aboutsummaryrefslogtreecommitdiff
path: root/ports/stm32/timer.c
blob: 0c120e74da18e5191afb3c01f1e596de364326c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdint.h>
#include <string.h>

#include "py/runtime.h"
#include "py/gc.h"
#include "timer.h"
#include "servo.h"
#include "pin.h"
#include "irq.h"

/// \moduleref pyb
/// \class Timer - periodically call a function
///
/// Timers can be used for a great variety of tasks.  At the moment, only
/// the simplest case is implemented: that of calling a function periodically.
///
/// Each timer consists of a counter that counts up at a certain rate.  The rate
/// at which it counts is the peripheral clock frequency (in Hz) divided by the
/// timer prescaler.  When the counter reaches the timer period it triggers an
/// event, and the counter resets back to zero.  By using the callback method,
/// the timer event can call a Python function.
///
/// Example usage to toggle an LED at a fixed frequency:
///
///     tim = pyb.Timer(4)              # create a timer object using timer 4
///     tim.init(freq=2)                # trigger at 2Hz
///     tim.callback(lambda t:pyb.LED(1).toggle())
///
/// Further examples:
///
///     tim = pyb.Timer(4, freq=100)    # freq in Hz
///     tim = pyb.Timer(4, prescaler=0, period=99)
///     tim.counter()                   # get counter (can also set)
///     tim.prescaler(2)                # set prescaler (can also get)
///     tim.period(199)                 # set period (can also get)
///     tim.callback(lambda t: ...)     # set callback for update interrupt (t=tim instance)
///     tim.callback(None)              # clear callback
///
/// *Note:* Timer 3 is used for fading the blue LED.  Timer 5 controls
/// the servo driver, and Timer 6 is used for timed ADC/DAC reading/writing.
/// It is recommended to use the other timers in your programs.

// The timers can be used by multiple drivers, and need a common point for
// the interrupts to be dispatched, so they are all collected here.
//
// TIM3:
//  - LED 4, PWM to set the LED intensity
//
// TIM5:
//  - servo controller, PWM
//
// TIM6:
//  - ADC, DAC for read_timed and write_timed

typedef enum {
    CHANNEL_MODE_PWM_NORMAL,
    CHANNEL_MODE_PWM_INVERTED,
    CHANNEL_MODE_OC_TIMING,
    CHANNEL_MODE_OC_ACTIVE,
    CHANNEL_MODE_OC_INACTIVE,
    CHANNEL_MODE_OC_TOGGLE,
    CHANNEL_MODE_OC_FORCED_ACTIVE,
    CHANNEL_MODE_OC_FORCED_INACTIVE,
    CHANNEL_MODE_IC,
    CHANNEL_MODE_ENC_A,
    CHANNEL_MODE_ENC_B,
    CHANNEL_MODE_ENC_AB,
} pyb_channel_mode;

STATIC const struct {
    qstr        name;
    uint32_t    oc_mode;
} channel_mode_info[] = {
    { MP_QSTR_PWM,                TIM_OCMODE_PWM1 },
    { MP_QSTR_PWM_INVERTED,       TIM_OCMODE_PWM2 },
    { MP_QSTR_OC_TIMING,          TIM_OCMODE_TIMING },
    { MP_QSTR_OC_ACTIVE,          TIM_OCMODE_ACTIVE },
    { MP_QSTR_OC_INACTIVE,        TIM_OCMODE_INACTIVE },
    { MP_QSTR_OC_TOGGLE,          TIM_OCMODE_TOGGLE },
    { MP_QSTR_OC_FORCED_ACTIVE,   TIM_OCMODE_FORCED_ACTIVE },
    { MP_QSTR_OC_FORCED_INACTIVE, TIM_OCMODE_FORCED_INACTIVE },
    { MP_QSTR_IC,                 0 },
    { MP_QSTR_ENC_A,              TIM_ENCODERMODE_TI1 },
    { MP_QSTR_ENC_B,              TIM_ENCODERMODE_TI2 },
    { MP_QSTR_ENC_AB,             TIM_ENCODERMODE_TI12 },
};

enum {
    BRK_OFF,
    BRK_LOW,
    BRK_HIGH,
};

typedef struct _pyb_timer_channel_obj_t {
    mp_obj_base_t base;
    struct _pyb_timer_obj_t *timer;
    uint8_t channel;
    uint8_t mode;
    mp_obj_t callback;
    struct _pyb_timer_channel_obj_t *next;
} pyb_timer_channel_obj_t;

typedef struct _pyb_timer_obj_t {
    mp_obj_base_t base;
    uint8_t tim_id;
    uint8_t is_32bit;
    mp_obj_t callback;
    TIM_HandleTypeDef tim;
    IRQn_Type irqn;
    pyb_timer_channel_obj_t *channel;
} pyb_timer_obj_t;

// The following yields TIM_IT_UPDATE when channel is zero and
// TIM_IT_CC1..TIM_IT_CC4 when channel is 1..4
#define TIMER_IRQ_MASK(channel) (1 << (channel))
#define TIMER_CNT_MASK(self)    ((self)->is_32bit ? 0xffffffff : 0xffff)
#define TIMER_CHANNEL(self)     ((((self)->channel) - 1) << 2)

TIM_HandleTypeDef TIM5_Handle;
TIM_HandleTypeDef TIM6_Handle;

#define PYB_TIMER_OBJ_ALL_NUM MP_ARRAY_SIZE(MP_STATE_PORT(pyb_timer_obj_all))

STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in);
STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback);
STATIC mp_obj_t pyb_timer_channel_callback(mp_obj_t self_in, mp_obj_t callback);

void timer_init0(void) {
    for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) {
        MP_STATE_PORT(pyb_timer_obj_all)[i] = NULL;
    }
}

// unregister all interrupt sources
void timer_deinit(void) {
    for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) {
        pyb_timer_obj_t *tim = MP_STATE_PORT(pyb_timer_obj_all)[i];
        if (tim != NULL) {
            pyb_timer_deinit(MP_OBJ_FROM_PTR(tim));
        }
    }
}

#if defined(TIM5)
// TIM5 is set-up for the servo controller
// This function inits but does not start the timer
void timer_tim5_init(void) {
    // TIM5 clock enable
    __HAL_RCC_TIM5_CLK_ENABLE();

    // set up and enable interrupt
    NVIC_SetPriority(TIM5_IRQn, IRQ_PRI_TIM5);
    HAL_NVIC_EnableIRQ(TIM5_IRQn);

    // PWM clock configuration
    TIM5_Handle.Instance = TIM5;
    TIM5_Handle.Init.Period = 2000 - 1; // timer cycles at 50Hz
    TIM5_Handle.Init.Prescaler = (timer_get_source_freq(5) / 100000) - 1; // timer runs at 100kHz
    TIM5_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
    TIM5_Handle.Init.CounterMode = TIM_COUNTERMODE_UP;

    HAL_TIM_PWM_Init(&TIM5_Handle);
}
#endif

#if defined(TIM6)
// Init TIM6 with a counter-overflow at the given frequency (given in Hz)
// TIM6 is used by the DAC and ADC for auto sampling at a given frequency
// This function inits but does not start the timer
TIM_HandleTypeDef *timer_tim6_init(uint freq) {
    // TIM6 clock enable
    __HAL_RCC_TIM6_CLK_ENABLE();

    // Timer runs at SystemCoreClock / 2
    // Compute the prescaler value so TIM6 triggers at freq-Hz
    uint32_t period = MAX(1, timer_get_source_freq(6) / freq);
    uint32_t prescaler = 1;
    while (period > 0xffff) {
        period >>= 1;
        prescaler <<= 1;
    }

    // Time base clock configuration
    TIM6_Handle.Instance = TIM6;
    TIM6_Handle.Init.Period = period - 1;
    TIM6_Handle.Init.Prescaler = prescaler - 1;
    TIM6_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // unused for TIM6
    TIM6_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; // unused for TIM6
    HAL_TIM_Base_Init(&TIM6_Handle);

    return &TIM6_Handle;
}
#endif

// Interrupt dispatch
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
    #if MICROPY_HW_ENABLE_SERVO
    if (htim == &TIM5_Handle) {
        servo_timer_irq_callback();
    }
    #endif
}

