 0
    for got_entry in got_list:
        got_entry.offset = offset
        offset += env.arch.word_size
        o = env.got_section.addr + got_entry.offset
        env.full_text[o:o + env.arch.word_size] = got_entry.link_addr.to_bytes(env.arch.word_size, 'little')

    # Create a relocation for each GOT entry
    for got_entry in got_list:
        if got_entry.name == 'mp_fun_table':
            dest = 'mp_fun_table'
        elif got_entry.name.startswith('mp_fun_table+0x'):
            dest = int(got_entry.name.split('+')[1], 16) // env.arch.word_size
        elif got_entry.sec_name.startswith('.text'):
            dest = '.text'
        elif got_entry.sec_name.startswith('.rodata'):
            dest = '.rodata'
        elif got_entry.sec_name.startswith('.data.rel.ro'):
            dest = '.data.rel.ro'
        elif got_entry.sec_name.startswith('.bss'):
            dest = '.bss'
        else:
            assert 0, (got_entry.name, got_entry.sec_name)
        env.mpy_relocs.append(('.text', env.got_section.addr + got_entry.offset, dest))

    # Print out the final GOT
    log(LOG_LEVEL_2, 'GOT: {:08x}'.format(env.got_section.addr))
    for g in got_list:
        log(LOG_LEVEL_2, '  {:08x} {} -> {}+{:08x}'.format(g.offset, g.name, g.sec_name, g.link_addr))

def populate_lit(env):
    log(LOG_LEVEL_2, 'LIT: {:08x}'.format(env.lit_section.addr))
    for lit_entry in env.lit_entries.values():
        value = lit_entry.value
        log(LOG_LEVEL_2, '  {:08x} = {:08x}'.format(lit_entry.offset, value))
        o = env.lit_section.addr + lit_entry.offset
        env.full_text[o:o + env.arch.word_size] = value.to_bytes(env.arch.word_size, 'little')

def do_relocation_text(env, text_addr, r):
    # Extract relevant info about symbol that's being relocated
    s = r.sym
    s_bind = s.entry['st_info']['bind']
    s_shndx = s.entry['st_shndx']
    s_type = s.entry['st_info']['type']
    r_offset = r['r_offset'] + text_addr
    r_info_type = r['r_info_type']
    try:
        # only for RELA sections
        r_addend = r['r_addend']
    except KeyError:
        r_addend = 0

    # Default relocation type and name for logging
    reloc_type = 'le32'
    log_name = None

    if (env.arch.name == 'EM_386' and r_info_type in (R_386_PC32, R_386_PLT32)
        or env.arch.name == 'EM_X86_64' and r_info_type in (R_X86_64_PC32, R_X86_64_PLT32)
        or env.arch.name == 'EM_ARM' and r_info_type in (R_ARM_REL32, R_ARM_THM_CALL, R_ARM_THM_JUMP24)
        or s_bind == 'STB_LOCAL' and env.arch.name == 'EM_XTENSA' and r_info_type == R_XTENSA_32 # not GOT
        ):
        # Standard relocation to fixed location within text/rodata
        if hasattr(s, 'resolved'):
            s = s.resolved

        sec = s.section

        if env.arch.separate_rodata and sec.name.startswith('.rodata'):
            raise LinkError('fixed relocation to rodata with rodata referenced via GOT')

        if sec.name.startswith('.bss'):
            raise LinkError('{}: fixed relocation to bss (bss variables can\'t be static)'.format(s.filename))

        if sec.name.startswith('.external'):
            raise LinkError('{}: fixed relocation to external symbol: {}'.format(s.filename, s.name))

        addr = sec.addr + s['st_value']
        reloc = addr - r_offset + r_addend

        if r_info_type in (R_ARM_THM_CALL, R_ARM_THM_JUMP24):
            # Both relocations have the same bit pattern to rewrite:
            #   R_ARM_THM_CALL: bl
            #   R_ARM_THM_JUMP24: b.w
            reloc_type = 'thumb_b'

    elif (env.arch.name == 'EM_386' and r_info_type == R_386_GOTPC
        or env.arch.name == 'EM_ARM' and r_info_type == R_ARM_BASE_PREL
        ):
        # Relocation to GOT address itself
        assert s.name == '_GLOBAL_OFFSET_TABLE_'
        addr = env.got_section.addr
        reloc = addr - r_offset + r_addend

