aboutsummaryrefslogtreecommitdiff
path: root/ports/stm32/pyb_i2c.c
blob: 09e5328cf2ad7934c37ada507c89e8a3ebc05943 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013, 2014 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdio.h>
#include <string.h>

#include "py/runtime.h"
#include "py/mphal.h"
#include "irq.h"
#include "pin.h"
#include "bufhelper.h"
#include "dma.h"
#include "i2c.h"

#if MICROPY_PY_PYB_LEGACY && MICROPY_HW_ENABLE_HW_I2C

/// \moduleref pyb
/// \class I2C - a two-wire serial protocol
///
/// I2C is a two-wire protocol for communicating between devices.  At the physical
/// level it consists of 2 wires: SCL and SDA, the clock and data lines respectively.
///
/// I2C objects are created attached to a specific bus.  They can be initialised
/// when created, or initialised later on:
///
///     from pyb import I2C
///
///     i2c = I2C(1)                         # create on bus 1
///     i2c = I2C(1, I2C.MASTER)             # create and init as a master
///     i2c.init(I2C.MASTER, baudrate=20000) # init as a master
///     i2c.init(I2C.SLAVE, addr=0x42)       # init as a slave with given address
///     i2c.deinit()                         # turn off the peripheral
///
/// Printing the i2c object gives you information about its configuration.
///
/// Basic methods for slave are send and recv:
///
///     i2c.send('abc')      # send 3 bytes
///     i2c.send(0x42)       # send a single byte, given by the number
///     data = i2c.recv(3)   # receive 3 bytes
///
/// To receive inplace, first create a bytearray:
///
///     data = bytearray(3)  # create a buffer
///     i2c.recv(data)       # receive 3 bytes, writing them into data
///
/// You can specify a timeout (in ms):
///
///     i2c.send(b'123', timeout=2000)   # timout after 2 seconds
///
/// A master must specify the recipient's address:
///
///     i2c.init(I2C.MASTER)
///     i2c.send('123', 0x42)        # send 3 bytes to slave with address 0x42
///     i2c.send(b'456', addr=0x42)  # keyword for address
///
/// Master also has other methods:
///
///     i2c.is_ready(0x42)           # check if slave 0x42 is ready
///     i2c.scan()                   # scan for slaves on the bus, returning
///                                  #   a list of valid addresses
///     i2c.mem_read(3, 0x42, 2)     # read 3 bytes from memory of slave 0x42,
///                                  #   starting at address 2 in the slave
///     i2c.mem_write('abc', 0x42, 2, timeout=1000)
#define PYB_I2C_MASTER (0)
#define PYB_I2C_SLAVE  (1)

#define PYB_I2C_SPEED_STANDARD (100000L)
#define PYB_I2C_SPEED_FULL     (400000L)
#define PYB_I2C_SPEED_FAST     (1000000L)

#if defined(MICROPY_HW_I2C1_SCL)
I2C_HandleTypeDef I2CHandle1 = {.Instance = NULL};
#endif
#if defined(MICROPY_HW_I2C2_SCL)
I2C_HandleTypeDef I2CHandle2 = {.Instance = NULL};
#endif
#if defined(MICROPY_HW_I2C3_SCL)
I2C_HandleTypeDef I2CHandle3 = {.Instance = NULL};
#endif
#if defined(MICROPY_HW_I2C4_SCL)
I2C_HandleTypeDef I2CHandle4 = {.Instance = NULL};
#endif

STATIC bool pyb_i2c_use_dma[4];

const pyb_i2c_obj_t pyb_i2c_obj[] = {
    #if defined(MICROPY_HW_I2C1_SCL)
    {{&pyb_i2c_type}, &I2CHandle1, &dma_I2C_1_TX, &dma_I2C_1_RX, &pyb_i2c_use_dma[0]},
    #else
    {{&pyb_i2c_type}, NULL, NULL, NULL, NULL},
    #endif
    #if defined(MICROPY_HW_I2C2_SCL)
    {{&pyb_i2c_type}, &I2CHandle2, &dma_I2C_2_TX, &dma_I2C_2_RX, &pyb_i2c_use_dma[1]},
    #else
    {{&pyb_i2c_type}, NULL, NULL, NULL, NULL},
    #endif
    #if defined(MICROPY_HW_I2C3_SCL)
    {{&pyb_i2c_type}, &I2CHandle3, &dma_I2C_3_TX, &dma_I2C_3_RX, &pyb_i2c_use_dma[2]},
    #else
    {{&pyb_i2c_type}, NULL, NULL, NULL, NULL},
    #endif
    #if defined(MICROPY_HW_I2C4_SCL)
    {{&pyb_i2c_type}, &I2CHandle4, &dma_I2C_4_TX, &dma_I2C_4_RX, &pyb_i2c_use_dma[3]},
    #else
    {{&pyb_i2c_type}, NULL, NULL, NULL, NULL},
    #endif
};

#if defined(STM32F7) || defined(STM32L4) || defined(STM32H7)

// The STM32F0, F3, F7, H7 and L4 use a TIMINGR register rather than ClockSpeed and
// DutyCycle.