// Get the frequency (in Hz) of the source clock for the given timer.
// On STM32F405/407/415/417 there are 2 cases for how the clock freq is set.
// If the APB prescaler is 1, then the timer clock is equal to its respective
// APB clock.  Otherwise (APB prescaler > 1) the timer clock is twice its
// respective APB clock.  See DM00031020 Rev 4, page 115.
uint32_t timer_get_source_freq(uint32_t tim_id) {
    uint32_t source, clk_div;
    if (tim_id == 1 || (8 <= tim_id && tim_id <= 11)) {
        // TIM{1,8,9,10,11} are on APB2
        #if defined(STM32F0)
        source = HAL_RCC_GetPCLK1Freq();
        clk_div = RCC->CFGR & RCC_CFGR_PPRE;
        #elif defined(STM32H7)
        source = HAL_RCC_GetPCLK2Freq();
        clk_div = RCC->D2CFGR & RCC_D2CFGR_D2PPRE2;
        #else
        source = HAL_RCC_GetPCLK2Freq();
        clk_div = RCC->CFGR & RCC_CFGR_PPRE2;
        #endif
    } else {
        // TIM{2,3,4,5,6,7,12,13,14} are on APB1
        source = HAL_RCC_GetPCLK1Freq();
        #if defined(STM32F0)
        clk_div = RCC->CFGR & RCC_CFGR_PPRE;
        #elif defined(STM32H7)
        clk_div = RCC->D2CFGR & RCC_D2CFGR_D2PPRE1;
        #else
        clk_div = RCC->CFGR & RCC_CFGR_PPRE1;
        #endif
    }
    if (clk_div != 0) {
        // APB prescaler for this timer is > 1
        source *= 2;
    }
    return source;
}

/******************************************************************************/
/* MicroPython bindings                                                       */

STATIC const mp_obj_type_t pyb_timer_channel_type;

// This is the largest value that we can multiply by 100 and have the result
// fit in a uint32_t.
#define MAX_PERIOD_DIV_100  42949672

// computes prescaler and period so TIM triggers at freq-Hz
STATIC uint32_t compute_prescaler_period_from_freq(pyb_timer_obj_t *self, mp_obj_t freq_in, uint32_t *period_out) {
    uint32_t source_freq = timer_get_source_freq(self->tim_id);
    uint32_t prescaler = 1;
    uint32_t period;
    if (0) {
    #if MICROPY_PY_BUILTINS_FLOAT
    } else if (mp_obj_is_type(freq_in, &mp_type_float)) {
        float freq = mp_obj_get_float(freq_in);
        if (freq <= 0) {
            goto bad_freq;
        }
        while (freq < 1 && prescaler < 6553) {
            prescaler *= 10;
            freq *= 10;
        }
        period = (float)source_freq / freq;
    #endif
    } else {
        mp_int_t freq = mp_obj_get_int(freq_in);
        if (freq <= 0) {
            goto bad_freq;
            bad_freq:
            mp_raise_ValueError("must have positive freq");
        }
        period = source_freq / freq;
    }
    period = MAX(1, period);
    while (period > TIMER_CNT_MASK(self)) {
        // if we can divide exactly, do that first
        if (period % 5 == 0) {
            prescaler *= 5;
            period /= 5;
        } else if (period % 3 == 0) {
            prescaler *= 3;
            period /= 3;
        } else {
            // may not divide exactly, but loses minimal precision
            prescaler <<= 1;
            period >>= 1;
        }
    }
    *period_out = (period - 1) & TIMER_CNT_MASK(self);
    return (prescaler - 1) & 0xffff;
}

// computes prescaler and period so TIM triggers with a period of t_num/t_den seconds
STATIC uint32_t compute_prescaler_period_from_t(pyb_timer_obj_t *self, int32_t t_num, int32_t t_den, uint32_t *period_out) {
    uint32_t source_freq = timer_get_source_freq(self->tim_id);
    if (t_num <= 0 || t_den <= 0) {
        mp_raise_ValueError("must have positive freq");
    }
    uint64_t period = (uint64_t)source_freq * (uint64_t)t_num / (uint64_t)t_den;
    uint32_t prescaler = 1;
    while (period > TIMER_CNT_MASK(self)) {
        // if we can divide exactly, and without prescaler overflow, do that first
        if (prescaler <= 13107 && period % 5 == 0) {
            prescaler *= 5;
            period /= 5;
        } else if (prescaler <= 21845 && period % 3 == 0) {
            prescaler *= 3;
            period /= 3;
        } else {
            // may not divide exactly, but loses minimal precision
            uint32_t period_lsb = period & 1;
            prescaler <<= 1;
            period >>= 1;
            if (period < prescaler) {
                // round division up
                prescaler |= period_lsb;
            }
            if (prescaler > 0x10000) {
                mp_raise_ValueError("period too large");
            }
        }
    }
    *period_out = (period - 1) & TIMER_CNT_MASK(self);
    return (prescaler - 1) & 0xffff;
}

// Helper function for determining the period used for calculating percent
STATIC uint32_t compute_period(pyb_timer_obj_t *self) {
    // In center mode,  compare == period corresponds to 100%
    // In edge mode, compare == (period + 1) corresponds to 100%
    uint32_t period = (__HAL_TIM_GET_AUTORELOAD(&self->tim) & TIMER_CNT_MASK(self));
    if (period != 0xffffffff) {
        if (self->tim.Init.CounterMode == TIM_COUNTERMODE_UP ||
            self->tim.Init.CounterMode == TIM_COUNTERMODE_DOWN) {
            // Edge mode
            period++;
        }
    }
    return period;
}

// Helper function to compute PWM value from timer period and percent value.
// 'percent_in' can be an int or a float between 0 and 100 (out of range
// values are clamped).
STATIC uint32_t compute_pwm_value_from_percent(uint32_t period, mp_obj_t percent_in) {
    uint32_t cmp;
    if (0) {
    #if MICROPY_PY_BUILTINS_FLOAT
    } else if (mp_obj_is_type(percent_in, &mp_type_float)) {
        mp_float_t percent = mp_obj_get_float(percent_in);
        if (percent <= 0.0) {
            cmp = 0;
        } else if (percent >= 100.0) {
            cmp = period;
        } else {
            cmp = percent / 100.0 * ((mp_float_t)period);
        }
    #endif
    } else {
        // For integer arithmetic, if period is large and 100*period will
        // overflow, then divide period before multiplying by cmp.  Otherwise
        // do it the other way round to retain precision.
        mp_int_t percent = mp_obj_get_int(percent_in);
        if (percent <= 0) {
            cmp = 0;
        } else if (percent >= 100) {
            cmp = period;
        } else if (period > MAX_PERIOD_DIV_100) {
            cmp = (uint32_t)percent * (period / 100);
        } else {
            cmp = ((uint32_t)percent * period) / 100;
        }
    }
    return cmp;
}

// Helper function to compute percentage from timer perion and PWM value.
STATIC mp_obj_t compute_percent_from_pwm_value(uint32_t period, uint32_t cmp) {
    #if MICROPY_PY_BUILTINS_FLOAT
    mp_float_t percent;
    if (cmp >= period) {
        percent = 100.0;
    } else {
        percent = (mp_float_t)cmp * 100.0 / ((mp_float_t)period);
    }
    return mp_obj_new_float(percent);
    #else
    mp_int_t percent;
    if (cmp >= period) {
        percent = 100;
    } else if (cmp > MAX_PERIOD_DIV_100) {
        percent = cmp / (period / 100);
    } else {
        percent = cmp * 100 / period;
    }
    return mp_obj_new_int(percent);
    #endif
}

#if !defined(STM32L0)

// Computes the 8-bit value for the DTG field in the BDTR register.
//
// 1 tick = 1 count of the timer's clock (source_freq) divided by div.
// 0-128 ticks in inrements of 1
// 128-256 ticks in increments of 2
// 256-512 ticks in increments of 8
// 512-1008 ticks in increments of 16
STATIC uint32_t compute_dtg_from_ticks(mp_int_t ticks) {
    if (ticks <= 0) {
        return 0;
    }
    if (ticks < 128) {
        return ticks;
    }
    if (ticks < 256) {
        return 0x80 | ((ticks - 128) / 2);
    }
    if (ticks < 512) {
        return 0xC0 | ((ticks - 256) / 8);
    }
    if (ticks < 1008) {
        return 0xE0 | ((ticks - 512) / 16);
    }
    return 0xFF;
}

// Given the 8-bit value stored in the DTG field of the BDTR register, compute
// the number of ticks.
STATIC mp_int_t compute_ticks_from_dtg(uint32_t dtg) {
    if ((dtg & 0x80) == 0) {
        return dtg & 0x7F;
    }
    if ((dtg & 0xC0) == 0x80) {
        return 128 + ((dtg & 0x3F) * 2);
    }
    if ((dtg & 0xE0) == 0xC0) {
        return 256 + ((dtg & 0x1F) * 8);
    }
    return 512 + ((dtg & 0x1F) * 16);
}