    elif (env.arch.name == 'EM_386' and r_info_type in (R_386_GOT32, R_386_GOT32X)
        or env.arch.name == 'EM_ARM' and r_info_type == R_ARM_GOT_BREL
        ):
        # Relcation pointing to GOT
        reloc = addr = env.got_entries[s.name].offset

    elif env.arch.name == 'EM_X86_64' and r_info_type == R_X86_64_REX_GOTPCRELX:
        # Relcation pointing to GOT
        got_entry = env.got_entries[s.name]
        addr = env.got_section.addr + got_entry.offset
        reloc = addr - r_offset + r_addend

    elif env.arch.name == 'EM_386' and r_info_type == R_386_GOTOFF:
        # Relocation relative to GOT
        addr = s.section.addr + s['st_value']
        reloc = addr - env.got_section.addr + r_addend

    elif env.arch.name == 'EM_XTENSA' and r_info_type == R_XTENSA_SLOT0_OP:
        # Relocation pointing to GOT, xtensa specific
        sec = s.section
        if sec.name.startswith('.text'):
            # it looks like R_XTENSA_SLOT0_OP into .text is already correctly relocated
            return
        assert sec.name.startswith('.literal'), sec.name
        lit_idx = '{}+0x{:x}'.format(sec.filename, r_addend)
        lit_ptr = env.xt_literals[lit_idx]
        if isinstance(lit_ptr, str):
            addr = env.got_section.addr + env.got_entries[lit_ptr].offset
            log_name = 'GOT {}'.format(lit_ptr)
        else:
            addr = env.lit_section.addr + env.lit_entries[lit_ptr].offset
            log_name = 'LIT'
        reloc = addr - r_offset
        reloc_type = 'xtensa_l32r'

    elif env.arch.name == 'EM_XTENSA' and r_info_type == R_XTENSA_DIFF32:
        if s.section.name.startswith('.text'):
            # it looks like R_XTENSA_DIFF32 into .text is already correctly relocated
            return
        assert 0

    else:
        # Unknown/unsupported relocation
        assert 0, r_info_type

    # Write relocation
    if reloc_type == 'le32':
        existing, = struct.unpack_from('<I', env.full_text, r_offset)
        struct.pack_into('<I', env.full_text, r_offset, (existing + reloc) & 0xffffffff)
    elif reloc_type == 'thumb_b':
        b_h, b_l = struct.unpack_from('<HH', env.full_text, r_offset)
        existing = (b_h & 0x7ff) << 12 | (b_l & 0x7ff) << 1
        if existing >= 0x400000: # 2's complement
            existing -= 0x800000
        new = existing + reloc
        b_h = (b_h & 0xf800) | (new >> 12) & 0x7ff
        b_l = (b_l & 0xf800) | (new >> 1) & 0x7ff
        struct.pack_into('<HH', env.full_text, r_offset, b_h, b_l)
    elif reloc_type == 'xtensa_l32r':
        l32r = unpack_u24le(env.full_text, r_offset)
        assert l32r & 0xf == 1 # RI16 encoded l32r
        l32r_imm16 = l32r >> 8
        l32r_imm16 = (l32r_imm16 + reloc >> 2) & 0xffff
        l32r = l32r & 0xff | l32r_imm16 << 8
        pack_u24le(env.full_text, r_offset, l32r)
    else:
        assert 0, reloc_type

    # Log information about relocation
    if log_name is None:
        if s_type == 'STT_SECTION':
            log_name = s.section.name
        else:
            log_name = s.name
    log(LOG_LEVEL_3, '  {:08x} {} -> {:08x}'.format(r_offset, log_name, addr))

def do_relocation_data(env, text_addr, r):
    s = r.sym
    s_type = s.entry['st_info']['type']
    r_offset = r['r_offset'] + text_addr
    r_info_type = r['r_info_type']
    try:
        # only for RELA sections
        r_addend = r['r_addend']
    except KeyError:
        r_addend = 0

