aboutsummaryrefslogtreecommitdiff
path: root/ports/stm32/pyb_spi.c
blob: 4e7a4a61aaa530c469c4b011df313a00468a7d22 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013-2018 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include "py/runtime.h"
#include "extmod/machine_spi.h"
#include "bufhelper.h"
#include "spi.h"

/******************************************************************************/
// MicroPython bindings for legacy pyb API

// class pyb.SPI - a master-driven serial protocol
//
// SPI is a serial protocol that is driven by a master.  At the physical level
// there are 3 lines: SCK, MOSI, MISO.
//
// See usage model of I2C; SPI is very similar.  Main difference is
// parameters to init the SPI bus:
//
//     from pyb import SPI
//     spi = SPI(1, SPI.MASTER, baudrate=600000, polarity=1, phase=0, crc=0x7)
//
// Only required parameter is mode, SPI.MASTER or SPI.SLAVE.  Polarity can be
// 0 or 1, and is the level the idle clock line sits at.  Phase can be 0 or 1
// to sample data on the first or second clock edge respectively.  Crc can be
// None for no CRC, or a polynomial specifier.
//
// Additional method for SPI:
//
//     data = spi.send_recv(b'1234')        # send 4 bytes and receive 4 bytes
//     buf = bytearray(4)
//     spi.send_recv(b'1234', buf)          # send 4 bytes and receive 4 into buf
//     spi.send_recv(buf, buf)              # send/recv 4 bytes from/to buf

STATIC const pyb_spi_obj_t pyb_spi_obj[] = {
    {{&pyb_spi_type}, &spi_obj[0]},
    {{&pyb_spi_type}, &spi_obj[1]},
    {{&pyb_spi_type}, &spi_obj[2]},
    {{&pyb_spi_type}, &spi_obj[3]},
    {{&pyb_spi_type}, &spi_obj[4]},
    {{&pyb_spi_type}, &spi_obj[5]},
};

STATIC void pyb_spi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
    pyb_spi_obj_t *self = MP_OBJ_TO_PTR(self_in);
    spi_print(print, self->spi, true);
}

// init(mode, baudrate=328125, *, polarity=1, phase=0, bits=8, firstbit=SPI.MSB, ti=False, crc=None)
//
// Initialise the SPI bus with the given parameters:
//   - `mode` must be either `SPI.MASTER` or `SPI.SLAVE`.
//   - `baudrate` is the SCK clock rate (only sensible for a master).
STATIC mp_obj_t pyb_spi_init_helper(const pyb_spi_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_mode,     MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
        { MP_QSTR_baudrate, MP_ARG_INT, {.u_int = 328125} },
        { MP_QSTR_prescaler, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
        { MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT,  {.u_int = 1} },
        { MP_QSTR_phase,    MP_ARG_KW_ONLY | MP_ARG_INT,  {.u_int = 0} },
        { MP_QSTR_dir,      MP_ARG_KW_ONLY | MP_ARG_INT,  {.u_int = SPI_DIRECTION_2LINES} },
        { MP_QSTR_bits,     MP_ARG_KW_ONLY | MP_ARG_INT,  {.u_int = 8} },
        { MP_QSTR_nss,      MP_ARG_KW_ONLY | MP_ARG_INT,  {.u_int = SPI_NSS_SOFT} },
        { MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT,  {.u_int = SPI_FIRSTBIT_MSB} },
        { MP_QSTR_ti,       MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
        { MP_QSTR_crc,      MP_ARG_KW_ONLY | MP_ARG_OBJ,  {.u_rom_obj = MP_ROM_NONE} },
    };

    // parse args
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // set the SPI configuration values
    SPI_InitTypeDef *init = &self->spi->spi->Init;
    init->Mode = args[0].u_int;

    spi_set_params(self->spi, args[2].u_int, args[1].u_int, args[3].u_int, args[4].u_int,
        args[6].u_int, args[8].u_int);

    init->Direction = args[5].u_int;
    init->NSS = args[7].u_int;
    init->TIMode = args[9].u_bool ? SPI_TIMODE_ENABLE : SPI_TIMODE_DISABLE;
    if (args[10].u_obj == mp_const_none) {
        init->CRCCalculation = SPI_CRCCALCULATION_DISABLE;
        init->CRCPolynomial = 0;
    } else {
        init->CRCCalculation = SPI_CRCCALCULATION_ENABLE;
        init->CRCPolynomial = mp_obj_get_int(args[10].u_obj);
    }