STATIC void config_deadtime(pyb_timer_obj_t *self, mp_int_t ticks, mp_int_t brk) {
    TIM_BreakDeadTimeConfigTypeDef deadTimeConfig;
    deadTimeConfig.OffStateRunMode  = TIM_OSSR_DISABLE;
    deadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
    deadTimeConfig.LockLevel        = TIM_LOCKLEVEL_OFF;
    deadTimeConfig.DeadTime         = compute_dtg_from_ticks(ticks);
    deadTimeConfig.BreakState       = brk == BRK_OFF ? TIM_BREAK_DISABLE : TIM_BREAK_ENABLE;
    deadTimeConfig.BreakPolarity    = brk == BRK_LOW ? TIM_BREAKPOLARITY_LOW : TIM_BREAKPOLARITY_HIGH;
    #if defined(STM32F7) || defined(STM32H7) | defined(STM32L4)
    deadTimeConfig.BreakFilter      = 0;
    deadTimeConfig.Break2State      = TIM_BREAK_DISABLE;
    deadTimeConfig.Break2Polarity   = TIM_BREAKPOLARITY_LOW;
    deadTimeConfig.Break2Filter     = 0;
    #endif
    deadTimeConfig.AutomaticOutput  = TIM_AUTOMATICOUTPUT_DISABLE;
    HAL_TIMEx_ConfigBreakDeadTime(&self->tim, &deadTimeConfig);
}

#endif

TIM_HandleTypeDef *pyb_timer_get_handle(mp_obj_t timer) {
    if (mp_obj_get_type(timer) != &pyb_timer_type) {
        mp_raise_ValueError("need a Timer object");
    }
    pyb_timer_obj_t *self = MP_OBJ_TO_PTR(timer);
    return &self->tim;
}

STATIC void pyb_timer_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
    pyb_timer_obj_t *self = MP_OBJ_TO_PTR(self_in);

    if (self->tim.State == HAL_TIM_STATE_RESET) {
        mp_printf(print, "Timer(%u)", self->tim_id);
    } else {
        uint32_t prescaler = self->tim.Instance->PSC & 0xffff;
        uint32_t period = __HAL_TIM_GET_AUTORELOAD(&self->tim) & TIMER_CNT_MASK(self);
        // for efficiency, we compute and print freq as an int (not a float)
        uint32_t freq = timer_get_source_freq(self->tim_id) / ((prescaler + 1) * (period + 1));
        mp_printf(print, "Timer(%u, freq=%u, prescaler=%u, period=%u, mode=%s, div=%u",
            self->tim_id,
            freq,
            prescaler,
            period,
            self->tim.Init.CounterMode == TIM_COUNTERMODE_UP     ? "UP" :
            self->tim.Init.CounterMode == TIM_COUNTERMODE_DOWN   ? "DOWN" : "CENTER",
            self->tim.Init.ClockDivision == TIM_CLOCKDIVISION_DIV4 ? 4 :
            self->tim.Init.ClockDivision == TIM_CLOCKDIVISION_DIV2 ? 2 : 1);

        #if !defined(STM32L0)
        #if defined(IS_TIM_ADVANCED_INSTANCE)
        if (IS_TIM_ADVANCED_INSTANCE(self->tim.Instance))
        #elif defined(IS_TIM_BREAK_INSTANCE)
        if (IS_TIM_BREAK_INSTANCE(self->tim.Instance))
        #else
        if (0)
        #endif
        {
            mp_printf(print, ", deadtime=%u",
                compute_ticks_from_dtg(self->tim.Instance->BDTR & TIM_BDTR_DTG));
            if ((self->tim.Instance->BDTR & TIM_BDTR_BKE) == TIM_BDTR_BKE) {
                mp_printf(print, ", brk=%s",
                    ((self->tim.Instance->BDTR & TIM_BDTR_BKP) == TIM_BDTR_BKP) ? "BRK_HIGH" : "BRK_LOW");
            } else {
                mp_printf(print, ", brk=BRK_OFF");
            }
        }
        #endif
        mp_print_str(print, ")");
    }
}

/// \method init(*, freq, prescaler, period)
/// Initialise the timer.  Initialisation must be either by frequency (in Hz)
/// or by prescaler and period:
///
///     tim.init(freq=100)                  # set the timer to trigger at 100Hz
///     tim.init(prescaler=83, period=999)  # set the prescaler and period directly
///
/// Keyword arguments:
///
///   - `freq` - specifies the periodic frequency of the timer. You migh also
///              view this as the frequency with which the timer goes through
///              one complete cycle.
///
///   - `prescaler` [0-0xffff] - specifies the value to be loaded into the
///                 timer's Prescaler Register (PSC). The timer clock source is divided by
///     (`prescaler + 1`) to arrive at the timer clock. Timers 2-7 and 12-14
///     have a clock source of 84 MHz (pyb.freq()[2] * 2), and Timers 1, and 8-11
///     have a clock source of 168 MHz (pyb.freq()[3] * 2).
///
///   - `period` [0-0xffff] for timers 1, 3, 4, and 6-15. [0-0x3fffffff] for timers 2 & 5.
///              Specifies the value to be loaded into the timer's AutoReload
///     Register (ARR). This determines the period of the timer (i.e. when the
///     counter cycles). The timer counter will roll-over after `period + 1`
///     timer clock cycles.
///
///   - `mode` can be one of:
///     - `Timer.UP` - configures the timer to count from 0 to ARR (default)
///     - `Timer.DOWN` - configures the timer to count from ARR down to 0.
///     - `Timer.CENTER` - confgures the timer to count from 0 to ARR and
///       then back down to 0.
///
///   - `div` can be one of 1, 2, or 4. Divides the timer clock to determine
///       the sampling clock used by the digital filters.
///
///   - `callback` - as per Timer.callback()
///
///   - `deadtime` - specifies the amount of "dead" or inactive time between
///       transitions on complimentary channels (both channels will be inactive)
///       for this time). `deadtime` may be an integer between 0 and 1008, with
///       the following restrictions: 0-128 in steps of 1. 128-256 in steps of
///       2, 256-512 in steps of 8, and 512-1008 in steps of 16. `deadime`
///       measures ticks of `source_freq` divided by `div` clock ticks.
///       `deadtime` is only available on timers 1 and 8.
///
///   - `brk` - specifies if the break mode is used to kill the output of
///       the PWM when the BRK_IN input is asserted. The polarity set how the
///       BRK_IN input is triggered. It can be set to `BRK_OFF`, `BRK_LOW`
///       and `BRK_HIGH`.
///
///
///  You must either specify freq or both of period and prescaler.
STATIC mp_obj_t pyb_timer_init_helper(pyb_timer_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    enum { ARG_freq, ARG_prescaler, ARG_period, ARG_tick_hz, ARG_mode, ARG_div, ARG_callback, ARG_deadtime, ARG_brk };
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_freq,         MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
        { MP_QSTR_prescaler,    MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
        { MP_QSTR_period,       MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
        { MP_QSTR_tick_hz,      MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000} },
        { MP_QSTR_mode,         MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = TIM_COUNTERMODE_UP} },
        { MP_QSTR_div,          MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
        { MP_QSTR_callback,     MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
        { MP_QSTR_deadtime,     MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_brk,          MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = BRK_OFF} },
    };

    // parse args
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // set the TIM configuration values
    TIM_Base_InitTypeDef *init = &self->tim.Init;

    if (args[ARG_freq].u_obj != mp_const_none) {
        // set prescaler and period from desired frequency
        init->Prescaler = compute_prescaler_period_from_freq(self, args[ARG_freq].u_obj, &init->Period);
    } else if (args[ARG_prescaler].u_int != 0xffffffff && args[ARG_period].u_int != 0xffffffff) {
        // set prescaler and period directly
        init->Prescaler = args[ARG_prescaler].u_int;
        init->Period = args[ARG_period].u_int;
    } else if (args[ARG_period].u_int != 0xffffffff) {
        // set prescaler and period from desired period and tick_hz scale
        init->Prescaler = compute_prescaler_period_from_t(self, args[ARG_period].u_int, args[ARG_tick_hz].u_int, &init->Period);
    } else {
        mp_raise_TypeError("must specify either freq, period, or prescaler and period");
    }

    init->CounterMode = args[ARG_mode].u_int;
    if (!IS_TIM_COUNTER_MODE(init->CounterMode)) {
        mp_raise_msg_varg(&mp_type_ValueError, "invalid mode (%d)", init->CounterMode);
    }

    init->ClockDivision = args[ARG_div].u_int == 2 ? TIM_CLOCKDIVISION_DIV2 :
                          args[ARG_div].u_int == 4 ? TIM_CLOCKDIVISION_DIV4 :
                                                     TIM_CLOCKDIVISION_DIV1;