    if (env.arch.name == 'EM_386' and r_info_type == R_386_32
        or env.arch.name == 'EM_X86_64' and r_info_type == R_X86_64_64
        or env.arch.name == 'EM_ARM' and r_info_type == R_ARM_ABS32
        or env.arch.name == 'EM_XTENSA' and r_info_type == R_XTENSA_32):
        # Relocation in data.rel.ro to internal/external symbol
        if env.arch.word_size == 4:
            struct_type = '<I'
        elif env.arch.word_size == 8:
            struct_type = '<Q'
        sec = s.section
        assert r_offset % env.arch.word_size == 0
        addr = sec.addr + s['st_value'] + r_addend
        if s_type == 'STT_SECTION':
            log_name = sec.name
        else:
            log_name = s.name
        log(LOG_LEVEL_3, '  {:08x} -> {} {:08x}'.format(r_offset, log_name, addr))
        if env.arch.separate_rodata:
            data = env.full_rodata
        else:
            data = env.full_text
        existing, = struct.unpack_from(struct_type, data, r_offset)
        if sec.name.startswith(('.text', '.rodata', '.data.rel.ro', '.bss')):
            struct.pack_into(struct_type, data, r_offset, existing + addr)
            kind = sec.name
        elif sec.name == '.external.mp_fun_table':
            assert addr == 0
            kind = s.mp_fun_table_offset
        else:
            assert 0, sec.name
        if env.arch.separate_rodata:
            base = '.rodata'
        else:
            base = '.text'
        env.mpy_relocs.append((base, r_offset, kind))

    else:
        # Unknown/unsupported relocation
        assert 0, r_info_type

def load_object_file(env, felf):
    with open(felf, 'rb') as f:
        elf = elffile.ELFFile(f)
        env.check_arch(elf['e_machine'])

        # Get symbol table
        symtab = list(elf.get_section_by_name('.symtab').iter_symbols())

        # Load needed sections from ELF file
        sections_shndx = {} # maps elf shndx to Section object
        for idx, s in enumerate(elf.iter_sections()):
            if s.header.sh_type in ('SHT_PROGBITS', 'SHT_NOBITS'):
                if s.data_size == 0:
                    # Ignore empty sections
                    pass
                elif s.name.startswith(('.literal', '.text', '.rodata', '.data.rel.ro', '.bss')):
                    sec = Section.from_elfsec(s, felf)
                    sections_shndx[idx] = sec
                    if s.name.startswith('.literal'):
                        env.literal_sections.append(sec)
                    else:
                        env.sections.append(sec)
                elif s.name.startswith('.data'):
                    raise LinkError('{}: {} non-empty'.format(felf, s.name))
                else:
                    # Ignore section
                    pass
            elif s.header.sh_type in ('SHT_REL', 'SHT_RELA'):
                shndx = s.header.sh_info
                if shndx in sections_shndx:
                    sec = sections_shndx[shndx]
                    sec.reloc_name = s.name
                    sec.reloc = list(s.iter_relocations())
                    for r in sec.reloc:
                        r.sym = symtab[r['r_info_sym']]

        # Link symbols to their sections, and update known and unresolved symbols
        for sym in symtab:
            sym.filename = felf
            shndx = sym.entry['st_shndx']
            if shndx in sections_shndx:
                # Symbol with associated section
                sym.section = sections_shndx[shndx]
                if sym['st_info']['bind'] == 'STB_GLOBAL':
                    # Defined global symbol
                    if sym.name in env.known_syms and not sym.name.startswith('__x86.get_pc_thunk.'):
                        raise LinkError('duplicate symbol: {}'.format(sym.name))
                    env.known_syms[sym.name] = sym
            elif sym.entry['st_shndx'] == 'SHN_UNDEF' and sym['st_info']['bind'] == 'STB_GLOBAL':
                # Undefined global symbol, needs resolving
                env.unresolved_syms.append(sym)

def link_objects(env, native_qstr_vals_len, native_qstr_objs_len):
    # Build GOT information
    if env.arch.name == 'EM_XTENSA':
        build_got_xtensa(env)
    else:
        build_got_generic(env)

    # Creat GOT section
    got_size = len(env.got_entries) * env.arch.word_size
    env.got_section = Section('GOT', bytearray(got_size), env.arch.word_size)
    if env.arch.name == 'EM_XTENSA':
        env.sections.insert(0, env.got_section)
    else:
        env.sections.append(env.got_section)