    // init the SPI bus
    spi_init(self->spi, init->NSS != SPI_NSS_SOFT);

    return mp_const_none;
}

// constructor(bus, ...)
//
// Construct an SPI object on the given bus.  `bus` can be 1 or 2.
// With no additional parameters, the SPI object is created but not
// initialised (it has the settings from the last initialisation of
// the bus, if any).  If extra arguments are given, the bus is initialised.
// See `init` for parameters of initialisation.
//
// The physical pins of the SPI busses are:
//   - `SPI(1)` is on the X position: `(NSS, SCK, MISO, MOSI) = (X5, X6, X7, X8) = (PA4, PA5, PA6, PA7)`
//   - `SPI(2)` is on the Y position: `(NSS, SCK, MISO, MOSI) = (Y5, Y6, Y7, Y8) = (PB12, PB13, PB14, PB15)`
//
// At the moment, the NSS pin is not used by the SPI driver and is free
// for other use.
STATIC mp_obj_t pyb_spi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    // check arguments
    mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);

    // work out SPI bus
    int spi_id = spi_find_index(args[0]);

    // get SPI object
    const pyb_spi_obj_t *spi_obj = &pyb_spi_obj[spi_id - 1];

    if (n_args > 1 || n_kw > 0) {
        // start the peripheral
        mp_map_t kw_args;
        mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
        pyb_spi_init_helper(spi_obj, n_args - 1, args + 1, &kw_args);
    }

    return MP_OBJ_FROM_PTR(spi_obj);
}

STATIC mp_obj_t pyb_spi_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
    return pyb_spi_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_init_obj, 1, pyb_spi_init);

// deinit()
// Turn off the SPI bus.
STATIC mp_obj_t pyb_spi_deinit(mp_obj_t self_in) {
    pyb_spi_obj_t *self = MP_OBJ_TO_PTR(self_in);
    spi_deinit(self->spi);
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_spi_deinit_obj, pyb_spi_deinit);

// send(send, *, timeout=5000)
// Send data on the bus:
//   - `send` is the data to send (an integer to send, or a buffer object).
//   - `timeout` is the timeout in milliseconds to wait for the send.
//
// Return value: `None`.
STATIC mp_obj_t pyb_spi_send(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    // TODO assumes transmission size is 8-bits wide

    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_send,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
        { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
    };

    // parse args
    pyb_spi_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // get the buffer to send from
    mp_buffer_info_t bufinfo;
    uint8_t data[1];
    pyb_buf_get_for_send(args[0].u_obj, &bufinfo, data);

    // send the data
    spi_transfer(self->spi, bufinfo.len, bufinfo.buf, NULL, args[1].u_int);

    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_send_obj, 1, pyb_spi_send);

// recv(recv, *, timeout=5000)
//
// Receive data on the bus:
//   - `recv` can be an integer, which is the number of bytes to receive,
//     or a mutable buffer, which will be filled with received bytes.
//   - `timeout` is the timeout in milliseconds to wait for the receive.
//
// Return value: if `recv` is an integer then a new buffer of the bytes received,
// otherwise the same buffer that was passed in to `recv`.
STATIC mp_obj_t pyb_spi_recv(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    // TODO assumes transmission size is 8-bits wide

    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_recv,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
        { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
    };

    // parse args
    pyb_spi_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // get the buffer to receive into
    vstr_t vstr;
    mp_obj_t o_ret = pyb_buf_get_for_recv(args[0].u_obj, &vstr);

    // receive the data
    spi_transfer(self->spi, vstr.len, NULL, (uint8_t *)vstr.buf, args[1].u_int);

    // return the received data
    if (o_ret != MP_OBJ_NULL) {
        return o_ret;
    } else {
        return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_recv_obj, 1, pyb_spi_recv);

// send_recv(send, recv=None, *, timeout=5000)
//
// Send and receive data on the bus at the same time:
//   - `send` is the data to send (an integer to send, or a buffer object).
//   - `recv` is a mutable buffer which will be filled with received bytes.
//   It can be the same as `send`, or omitted.  If omitted, a new buffer will
//   be created.
//   - `timeout` is the timeout in milliseconds to wait for the receive.
//
// Return value: the buffer with the received bytes.
STATIC mp_obj_t pyb_spi_send_recv(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    // TODO assumes transmission size is 8-bits wide

    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_send,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
        { MP_QSTR_recv,    MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
        { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
    };

    // parse args
    pyb_spi_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // get buffers to send from/receive to
    mp_buffer_info_t bufinfo_send;
    uint8_t data_send[1];
    mp_buffer_info_t bufinfo_recv;
    vstr_t vstr_recv;
    mp_obj_t o_ret;

    if (args[0].u_obj == args[1].u_obj) {
        // same object for send and receive, it must be a r/w buffer
        mp_get_buffer_raise(args[0].u_obj, &bufinfo_send, MP_BUFFER_RW);
        bufinfo_recv = bufinfo_send;
        o_ret = args[0].u_obj;
    } else {
        // get the buffer to send from
        pyb_buf_get_for_send(args[0].u_obj, &bufinfo_send, data_send);