    #if !defined(STM32L0)
    init->RepetitionCounter = 0;
    #endif

    // enable TIM clock
    switch (self->tim_id) {
        #if defined(TIM1)
        case 1: __HAL_RCC_TIM1_CLK_ENABLE(); break;
        #endif
        case 2: __HAL_RCC_TIM2_CLK_ENABLE(); break;
        #if defined(TIM3)
        case 3: __HAL_RCC_TIM3_CLK_ENABLE(); break;
        #endif
        #if defined(TIM4)
        case 4: __HAL_RCC_TIM4_CLK_ENABLE(); break;
        #endif
        #if defined(TIM5)
        case 5: __HAL_RCC_TIM5_CLK_ENABLE(); break;
        #endif
        #if defined(TIM6)
        case 6: __HAL_RCC_TIM6_CLK_ENABLE(); break;
        #endif
        #if defined(TIM7)
        case 7: __HAL_RCC_TIM7_CLK_ENABLE(); break;
        #endif
        #if defined(TIM8)
        case 8: __HAL_RCC_TIM8_CLK_ENABLE(); break;
        #endif
        #if defined(TIM9)
        case 9: __HAL_RCC_TIM9_CLK_ENABLE(); break;
        #endif
        #if defined(TIM10)
        case 10: __HAL_RCC_TIM10_CLK_ENABLE(); break;
        #endif
        #if defined(TIM11)
        case 11: __HAL_RCC_TIM11_CLK_ENABLE(); break;
        #endif
        #if defined(TIM12)
        case 12: __HAL_RCC_TIM12_CLK_ENABLE(); break;
        #endif
        #if defined(TIM13)
        case 13: __HAL_RCC_TIM13_CLK_ENABLE(); break;
        #endif
        #if defined(TIM14)
        case 14: __HAL_RCC_TIM14_CLK_ENABLE(); break;
        #endif
        #if defined(TIM15)
        case 15: __HAL_RCC_TIM15_CLK_ENABLE(); break;
        #endif
        #if defined(TIM16)
        case 16: __HAL_RCC_TIM16_CLK_ENABLE(); break;
        #endif
        #if defined(TIM17)
        case 17: __HAL_RCC_TIM17_CLK_ENABLE(); break;
        #endif
        #if defined(TIM18)
        case 18: __HAL_RCC_TIM18_CLK_ENABLE(); break;
        #endif
        #if defined(TIM19)
        case 19: __HAL_RCC_TIM19_CLK_ENABLE(); break;
        #endif
        #if defined(TIM20)
        case 20: __HAL_RCC_TIM20_CLK_ENABLE(); break;
        #endif
        #if defined(TIM21)
        case 21: __HAL_RCC_TIM21_CLK_ENABLE(); break;
        #endif
        #if defined(TIM22)
        case 22: __HAL_RCC_TIM22_CLK_ENABLE(); break;
        #endif
    }

    // set IRQ priority (if not a special timer)
    if (self->tim_id != 5) {
        NVIC_SetPriority(IRQn_NONNEG(self->irqn), IRQ_PRI_TIMX);
        if (self->tim_id == 1) {
            #if defined(TIM1)
            NVIC_SetPriority(TIM1_CC_IRQn, IRQ_PRI_TIMX);
            #endif
        } else if (self->tim_id == 8) {
            #if defined(TIM8)
            NVIC_SetPriority(TIM8_CC_IRQn, IRQ_PRI_TIMX);
            #endif
        }
    }

    // init TIM
    HAL_TIM_Base_Init(&self->tim);
    #if !defined(STM32L0)
    #if defined(IS_TIM_ADVANCED_INSTANCE)
    if (IS_TIM_ADVANCED_INSTANCE(self->tim.Instance)) {
    #elif defined(IS_TIM_BREAK_INSTANCE)
    if (IS_TIM_BREAK_INSTANCE(self->tim.Instance)) {
    #else
    if (0) {
    #endif
        config_deadtime(self, args[ARG_deadtime].u_int, args[ARG_brk].u_int);

    }
    #endif

    // Enable ARPE so that the auto-reload register is buffered.
    // This allows to smoothly change the frequency of the timer.
    self->tim.Instance->CR1 |= TIM_CR1_ARPE;

    // Start the timer running
    if (args[ARG_callback].u_obj == mp_const_none) {
        HAL_TIM_Base_Start(&self->tim);
    } else {
        pyb_timer_callback(MP_OBJ_FROM_PTR(self), args[ARG_callback].u_obj);
    }

    return mp_const_none;
}

// This table encodes the timer instance and irq number (for the update irq).
// It assumes that timer instance pointer has the lower 8 bits cleared.
#define TIM_ENTRY(id, irq) [id - 1] = (uint32_t)TIM##id | irq
STATIC const uint32_t tim_instance_table[MICROPY_HW_MAX_TIMER] = {
    #if defined(TIM1)
    #if defined(STM32F0)
    TIM_ENTRY(1, TIM1_BRK_UP_TRG_COM_IRQn),
    #elif defined(STM32F4) || defined(STM32F7)
    TIM_ENTRY(1, TIM1_UP_TIM10_IRQn),
    #elif defined(STM32H7)
    TIM_ENTRY(1, TIM1_UP_IRQn),
    #elif defined(STM32L4)
    TIM_ENTRY(1, TIM1_UP_TIM16_IRQn),
    #endif
    #endif
    TIM_ENTRY(2, TIM2_IRQn),
    #if defined(TIM3)
    TIM_ENTRY(3, TIM3_IRQn),
    #endif
    #if defined(TIM4)
    TIM_ENTRY(4, TIM4_IRQn),
    #endif
    #if defined(TIM5)
    TIM_ENTRY(5, TIM5_IRQn),
    #endif
    #if defined(TIM6)
    TIM_ENTRY(6, TIM6_DAC_IRQn),
    #endif
    #if defined(TIM7)
    TIM_ENTRY(7, TIM7_IRQn),
    #endif
    #if defined(TIM8)
    #if defined(STM32F4) || defined(STM32F7) || defined(STM32H7)
    TIM_ENTRY(8, TIM8_UP_TIM13_IRQn),
    #elif defined(STM32L4)
    TIM_ENTRY(8, TIM8_UP_IRQn),
    #endif
    #endif
    #if defined(TIM9)
    TIM_ENTRY(9, TIM1_BRK_TIM9_IRQn),
    #endif
    #if defined(TIM10)
    TIM_ENTRY(10, TIM1_UP_TIM10_IRQn),
    #endif
    #if defined(TIM11)
    TIM_ENTRY(11, TIM1_TRG_COM_TIM11_IRQn),
    #endif
    #if defined(TIM12)
    TIM_ENTRY(12, TIM8_BRK_TIM12_IRQn),
    #endif
    #if defined(TIM13)
    TIM_ENTRY(13, TIM8_UP_TIM13_IRQn),
    #endif
    #if defined(STM32F0)
    TIM_ENTRY(14, TIM14_IRQn),
    #elif defined(TIM14)
    TIM_ENTRY(14, TIM8_TRG_COM_TIM14_IRQn),
    #endif
    #if defined(TIM15)
    #if defined(STM32F0) || defined(STM32H7)
    TIM_ENTRY(15, TIM15_IRQn),
    #else
    TIM_ENTRY(15, TIM1_BRK_TIM15_IRQn),
    #endif
    #endif
    #if defined(TIM16)
    #if defined(STM32F0) || defined(STM32H7)
    TIM_ENTRY(16, TIM16_IRQn),
    #else
    TIM_ENTRY(16, TIM1_UP_TIM16_IRQn),
    #endif
    #endif
    #if defined(TIM17)
    #if defined(STM32F0) || defined(STM32H7)
    TIM_ENTRY(17, TIM17_IRQn),
    #else
    TIM_ENTRY(17, TIM1_TRG_COM_TIM17_IRQn),
    #endif
    #endif
};
#undef TIM_ENTRY

/// \classmethod \constructor(id, ...)
/// Construct a new timer object of the given id.  If additional
/// arguments are given, then the timer is initialised by `init(...)`.
/// `id` can be 1 to 14, excluding 3.
STATIC mp_obj_t pyb_timer_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    // check arguments
    mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);

    // get the timer id
    mp_int_t tim_id = mp_obj_get_int(args[0]);

    // check if the timer exists
    if (tim_id <= 0 || tim_id > MICROPY_HW_MAX_TIMER || tim_instance_table[tim_id - 1] == 0) {
        mp_raise_msg_varg(&mp_type_ValueError, "Timer(%d) doesn't exist", tim_id);
    }

    pyb_timer_obj_t *tim;
    if (MP_STATE_PORT(pyb_timer_obj_all)[tim_id - 1] == NULL) {
        // create new Timer object
        tim = m_new_obj(pyb_timer_obj_t);
        memset(tim, 0, sizeof(*tim));
        tim->base.type = &pyb_timer_type;
        tim->tim_id = tim_id;
        tim->is_32bit = tim_id == 2 || tim_id == 5;
        tim->callback = mp_const_none;
        uint32_t ti = tim_instance_table[tim_id - 1];
        tim->tim.Instance = (TIM_TypeDef*)(ti & 0xffffff00);
        tim->irqn = ti & 0xff;
        MP_STATE_PORT(pyb_timer_obj_all)[tim_id - 1] = tim;
    } else {
        // reference existing Timer object
        tim = MP_STATE_PORT(pyb_timer_obj_all)[tim_id - 1];
    }

    if (n_args > 1 || n_kw > 0) {
        // start the peripheral
        mp_map_t kw_args;
        mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
        pyb_timer_init_helper(tim, n_args - 1, args + 1, &kw_args);
    }

    return MP_OBJ_FROM_PTR(tim);
}

STATIC mp_obj_t pyb_timer_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
    return pyb_timer_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_init_obj, 1, pyb_timer_init);