    # Create optional literal section
    if env.arch.name == 'EM_XTENSA':
        lit_size = len(env.lit_entries) * env.arch.word_size
        env.lit_section = Section('LIT', bytearray(lit_size), env.arch.word_size)
        env.sections.insert(1, env.lit_section)

    # Create section to contain mp_native_qstr_val_table
    env.qstr_val_section = Section('.text.QSTR_VAL', bytearray(native_qstr_vals_len * env.arch.qstr_entry_size), env.arch.qstr_entry_size)
    env.sections.append(env.qstr_val_section)

    # Create section to contain mp_native_qstr_obj_table
    env.qstr_obj_section = Section('.text.QSTR_OBJ', bytearray(native_qstr_objs_len * env.arch.word_size), env.arch.word_size)
    env.sections.append(env.qstr_obj_section)

    # Resolve unknown symbols
    mp_fun_table_sec = Section('.external.mp_fun_table', b'', 0)
    fun_table = {key: 67 + idx
        for idx, key in enumerate([
            'mp_type_type',
            'mp_type_str',
            'mp_type_list',
            'mp_type_dict',
            'mp_type_fun_builtin_0',
            'mp_type_fun_builtin_1',
            'mp_type_fun_builtin_2',
            'mp_type_fun_builtin_3',
            'mp_type_fun_builtin_var',
            'mp_stream_read_obj',
            'mp_stream_readinto_obj',
            'mp_stream_unbuffered_readline_obj',
            'mp_stream_write_obj',
        ])
    }
    for sym in env.unresolved_syms:
        assert sym['st_value'] == 0
        if sym.name == '_GLOBAL_OFFSET_TABLE_':
            pass
        elif sym.name == 'mp_fun_table':
            sym.section = Section('.external', b'', 0)
        elif sym.name == 'mp_native_qstr_val_table':
            sym.section = env.qstr_val_section
        elif sym.name == 'mp_native_qstr_obj_table':
            sym.section = env.qstr_obj_section
        elif sym.name in env.known_syms:
            sym.resolved = env.known_syms[sym.name]
        else:
            if sym.name in fun_table:
                sym.section = mp_fun_table_sec
                sym.mp_fun_table_offset = fun_table[sym.name]
            else:
                raise LinkError('{}: undefined symbol: {}'.format(sym.filename, sym.name))

    # Align sections, assign their addresses, and create full_text
    env.full_text = bytearray(env.arch.asm_jump(8)) # dummy, to be filled in later
    env.full_rodata = bytearray(0)
    env.full_bss = bytearray(0)
    for sec in env.sections:
        if env.arch.separate_rodata and sec.name.startswith(('.rodata', '.data.rel.ro')):
            data = env.full_rodata
        elif sec.name.startswith('.bss'):
            data = env.full_bss
        else:
            data = env.full_text
        sec.addr = align_to(len(data), sec.alignment)
        data.extend(b'\x00' * (sec.addr - len(data)))
        data.extend(sec.data)

    env.print_sections()

    populate_got(env)
    if env.arch.name == 'EM_XTENSA':
        populate_lit(env)

    # Fill in relocations
    for sec in env.sections:
        if not sec.reloc:
            continue
        log(LOG_LEVEL_3, '{}: {} relocations via {}:'.format(sec.filename, sec.name, sec.reloc_name))
        for r in sec.reloc:
            if sec.name.startswith(('.text', '.rodata')):
                do_relocation_text(env, sec.addr, r)
            elif sec.name.startswith('.data.rel.ro'):
                do_relocation_data(env, sec.addr, r)
            else:
                assert 0, sec.name