        // get the buffer to receive into
        if (args[1].u_obj == MP_OBJ_NULL) {
            // only send argument given, so create a fresh buffer of the send length
            vstr_init_len(&vstr_recv, bufinfo_send.len);
            bufinfo_recv.len = vstr_recv.len;
            bufinfo_recv.buf = vstr_recv.buf;
            o_ret = MP_OBJ_NULL;
        } else {
            // recv argument given
            mp_get_buffer_raise(args[1].u_obj, &bufinfo_recv, MP_BUFFER_WRITE);
            if (bufinfo_recv.len != bufinfo_send.len) {
                mp_raise_ValueError("recv must be same length as send");
            }
            o_ret = args[1].u_obj;
        }
    }

    // do the transfer
    spi_transfer(self->spi, bufinfo_send.len, bufinfo_send.buf, bufinfo_recv.buf, args[2].u_int);

    // return the received data
    if (o_ret != MP_OBJ_NULL) {
        return o_ret;
    } else {
        return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr_recv);
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_spi_send_recv_obj, 1, pyb_spi_send_recv);

STATIC const mp_rom_map_elem_t pyb_spi_locals_dict_table[] = {
    // instance methods
    { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_spi_init_obj) },
    { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_spi_deinit_obj) },

    { MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_machine_spi_read_obj) },
    { MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_machine_spi_readinto_obj) },
    { MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_machine_spi_write_obj) },
    { MP_ROM_QSTR(MP_QSTR_write_readinto), MP_ROM_PTR(&mp_machine_spi_write_readinto_obj) },

    // legacy methods
    { MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&pyb_spi_send_obj) },
    { MP_ROM_QSTR(MP_QSTR_recv), MP_ROM_PTR(&pyb_spi_recv_obj) },
    { MP_ROM_QSTR(MP_QSTR_send_recv), MP_ROM_PTR(&pyb_spi_send_recv_obj) },

    // class constants
    /// \constant MASTER - for initialising the bus to master mode
    /// \constant SLAVE - for initialising the bus to slave mode
    /// \constant MSB - set the first bit to MSB
    /// \constant LSB - set the first bit to LSB
    { MP_ROM_QSTR(MP_QSTR_MASTER), MP_ROM_INT(SPI_MODE_MASTER) },
    { MP_ROM_QSTR(MP_QSTR_SLAVE),  MP_ROM_INT(SPI_MODE_SLAVE) },
    { MP_ROM_QSTR(MP_QSTR_MSB),    MP_ROM_INT(SPI_FIRSTBIT_MSB) },
    { MP_ROM_QSTR(MP_QSTR_LSB),    MP_ROM_INT(SPI_FIRSTBIT_LSB) },
    /* TODO
    { MP_ROM_QSTR(MP_QSTR_DIRECTION_2LINES             ((uint32_t)0x00000000)
    { MP_ROM_QSTR(MP_QSTR_DIRECTION_2LINES_RXONLY      SPI_CR1_RXONLY
    { MP_ROM_QSTR(MP_QSTR_DIRECTION_1LINE              SPI_CR1_BIDIMODE
    { MP_ROM_QSTR(MP_QSTR_NSS_SOFT                    SPI_CR1_SSM
    { MP_ROM_QSTR(MP_QSTR_NSS_HARD_INPUT              ((uint32_t)0x00000000)
    { MP_ROM_QSTR(MP_QSTR_NSS_HARD_OUTPUT             ((uint32_t)0x00040000)
    */
};
STATIC MP_DEFINE_CONST_DICT(pyb_spi_locals_dict, pyb_spi_locals_dict_table);

STATIC void spi_transfer_machine(mp_obj_base_t *self_in, size_t len, const uint8_t *src, uint8_t *dest) {
    pyb_spi_obj_t *self = (pyb_spi_obj_t *)self_in;
    spi_transfer(self->spi, len, src, dest, SPI_TRANSFER_TIMEOUT(len));
}

STATIC const mp_machine_spi_p_t pyb_spi_p = {
    .transfer = spi_transfer_machine,
};

const mp_obj_type_t pyb_spi_type = {
    { &mp_type_type },
    .name = MP_QSTR_SPI,
    .print = pyb_spi_print,
    .make_new = pyb_spi_make_new,
    .protocol = &pyb_spi_p,
    .locals_dict = (mp_obj_dict_t *)&pyb_spi_locals_dict,
};