// timer.deinit()
STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in) {
    pyb_timer_obj_t *self = MP_OBJ_TO_PTR(self_in);

    // Disable the base interrupt
    pyb_timer_callback(self_in, mp_const_none);

    pyb_timer_channel_obj_t *chan = self->channel;
    self->channel = NULL;

    // Disable the channel interrupts
    while (chan != NULL) {
        pyb_timer_channel_callback(MP_OBJ_FROM_PTR(chan), mp_const_none);
        pyb_timer_channel_obj_t *prev_chan = chan;
        chan = chan->next;
        prev_chan->next = NULL;
    }

    self->tim.State = HAL_TIM_STATE_RESET;
    self->tim.Instance->CCER = 0x0000; // disable all capture/compare outputs
    self->tim.Instance->CR1 = 0x0000; // disable the timer and reset its state

    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_deinit_obj, pyb_timer_deinit);

/// \method channel(channel, mode, ...)
///
/// If only a channel number is passed, then a previously initialized channel
/// object is returned (or `None` if there is no previous channel).
///
/// Othwerwise, a TimerChannel object is initialized and returned.
///
/// Each channel can be configured to perform pwm, output compare, or
/// input capture. All channels share the same underlying timer, which means
/// that they share the same timer clock.
///
/// Keyword arguments:
///
///   - `mode` can be one of:
///     - `Timer.PWM` - configure the timer in PWM mode (active high).
///     - `Timer.PWM_INVERTED` - configure the timer in PWM mode (active low).
///     - `Timer.OC_TIMING` - indicates that no pin is driven.
///     - `Timer.OC_ACTIVE` - the pin will be made active when a compare
///        match occurs (active is determined by polarity)
///     - `Timer.OC_INACTIVE` - the pin will be made inactive when a compare
///        match occurs.
///     - `Timer.OC_TOGGLE` - the pin will be toggled when an compare match occurs.
///     - `Timer.OC_FORCED_ACTIVE` - the pin is forced active (compare match is ignored).
///     - `Timer.OC_FORCED_INACTIVE` - the pin is forced inactive (compare match is ignored).
///     - `Timer.IC` - configure the timer in Input Capture mode.
///     - `Timer.ENC_A` --- configure the timer in Encoder mode. The counter only changes when CH1 changes.
///     - `Timer.ENC_B` --- configure the timer in Encoder mode. The counter only changes when CH2 changes.
///     - `Timer.ENC_AB` --- configure the timer in Encoder mode. The counter changes when CH1 or CH2 changes.
///
///   - `callback` - as per TimerChannel.callback()
///
///   - `pin` None (the default) or a Pin object. If specified (and not None)
///           this will cause the alternate function of the the indicated pin
///      to be configured for this timer channel. An error will be raised if
///      the pin doesn't support any alternate functions for this timer channel.
///
/// Keyword arguments for Timer.PWM modes:
///
///   - `pulse_width` - determines the initial pulse width value to use.
///   - `pulse_width_percent` - determines the initial pulse width percentage to use.
///
/// Keyword arguments for Timer.OC modes:
///
///   - `compare` - determines the initial value of the compare register.
///
///   - `polarity` can be one of:
///     - `Timer.HIGH` - output is active high
///     - `Timer.LOW` - output is acive low
///
/// Optional keyword arguments for Timer.IC modes:
///
///   - `polarity` can be one of:
///     - `Timer.RISING` - captures on rising edge.
///     - `Timer.FALLING` - captures on falling edge.
///     - `Timer.BOTH` - captures on both edges.
///
///   Note that capture only works on the primary channel, and not on the
///   complimentary channels.
///
/// Notes for Timer.ENC modes:
///
///   - Requires 2 pins, so one or both pins will need to be configured to use
///     the appropriate timer AF using the Pin API.
///   - Read the encoder value using the timer.counter() method.
///   - Only works on CH1 and CH2 (and not on CH1N or CH2N)
///   - The channel number is ignored when setting the encoder mode.
///
/// PWM Example:
///
///     timer = pyb.Timer(2, freq=1000)
///     ch2 = timer.channel(2, pyb.Timer.PWM, pin=pyb.Pin.board.X2, pulse_width=210000)
///     ch3 = timer.channel(3, pyb.Timer.PWM, pin=pyb.Pin.board.X3, pulse_width=420000)
STATIC mp_obj_t pyb_timer_channel(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_mode,                MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_callback,            MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
        { MP_QSTR_pin,                 MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
        { MP_QSTR_pulse_width,         MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_pulse_width_percent, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
        { MP_QSTR_compare,             MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_polarity,            MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
    };

    pyb_timer_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
    mp_int_t channel = mp_obj_get_int(pos_args[1]);

    if (channel < 1 || channel > 4) {
        mp_raise_msg_varg(&mp_type_ValueError, "invalid channel (%d)", channel);
    }

    pyb_timer_channel_obj_t *chan = self->channel;
    pyb_timer_channel_obj_t *prev_chan = NULL;

    while (chan != NULL) {
        if (chan->channel == channel) {
            break;
        }
        prev_chan = chan;
        chan = chan->next;
    }

    // If only the channel number is given return the previously allocated
    // channel (or None if no previous channel).
    if (n_args == 2 && kw_args->used == 0) {
        if (chan) {
            return MP_OBJ_FROM_PTR(chan);
        }
        return mp_const_none;
    }

    // If there was already a channel, then remove it from the list. Note that
    // the order we do things here is important so as to appear atomic to
    // the IRQ handler.
    if (chan) {
        // Turn off any IRQ associated with the channel.
        pyb_timer_channel_callback(MP_OBJ_FROM_PTR(chan), mp_const_none);

        // Unlink the channel from the list.
        if (prev_chan) {
            prev_chan->next = chan->next;
        }
        self->channel = chan->next;
        chan->next = NULL;
    }

    // Allocate and initialize a new channel
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    chan = m_new_obj(pyb_timer_channel_obj_t);
    memset(chan, 0, sizeof(*chan));
    chan->base.type = &pyb_timer_channel_type;
    chan->timer = self;
    chan->channel = channel;
    chan->mode = args[0].u_int;
    chan->callback = args[1].u_obj;

    mp_obj_t pin_obj = args[2].u_obj;
    if (pin_obj != mp_const_none) {
        if (!mp_obj_is_type(pin_obj, &pin_type)) {
            mp_raise_ValueError("pin argument needs to be be a Pin type");
        }
        const pin_obj_t *pin = MP_OBJ_TO_PTR(pin_obj);
        const pin_af_obj_t *af = pin_find_af(pin, AF_FN_TIM, self->tim_id);
        if (af == NULL) {
            mp_raise_msg_varg(&mp_type_ValueError, "Pin(%q) doesn't have an af for Timer(%d)", pin->name, self->tim_id);
        }
        // pin.init(mode=AF_PP, af=idx)
        const mp_obj_t args2[6] = {
            MP_OBJ_FROM_PTR(&pin_init_obj),
            pin_obj,
            MP_OBJ_NEW_QSTR(MP_QSTR_mode),  MP_OBJ_NEW_SMALL_INT(GPIO_MODE_AF_PP),
            MP_OBJ_NEW_QSTR(MP_QSTR_af),    MP_OBJ_NEW_SMALL_INT(af->idx)
        };
        mp_call_method_n_kw(0, 2, args2);
    }

    // Link the channel to the timer before we turn the channel on.
    // Note that this needs to appear atomic to the IRQ handler (the write
    // to self->channel is atomic, so we're good, but I thought I'd mention
    // in case this was ever changed in the future).
    chan->next = self->channel;
    self->channel = chan;

    switch (chan->mode) {

        case CHANNEL_MODE_PWM_NORMAL:
        case CHANNEL_MODE_PWM_INVERTED: {
            TIM_OC_InitTypeDef oc_config;
            oc_config.OCMode = channel_mode_info[chan->mode].oc_mode;
            if (args[4].u_obj != mp_const_none) {
                // pulse width percent given
                uint32_t period = compute_period(self);
                oc_config.Pulse = compute_pwm_value_from_percent(period, args[4].u_obj);
            } else {
                // use absolute pulse width value (defaults to 0 if nothing given)
                oc_config.Pulse = args[3].u_int;
            }
            oc_config.OCPolarity   = TIM_OCPOLARITY_HIGH;
            oc_config.OCFastMode   = TIM_OCFAST_DISABLE;
            #if !defined(STM32L0)
            oc_config.OCNPolarity  = TIM_OCNPOLARITY_HIGH;
            oc_config.OCIdleState  = TIM_OCIDLESTATE_SET;
            oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET;
            #endif