################################################################################
# .mpy output

class MPYOutput:
    def open(self, fname):
        self.f = open(fname, 'wb')
        self.prev_base = -1
        self.prev_offset = -1

    def close(self):
        self.f.close()

    def write_bytes(self, buf):
        self.f.write(buf)

    def write_uint(self, val):
        b = bytearray()
        b.insert(0, val & 0x7f)
        val >>= 7
        while val:
            b.insert(0, 0x80 | (val & 0x7f))
            val >>= 7
        self.write_bytes(b)

    def write_qstr(self, s):
        if s in qstrutil.static_qstr_list:
            self.write_bytes(bytes([0, qstrutil.static_qstr_list.index(s) + 1]))
        else:
            s = bytes(s, 'ascii')
            self.write_uint(len(s) << 1)
            self.write_bytes(s)

    def write_reloc(self, base, offset, dest, n):
        need_offset = not (base == self.prev_base and offset == self.prev_offset + 1)
        self.prev_offset = offset + n - 1
        if dest <= 2:
            dest = (dest << 1) | (n > 1)
        else:
            assert 6 <= dest <= 127
            assert n == 1
        dest = dest << 1 | need_offset
        assert 0 <= dest <= 0xfe, dest
        self.write_bytes(bytes([dest]))
        if need_offset:
            if base == '.text':
                base = 0
            elif base == '.rodata':
                base = 1
            self.write_uint(offset << 1 | base)
        if n > 1:
            self.write_uint(n)

def build_mpy(env, entry_offset, fmpy, native_qstr_vals, native_qstr_objs):
    # Write jump instruction to start of text
    jump = env.arch.asm_jump(entry_offset)
    env.full_text[:len(jump)] = jump

    log(LOG_LEVEL_1, 'arch:         {}'.format(env.arch.name))
    log(LOG_LEVEL_1, 'text size:    {}'.format(len(env.full_text)))
    if len(env.full_rodata):
        log(LOG_LEVEL_1, 'rodata size:  {}'.format(len(env.full_rodata)))
    log(LOG_LEVEL_1, 'bss size:     {}'.format(len(env.full_bss)))
    log(LOG_LEVEL_1, 'GOT entries:  {}'.format(len(env.got_entries)))

    #xxd(env.full_text)

    out = MPYOutput()
    out.open(fmpy)

    # MPY: header
    out.write_bytes(bytearray([
        ord('M'),
        MPY_VERSION,
        env.arch.mpy_feature,
        MP_SMALL_INT_BITS,
        QSTR_WINDOW_SIZE,
    ]))

    # MPY: kind/len
    out.write_uint(len(env.full_text) << 2 | (MP_CODE_NATIVE_VIPER - MP_CODE_BYTECODE))

    # MPY: machine code
    out.write_bytes(env.full_text)

    # MPY: n_qstr_link (assumes little endian)
    out.write_uint(len(native_qstr_vals) + len(native_qstr_objs))
    for q in range(len(native_qstr_vals)):
        off = env.qstr_val_section.addr + q * env.arch.qstr_entry_size
        out.write_uint(off << 2)
        out.write_qstr(native_qstr_vals[q])
    for q in range(len(native_qstr_objs)):
        off = env.qstr_obj_section.addr + q * env.arch.word_size
        out.write_uint(off << 2 | 3)
        out.write_qstr(native_qstr_objs[q])

    # MPY: scope_flags
    scope_flags = MP_SCOPE_FLAG_VIPERRELOC
    if len(env.full_rodata):
        scope_flags |= MP_SCOPE_FLAG_VIPERRODATA
    if len(env.full_bss):
        scope_flags |= MP_SCOPE_FLAG_VIPERBSS
    out.write_uint(scope_flags)

    # MPY: n_obj
    out.write_uint(0)

    # MPY: n_raw_code
    out.write_uint(0)

    # MPY: rodata and/or bss
    if len(env.full_rodata):
        rodata_const_table_idx = 1
        out.write_uint(len(env.full_rodata))
        out.write_bytes(env.full_rodata)
    if len(env.full_bss):
        bss_const_table_idx = bool(env.full_rodata) + 1
        out.write_uint(len(env.full_bss))

    # MPY: relocation information
    prev_kind = None
    for base, addr, kind in env.mpy_relocs:
        if isinstance(kind, str) and kind.startswith('.text'):
            kind = 0
        elif kind in ('.rodata', '.data.rel.ro'):
            if env.arch.separate_rodata:
                kind = rodata_const_table_idx
            else:
                kind = 0
        elif isinstance(kind, str) and kind.startswith('.bss'):
            kind = bss_const_table_idx
        elif kind == 'mp_fun_table':
            kind = 6
        else:
            kind = 7 + kind
        assert addr % env.arch.word_size == 0, addr
        offset = addr // env.arch.word_size
        if kind == prev_kind and base == prev_base and offset == prev_offset + 1:
            prev_n += 1
            prev_offset += 1
        else:
            if prev_kind is not None:
                out.write_reloc(prev_base, prev_offset - prev_n + 1, prev_kind, prev_n)
            prev_kind = kind
            prev_base = base
            prev_offset = offset
            prev_n = 1
    if prev_kind is not None:
        out.write_reloc(prev_base, prev_offset - prev_n + 1, prev_kind, prev_n)

    # MPY: sentinel for end of relocations
    out.write_bytes(b'\xff')

    out.close()

################################################################################
# main

def do_preprocess(args):
    if args.output is None:
        assert args.files[0].endswith('.c')
        args.output = args.files[0][:-1] + 'config.h'
    static_qstrs, qstr_vals, qstr_objs = extract_qstrs(args.files)
    with open(args.output, 'w') as f:
        print('#include <stdint.h>\n'
            'typedef uintptr_t mp_uint_t;\n'
            'typedef intptr_t mp_int_t;\n'
            'typedef uintptr_t mp_off_t;', file=f)
        for i, q in enumerate(static_qstrs):
            print('#define %s (%u)' % (q, i + 1), file=f)
        for i, q in enumerate(sorted(qstr_vals)):
            print('#define %s (mp_native_qstr_val_table[%d])' % (q, i), file=f)
        for i, q in enumerate(sorted(qstr_objs)):
            print('#define MP_OBJ_NEW_QSTR_%s ((mp_obj_t)mp_native_qstr_obj_table[%d])' % (q, i), file=f)
        if args.arch == 'xtensawin':
            qstr_type = 'uint32_t' # esp32 can only read 32-bit values from IRAM
        else:
            qstr_type = 'uint16_t'
        print('extern const {} mp_native_qstr_val_table[];'.format(qstr_type), file=f)
        print('extern const mp_uint_t mp_native_qstr_obj_table[];', file=f)

def do_link(args):
    if args.output is None:
        assert args.files[0].endswith('.o')
        args.output = args.files[0][:-1] + 'mpy'
    native_qstr_vals = []
    native_qstr_objs = []
    if args.qstrs is not None:
        with open(args.qstrs) as f:
            for l in f:
                m = re.match(r'#define MP_QSTR_([A-Za-z0-9_]*) \(mp_native_', l)
                if m:
                    native_qstr_vals.append(m.group(1))
                else:
                    m = re.match(r'#define MP_OBJ_NEW_QSTR_MP_QSTR_([A-Za-z0-9_]*)', l)
                    if m:
                        native_qstr_objs.append(m.group(1))
    log(LOG_LEVEL_2, 'qstr vals: ' + ', '.join(native_qstr_vals))
    log(LOG_LEVEL_2, 'qstr objs: ' + ', '.join(native_qstr_objs))
    env = LinkEnv(args.arch)
    try:
        for file in args.files:
            load_object_file(env, file)
        link_objects(env, len(native_qstr_vals), len(native_qstr_objs))
        build_mpy(env, env.find_addr('mpy_init'), args.output, native_qstr_vals, native_qstr_objs)
    except LinkError as er:
        print('LinkError:', er.args[0])
        sys.exit(1)

def main():
    import argparse
    cmd_parser = argparse.ArgumentParser(description='Run scripts on the pyboard.')
    cmd_parser.add_argument('--verbose', '-v', action='count', default=1, help='increase verbosity')
    cmd_parser.add_argument('--arch', default='x64', help='architecture')
    cmd_parser.add_argument('--preprocess', action='store_true', help='preprocess source files')
    cmd_parser.add_argument('--qstrs', default=None, help='file defining additional qstrs')
    cmd_parser.add_argument('--output', '-o', default=None, help='output .mpy file (default to input with .o->.mpy)')
    cmd_parser.add_argument('files', nargs='+', help='input files')
    args = cmd_parser.parse_args()

    global log_level
    log_level = args.verbose

    if args.preprocess:
        do_preprocess(args)
    else:
        do_link(args)

if __name__ == '__main__':
    main()