            HAL_TIM_PWM_ConfigChannel(&self->tim, &oc_config, TIMER_CHANNEL(chan));
            if (chan->callback == mp_const_none) {
                HAL_TIM_PWM_Start(&self->tim, TIMER_CHANNEL(chan));
            } else {
                pyb_timer_channel_callback(MP_OBJ_FROM_PTR(chan), chan->callback);
            }
            #if !defined(STM32L0)
            // Start the complimentary channel too (if its supported)
            if (IS_TIM_CCXN_INSTANCE(self->tim.Instance, TIMER_CHANNEL(chan))) {
                HAL_TIMEx_PWMN_Start(&self->tim, TIMER_CHANNEL(chan));
            }
            #endif
            break;
        }

        case CHANNEL_MODE_OC_TIMING:
        case CHANNEL_MODE_OC_ACTIVE:
        case CHANNEL_MODE_OC_INACTIVE:
        case CHANNEL_MODE_OC_TOGGLE:
        case CHANNEL_MODE_OC_FORCED_ACTIVE:
        case CHANNEL_MODE_OC_FORCED_INACTIVE: {
            TIM_OC_InitTypeDef oc_config;
            oc_config.OCMode       = channel_mode_info[chan->mode].oc_mode;
            oc_config.Pulse        = args[5].u_int;
            oc_config.OCPolarity   = args[6].u_int;
            if (oc_config.OCPolarity == 0xffffffff) {
                oc_config.OCPolarity = TIM_OCPOLARITY_HIGH;
            }
            oc_config.OCFastMode   = TIM_OCFAST_DISABLE;
            #if !defined(STM32L0)
            if (oc_config.OCPolarity == TIM_OCPOLARITY_HIGH) {
                oc_config.OCNPolarity  = TIM_OCNPOLARITY_HIGH;
            } else {
                oc_config.OCNPolarity  = TIM_OCNPOLARITY_LOW;
            }
            oc_config.OCIdleState  = TIM_OCIDLESTATE_SET;
            oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET;
            #endif

            if (!IS_TIM_OC_POLARITY(oc_config.OCPolarity)) {
                mp_raise_msg_varg(&mp_type_ValueError, "invalid polarity (%d)", oc_config.OCPolarity);
            }
            HAL_TIM_OC_ConfigChannel(&self->tim, &oc_config, TIMER_CHANNEL(chan));
            if (chan->callback == mp_const_none) {
                HAL_TIM_OC_Start(&self->tim, TIMER_CHANNEL(chan));
            } else {
                pyb_timer_channel_callback(MP_OBJ_FROM_PTR(chan), chan->callback);
            }
            #if !defined(STM32L0)
            // Start the complimentary channel too (if its supported)
            if (IS_TIM_CCXN_INSTANCE(self->tim.Instance, TIMER_CHANNEL(chan))) {
                HAL_TIMEx_OCN_Start(&self->tim, TIMER_CHANNEL(chan));
            }
            #endif
            break;
        }

        case CHANNEL_MODE_IC: {
            TIM_IC_InitTypeDef ic_config;

            ic_config.ICPolarity  = args[6].u_int;
            if (ic_config.ICPolarity == 0xffffffff) {
                ic_config.ICPolarity = TIM_ICPOLARITY_RISING;
            }
            ic_config.ICSelection = TIM_ICSELECTION_DIRECTTI;
            ic_config.ICPrescaler = TIM_ICPSC_DIV1;
            ic_config.ICFilter    = 0;

            if (!IS_TIM_IC_POLARITY(ic_config.ICPolarity)) {
                mp_raise_msg_varg(&mp_type_ValueError, "invalid polarity (%d)", ic_config.ICPolarity);
            }
            HAL_TIM_IC_ConfigChannel(&self->tim, &ic_config, TIMER_CHANNEL(chan));
            if (chan->callback == mp_const_none) {
                HAL_TIM_IC_Start(&self->tim, TIMER_CHANNEL(chan));
            } else {
                pyb_timer_channel_callback(MP_OBJ_FROM_PTR(chan), chan->callback);
            }
            break;
        }

        case CHANNEL_MODE_ENC_A:
        case CHANNEL_MODE_ENC_B:
        case CHANNEL_MODE_ENC_AB: {
            TIM_Encoder_InitTypeDef enc_config;

            enc_config.EncoderMode = channel_mode_info[chan->mode].oc_mode;
            enc_config.IC1Polarity  = args[6].u_int;
            if (enc_config.IC1Polarity == 0xffffffff) {
                enc_config.IC1Polarity = TIM_ICPOLARITY_RISING;
            }
            enc_config.IC2Polarity  = enc_config.IC1Polarity;
            enc_config.IC1Selection = TIM_ICSELECTION_DIRECTTI;
            enc_config.IC2Selection = TIM_ICSELECTION_DIRECTTI;
            enc_config.IC1Prescaler = TIM_ICPSC_DIV1;
            enc_config.IC2Prescaler = TIM_ICPSC_DIV1;
            enc_config.IC1Filter    = 0;
            enc_config.IC2Filter    = 0;

            if (!IS_TIM_IC_POLARITY(enc_config.IC1Polarity)) {
                mp_raise_msg_varg(&mp_type_ValueError, "invalid polarity (%d)", enc_config.IC1Polarity);
            }
            // Only Timers 1, 2, 3, 4, 5, and 8 support encoder mode
            if (
            #if defined(TIM1)
                self->tim.Instance != TIM1
            &&
            #endif
                self->tim.Instance != TIM2
            #if defined(TIM3)
            &&  self->tim.Instance != TIM3
            #endif
            #if defined(TIM4)
            &&  self->tim.Instance != TIM4
            #endif
            #if defined(TIM5)
            &&  self->tim.Instance != TIM5
            #endif
            #if defined(TIM8)
            &&  self->tim.Instance != TIM8
            #endif
            ) {
                mp_raise_msg_varg(&mp_type_ValueError, "encoder not supported on timer %d", self->tim_id);
            }

            // Disable & clear the timer interrupt so that we don't trigger
            // an interrupt by initializing the timer.
            __HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE);
            HAL_TIM_Encoder_Init(&self->tim, &enc_config);
            __HAL_TIM_SET_COUNTER(&self->tim, 0);
            if (self->callback != mp_const_none) {
                __HAL_TIM_CLEAR_FLAG(&self->tim, TIM_IT_UPDATE);
                __HAL_TIM_ENABLE_IT(&self->tim, TIM_IT_UPDATE);
            }
            HAL_TIM_Encoder_Start(&self->tim, TIM_CHANNEL_ALL);
            break;
        }

        default:
            mp_raise_msg_varg(&mp_type_ValueError, "invalid mode (%d)", chan->mode);
    }

    return MP_OBJ_FROM_PTR(chan);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_channel_obj, 2, pyb_timer_channel);

/// \method counter([value])
/// Get or set the timer counter.
STATIC mp_obj_t pyb_timer_counter(size_t n_args, const mp_obj_t *args) {
    pyb_timer_obj_t *self = MP_OBJ_TO_PTR(args[0]);
    if (n_args == 1) {
        // get
        return mp_obj_new_int(self->tim.Instance->CNT);
    } else {
        // set
        __HAL_TIM_SET_COUNTER(&self->tim, mp_obj_get_int(args[1]));
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_counter_obj, 1, 2, pyb_timer_counter);

/// \method source_freq()
/// Get the frequency of the source of the timer.
STATIC mp_obj_t pyb_timer_source_freq(mp_obj_t self_in) {
    pyb_timer_obj_t *self = MP_OBJ_TO_PTR(self_in);
    uint32_t source_freq = timer_get_source_freq(self->tim_id);
    return mp_obj_new_int(source_freq);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_source_freq_obj, pyb_timer_source_freq);

/// \method freq([value])
/// Get or set the frequency for the timer (changes prescaler and period if set).
STATIC mp_obj_t pyb_timer_freq(size_t n_args, const mp_obj_t *args) {
    pyb_timer_obj_t *self = MP_OBJ_TO_PTR(args[0]);
    if (n_args == 1) {
        // get
        uint32_t prescaler = self->tim.Instance->PSC & 0xffff;
        uint32_t period = __HAL_TIM_GET_AUTORELOAD(&self->tim) & TIMER_CNT_MASK(self);
        uint32_t source_freq = timer_get_source_freq(self->tim_id);
        uint32_t divide_a = prescaler + 1;
        uint32_t divide_b = period + 1;
        #if MICROPY_PY_BUILTINS_FLOAT
        if (source_freq % divide_a != 0) {
            return mp_obj_new_float((mp_float_t)source_freq / (mp_float_t)divide_a / (mp_float_t)divide_b);
        }
        source_freq /= divide_a;
        if (source_freq % divide_b != 0) {
            return mp_obj_new_float((mp_float_t)source_freq / (mp_float_t)divide_b);
        } else {
            return mp_obj_new_int(source_freq / divide_b);
        }
        #else
        return mp_obj_new_int(source_freq / divide_a / divide_b);
        #endif
    } else {
        // set
        uint32_t period;
        uint32_t prescaler = compute_prescaler_period_from_freq(self, args[1], &period);
        self->tim.Instance->PSC = prescaler;
        __HAL_TIM_SET_AUTORELOAD(&self->tim, period);
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_freq_obj, 1, 2, pyb_timer_freq);

/// \method prescaler([value])
/// Get or set the prescaler for the timer.
STATIC mp_obj_t pyb_timer_prescaler(size_t n_args, const mp_obj_t *args) {
    pyb_timer_obj_t *self = MP_OBJ_TO_PTR(args[0]);
    if (n_args == 1) {
        // get
        return mp_obj_new_int(self->tim.Instance->PSC & 0xffff);
    } else {
        // set
        self->tim.Instance->PSC = mp_obj_get_int(args[1]) & 0xffff;
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_prescaler_obj, 1, 2, pyb_timer_prescaler);

/// \method period([value])
/// Get or set the period of the timer.
STATIC mp_obj_t pyb_timer_period(size_t n_args, const mp_obj_t *args) {
    pyb_timer_obj_t *self = MP_OBJ_TO_PTR(args[0]);
    if (n_args == 1) {
        // get
        return mp_obj_new_int(__HAL_TIM_GET_AUTORELOAD(&self->tim) & TIMER_CNT_MASK(self));
    } else {
        // set
        __HAL_TIM_SET_AUTORELOAD(&self->tim, mp_obj_get_int(args[1]) & TIMER_CNT_MASK(self));
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_period_obj, 1, 2, pyb_timer_period);

/// \method callback(fun)
/// Set the function to be called when the timer triggers.
/// `fun` is passed 1 argument, the timer object.
/// If `fun` is `None` then the callback will be disabled.
STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback) {
    pyb_timer_obj_t *self = MP_OBJ_TO_PTR(self_in);
    if (callback == mp_const_none) {
        // stop interrupt (but not timer)
        __HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE);
        self->callback = mp_const_none;
    } else if (mp_obj_is_callable(callback)) {
        __HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE);
        self->callback = callback;
        // start timer, so that it interrupts on overflow, but clear any
        // pending interrupts which may have been set by initializing it.
        __HAL_TIM_CLEAR_FLAG(&self->tim, TIM_IT_UPDATE);
        HAL_TIM_Base_Start_IT(&self->tim); // This will re-enable the IRQ
        HAL_NVIC_EnableIRQ(self->irqn);
    } else {
        mp_raise_ValueError("callback must be None or a callable object");
    }
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_timer_callback_obj, pyb_timer_callback);

STATIC const mp_rom_map_elem_t pyb_timer_locals_dict_table[] = {
    // instance methods
    { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_timer_init_obj) },
    { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_timer_deinit_obj) },
    { MP_ROM_QSTR(MP_QSTR_channel), MP_ROM_PTR(&pyb_timer_channel_obj) },
    { MP_ROM_QSTR(MP_QSTR_counter), MP_ROM_PTR(&pyb_timer_counter_obj) },
    { MP_ROM_QSTR(MP_QSTR_source_freq), MP_ROM_PTR(&pyb_timer_source_freq_obj) },
    { MP_ROM_QSTR(MP_QSTR_freq), MP_ROM_PTR(&pyb_timer_freq_obj) },
    { MP_ROM_QSTR(MP_QSTR_prescaler), MP_ROM_PTR(&pyb_timer_prescaler_obj) },
    { MP_ROM_QSTR(MP_QSTR_period), MP_ROM_PTR(&pyb_timer_period_obj) },
    { MP_ROM_QSTR(MP_QSTR_callback), MP_ROM_PTR(&pyb_timer_callback_obj) },
    { MP_ROM_QSTR(MP_QSTR_UP), MP_ROM_INT(TIM_COUNTERMODE_UP) },
    { MP_ROM_QSTR(MP_QSTR_DOWN), MP_ROM_INT(TIM_COUNTERMODE_DOWN) },
    { MP_ROM_QSTR(MP_QSTR_CENTER), MP_ROM_INT(TIM_COUNTERMODE_CENTERALIGNED1) },
    { MP_ROM_QSTR(MP_QSTR_PWM), MP_ROM_INT(CHANNEL_MODE_PWM_NORMAL) },
    { MP_ROM_QSTR(MP_QSTR_PWM_INVERTED), MP_ROM_INT(CHANNEL_MODE_PWM_INVERTED) },
    { MP_ROM_QSTR(MP_QSTR_OC_TIMING), MP_ROM_INT(CHANNEL_MODE_OC_TIMING) },
    { MP_ROM_QSTR(MP_QSTR_OC_ACTIVE), MP_ROM_INT(CHANNEL_MODE_OC_ACTIVE) },
    { MP_ROM_QSTR(MP_QSTR_OC_INACTIVE), MP_ROM_INT(CHANNEL_MODE_OC_INACTIVE) },
    { MP_ROM_QSTR(MP_QSTR_OC_TOGGLE), MP_ROM_INT(CHANNEL_MODE_OC_TOGGLE) },
    { MP_ROM_QSTR(MP_QSTR_OC_FORCED_ACTIVE), MP_ROM_INT(CHANNEL_MODE_OC_FORCED_ACTIVE) },
    { MP_ROM_QSTR(MP_QSTR_OC_FORCED_INACTIVE), MP_ROM_INT(CHANNEL_MODE_OC_FORCED_INACTIVE) },
    { MP_ROM_QSTR(MP_QSTR_IC), MP_ROM_INT(CHANNEL_MODE_IC) },
    { MP_ROM_QSTR(MP_QSTR_ENC_A), MP_ROM_INT(CHANNEL_MODE_ENC_A) },
    { MP_ROM_QSTR(MP_QSTR_ENC_B), MP_ROM_INT(CHANNEL_MODE_ENC_B) },
    { MP_ROM_QSTR(MP_QSTR_ENC_AB), MP_ROM_INT(CHANNEL_MODE_ENC_AB) },
    { MP_ROM_QSTR(MP_QSTR_HIGH), MP_ROM_INT(TIM_OCPOLARITY_HIGH) },
    { MP_ROM_QSTR(MP_QSTR_LOW), MP_ROM_INT(TIM_OCPOLARITY_LOW) },
    { MP_ROM_QSTR(MP_QSTR_RISING), MP_ROM_INT(TIM_ICPOLARITY_RISING) },
    { MP_ROM_QSTR(MP_QSTR_FALLING), MP_ROM_INT(TIM_ICPOLARITY_FALLING) },
    { MP_ROM_QSTR(MP_QSTR_BOTH), MP_ROM_INT(TIM_ICPOLARITY_BOTHEDGE) },
    { MP_ROM_QSTR(MP_QSTR_BRK_OFF), MP_ROM_INT(BRK_OFF) },
    { MP_ROM_QSTR(MP_QSTR_BRK_LOW), MP_ROM_INT(BRK_LOW) },
    { MP_ROM_QSTR(MP_QSTR_BRK_HIGH), MP_ROM_INT(BRK_HIGH) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_timer_locals_dict, pyb_timer_locals_dict_table);

const mp_obj_type_t pyb_timer_type = {
    { &mp_type_type },
    .name = MP_QSTR_Timer,
    .print = pyb_timer_print,
    .make_new = pyb_timer_make_new,
    .locals_dict = (mp_obj_dict_t*)&pyb_timer_locals_dict,
};

/// \moduleref pyb
/// \class TimerChannel - setup a channel for a timer.
///
/// Timer channels are used to generate/capture a signal using a timer.
///
/// TimerChannel objects are created using the Timer.channel() method.
STATIC void pyb_timer_channel_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
    pyb_timer_channel_obj_t *self = MP_OBJ_TO_PTR(self_in);

    mp_printf(print, "TimerChannel(timer=%u, channel=%u, mode=%s)",
          self->timer->tim_id,
          self->channel,
          qstr_str(channel_mode_info[self->mode].name));
}

/// \method capture([value])
/// Get or set the capture value associated with a channel.
/// capture, compare, and pulse_width are all aliases for the same function.
/// capture is the logical name to use when the channel is in input capture mode.

/// \method compare([value])
/// Get or set the compare value associated with a channel.
/// capture, compare, and pulse_width are all aliases for the same function.
/// compare is the logical name to use when the channel is in output compare mode.

/// \method pulse_width([value])
/// Get or set the pulse width value associated with a channel.
/// capture, compare, and pulse_width are all aliases for the same function.
/// pulse_width is the logical name to use when the channel is in PWM mode.
///
/// In edge aligned mode, a pulse_width of `period + 1` corresponds to a duty cycle of 100%
/// In center aligned mode, a pulse width of `period` corresponds to a duty cycle of 100%
STATIC mp_obj_t pyb_timer_channel_capture_compare(size_t n_args, const mp_obj_t *args) {
    pyb_timer_channel_obj_t *self = MP_OBJ_TO_PTR(args[0]);
    if (n_args == 1) {
        // get
        return mp_obj_new_int(__HAL_TIM_GET_COMPARE(&self->timer->tim, TIMER_CHANNEL(self)) & TIMER_CNT_MASK(self->timer));
    } else {
        // set
        __HAL_TIM_SET_COMPARE(&self->timer->tim, TIMER_CHANNEL(self), mp_obj_get_int(args[1]) & TIMER_CNT_MASK(self->timer));
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_capture_compare_obj, 1, 2, pyb_timer_channel_capture_compare);

/// \method pulse_width_percent([value])
/// Get or set the pulse width percentage associated with a channel.  The value
/// is a number between 0 and 100 and sets the percentage of the timer period
/// for which the pulse is active.  The value can be an integer or
/// floating-point number for more accuracy.  For example, a value of 25 gives
/// a duty cycle of 25%.
STATIC mp_obj_t pyb_timer_channel_pulse_width_percent(size_t n_args, const mp_obj_t *args) {
    pyb_timer_channel_obj_t *self = MP_OBJ_TO_PTR(args[0]);
    uint32_t period = compute_period(self->timer);
    if (n_args == 1) {
        // get
        uint32_t cmp = __HAL_TIM_GET_COMPARE(&self->timer->tim, TIMER_CHANNEL(self)) & TIMER_CNT_MASK(self->timer);
        return compute_percent_from_pwm_value(period, cmp);
    } else {
        // set
        uint32_t cmp = compute_pwm_value_from_percent(period, args[1]);
        __HAL_TIM_SET_COMPARE(&self->timer->tim, TIMER_CHANNEL(self), cmp & TIMER_CNT_MASK(self->timer));
        return mp_const_none;
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_pulse_width_percent_obj, 1, 2, pyb_timer_channel_pulse_width_percent);

/// \method callback(fun)
/// Set the function to be called when the timer channel triggers.
/// `fun` is passed 1 argument, the timer object.
/// If `fun` is `None` then the callback will be disabled.
STATIC mp_obj_t pyb_timer_channel_callback(mp_obj_t self_in, mp_obj_t callback) {
    pyb_timer_channel_obj_t *self = MP_OBJ_TO_PTR(self_in);
    if (callback == mp_const_none) {
        // stop interrupt (but not timer)
        __HAL_TIM_DISABLE_IT(&self->timer->tim, TIMER_IRQ_MASK(self->channel));
        self->callback = mp_const_none;
    } else if (mp_obj_is_callable(callback)) {
        self->callback = callback;
        __HAL_TIM_CLEAR_IT(&self->timer->tim, TIMER_IRQ_MASK(self->channel));
        #if defined(TIM1)
        if (self->timer->tim_id == 1) {
            HAL_NVIC_EnableIRQ(TIM1_CC_IRQn);
        } else
        #endif
        #if defined(TIM8) // STM32F401 doesn't have a TIM8
        if (self->timer->tim_id == 8) {
            HAL_NVIC_EnableIRQ(TIM8_CC_IRQn);
        } else
        #endif
        {
            HAL_NVIC_EnableIRQ(self->timer->irqn);
        }
        // start timer, so that it interrupts on overflow
        switch (self->mode) {
            case CHANNEL_MODE_PWM_NORMAL:
            case CHANNEL_MODE_PWM_INVERTED:
                HAL_TIM_PWM_Start_IT(&self->timer->tim, TIMER_CHANNEL(self));
                break;
            case CHANNEL_MODE_OC_TIMING:
            case CHANNEL_MODE_OC_ACTIVE:
            case CHANNEL_MODE_OC_INACTIVE:
            case CHANNEL_MODE_OC_TOGGLE:
            case CHANNEL_MODE_OC_FORCED_ACTIVE:
            case CHANNEL_MODE_OC_FORCED_INACTIVE:
                HAL_TIM_OC_Start_IT(&self->timer->tim, TIMER_CHANNEL(self));
                break;
            case CHANNEL_MODE_IC:
                HAL_TIM_IC_Start_IT(&self->timer->tim, TIMER_CHANNEL(self));
                break;
        }
    } else {
        mp_raise_ValueError("callback must be None or a callable object");
    }
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_timer_channel_callback_obj, pyb_timer_channel_callback);

STATIC const mp_rom_map_elem_t pyb_timer_channel_locals_dict_table[] = {
    // instance methods
    { MP_ROM_QSTR(MP_QSTR_callback), MP_ROM_PTR(&pyb_timer_channel_callback_obj) },
    { MP_ROM_QSTR(MP_QSTR_pulse_width), MP_ROM_PTR(&pyb_timer_channel_capture_compare_obj) },
    { MP_ROM_QSTR(MP_QSTR_pulse_width_percent), MP_ROM_PTR(&pyb_timer_channel_pulse_width_percent_obj) },
    { MP_ROM_QSTR(MP_QSTR_capture), MP_ROM_PTR(&pyb_timer_channel_capture_compare_obj) },
    { MP_ROM_QSTR(MP_QSTR_compare), MP_ROM_PTR(&pyb_timer_channel_capture_compare_obj) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_timer_channel_locals_dict, pyb_timer_channel_locals_dict_table);

STATIC const mp_obj_type_t pyb_timer_channel_type = {
    { &mp_type_type },
    .name = MP_QSTR_TimerChannel,
    .print = pyb_timer_channel_print,
    .locals_dict = (mp_obj_dict_t*)&pyb_timer_channel_locals_dict,
};

STATIC void timer_handle_irq_channel(pyb_timer_obj_t *tim, uint8_t channel, mp_obj_t callback) {
    uint32_t irq_mask = TIMER_IRQ_MASK(channel);

    if (__HAL_TIM_GET_FLAG(&tim->tim, irq_mask) != RESET) {
        if (__HAL_TIM_GET_IT_SOURCE(&tim->tim, irq_mask) != RESET) {
            // clear the interrupt
            __HAL_TIM_CLEAR_IT(&tim->tim, irq_mask);

            // execute callback if it's set
            if (callback != mp_const_none) {
                mp_sched_lock();
                // When executing code within a handler we must lock the GC to prevent
                // any memory allocations.  We must also catch any exceptions.
                gc_lock();
                nlr_buf_t nlr;
                if (nlr_push(&nlr) == 0) {
                    mp_call_function_1(callback, MP_OBJ_FROM_PTR(tim));
                    nlr_pop();
                } else {
                    // Uncaught exception; disable the callback so it doesn't run again.
                    tim->callback = mp_const_none;
                    __HAL_TIM_DISABLE_IT(&tim->tim, irq_mask);
                    if (channel == 0) {
                        mp_printf(MICROPY_ERROR_PRINTER, "uncaught exception in Timer(%u) interrupt handler\n", tim->tim_id);
                    } else {
                        mp_printf(MICROPY_ERROR_PRINTER, "uncaught exception in Timer(%u) channel %u interrupt handler\n", tim->tim_id, channel);
                    }
                    mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(nlr.ret_val));
                }
                gc_unlock();
                mp_sched_unlock();
            }
        }
    }
}

void timer_irq_handler(uint tim_id) {
    if (tim_id - 1 < PYB_TIMER_OBJ_ALL_NUM) {
        // get the timer object
        pyb_timer_obj_t *tim = MP_STATE_PORT(pyb_timer_obj_all)[tim_id - 1];

        if (tim == NULL) {
            // Timer object has not been set, so we can't do anything.
            // This can happen under normal circumstances for timers like
            // 1 & 10 which use the same IRQ.
            return;
        }

        // Check for timer (versus timer channel) interrupt.
        timer_handle_irq_channel(tim, 0, tim->callback);
        uint32_t handled = TIMER_IRQ_MASK(0);

        // Check to see if a timer channel interrupt was pending
        pyb_timer_channel_obj_t *chan = tim->channel;
        while (chan != NULL) {
            timer_handle_irq_channel(tim, chan->channel, chan->callback);
            handled |= TIMER_IRQ_MASK(chan->channel);
            chan = chan->next;
        }

        // Finally, clear any remaining interrupt sources. Otherwise we'll
        // just get called continuously.
        uint32_t unhandled = tim->tim.Instance->DIER & 0xff & ~handled;
        if (unhandled != 0) {
            __HAL_TIM_DISABLE_IT(&tim->tim, unhandled);
            __HAL_TIM_CLEAR_IT(&tim->tim, unhandled);
            mp_printf(MICROPY_ERROR_PRINTER, "unhandled interrupt SR=0x%02x (now disabled)\n", (unsigned int)unhandled);
        }
    }
}