#define PYB_I2C_TIMINGR (1)

#if defined(STM32F746xx)

// The value 0x40912732 was obtained from the DISCOVERY_I2Cx_TIMING constant
// defined in the STM32F7Cube file Drivers/BSP/STM32F746G-Discovery/stm32f7456g_discovery.h
#define MICROPY_HW_I2C_BAUDRATE_TIMING { \
        {PYB_I2C_SPEED_STANDARD, 0x40912732}, \
        {PYB_I2C_SPEED_FULL, 0x10911823}, \
        {PYB_I2C_SPEED_FAST, 0x00611116}, \
}
#define MICROPY_HW_I2C_BAUDRATE_DEFAULT (PYB_I2C_SPEED_FULL)
#define MICROPY_HW_I2C_BAUDRATE_MAX (PYB_I2C_SPEED_FAST)

#elif defined(STM32F722xx) || defined(STM32F723xx) \
    || defined(STM32F732xx) || defined(STM32F733xx) \
    || defined(STM32F765xx) || defined(STM32F767xx) \
    || defined(STM32F769xx)

// These timing values are for f_I2CCLK=54MHz and are only approximate
#define MICROPY_HW_I2C_BAUDRATE_TIMING { \
        {PYB_I2C_SPEED_STANDARD, 0xb0420f13}, \
        {PYB_I2C_SPEED_FULL, 0x70330309}, \
        {PYB_I2C_SPEED_FAST, 0x50100103}, \
}
#define MICROPY_HW_I2C_BAUDRATE_DEFAULT (PYB_I2C_SPEED_FULL)
#define MICROPY_HW_I2C_BAUDRATE_MAX (PYB_I2C_SPEED_FAST)

#elif defined(STM32H7)

// I2C TIMINGs obtained from the STHAL examples.
#define MICROPY_HW_I2C_BAUDRATE_TIMING { \
        {PYB_I2C_SPEED_STANDARD, 0x40604E73}, \
        {PYB_I2C_SPEED_FULL, 0x00901954}, \
        {PYB_I2C_SPEED_FAST, 0x10810915}, \
}
#define MICROPY_HW_I2C_BAUDRATE_DEFAULT (PYB_I2C_SPEED_FULL)
#define MICROPY_HW_I2C_BAUDRATE_MAX (PYB_I2C_SPEED_FAST)

#elif defined(STM32L4)

// The value 0x90112626 was obtained from the DISCOVERY_I2C1_TIMING constant
// defined in the STM32L4Cube file Drivers/BSP/STM32L476G-Discovery/stm32l476g_discovery.h
#define MICROPY_HW_I2C_BAUDRATE_TIMING {{PYB_I2C_SPEED_STANDARD, 0x90112626}}
#define MICROPY_HW_I2C_BAUDRATE_DEFAULT (PYB_I2C_SPEED_STANDARD)
#define MICROPY_HW_I2C_BAUDRATE_MAX (PYB_I2C_SPEED_STANDARD)

#else
#error "no I2C timings for this MCU"
#endif

STATIC const struct {
    uint32_t baudrate;
    uint32_t timing;
} pyb_i2c_baudrate_timing[] = MICROPY_HW_I2C_BAUDRATE_TIMING;

#define NUM_BAUDRATE_TIMINGS MP_ARRAY_SIZE(pyb_i2c_baudrate_timing)

STATIC void i2c_set_baudrate(I2C_InitTypeDef *init, uint32_t baudrate) {
    for (int i = 0; i < NUM_BAUDRATE_TIMINGS; i++) {
        if (pyb_i2c_baudrate_timing[i].baudrate == baudrate) {
            init->Timing = pyb_i2c_baudrate_timing[i].timing;
            return;
        }
    }
    mp_raise_msg_varg(&mp_type_ValueError, "Unsupported I2C baudrate: %u", baudrate);
}

uint32_t pyb_i2c_get_baudrate(I2C_HandleTypeDef *i2c) {
    for (int i = 0; i < NUM_BAUDRATE_TIMINGS; i++) {
        if (pyb_i2c_baudrate_timing[i].timing == i2c->Init.Timing) {
            return pyb_i2c_baudrate_timing[i].baudrate;
        }
    }
    return 0;
}

#else

#define PYB_I2C_TIMINGR (0)

#define MICROPY_HW_I2C_BAUDRATE_DEFAULT (PYB_I2C_SPEED_FULL)
#define MICROPY_HW_I2C_BAUDRATE_MAX (PYB_I2C_SPEED_FULL)

STATIC void i2c_set_baudrate(I2C_InitTypeDef *init, uint32_t baudrate) {
    init->ClockSpeed = baudrate;
    init->DutyCycle = I2C_DUTYCYCLE_16_9;
}

uint32_t pyb_i2c_get_baudrate(I2C_HandleTypeDef *i2c) {
    uint32_t pfreq = i2c->Instance->CR2 & 0x3f;
    uint32_t ccr = i2c->Instance->CCR & 0xfff;
    if (i2c->Instance->CCR & 0x8000) {
        // Fast mode, assume duty cycle of 16/9
        return pfreq * 40000 / ccr;
    } else {
        // Standard mode
        return pfreq * 500000 / ccr;
    }
}

#endif

void i2c_init0(void) {
    // Initialise the I2C handles.
    // The structs live on the BSS so all other fields will be zero after a reset.
    #if defined(MICROPY_HW_I2C1_SCL)
    I2CHandle1.Instance = I2C1;
    #endif
    #if defined(MICROPY_HW_I2C2_SCL)
    I2CHandle2.Instance = I2C2;
    #endif
    #if defined(MICROPY_HW_I2C3_SCL)
    I2CHandle3.Instance = I2C3;
    #endif
    #if defined(MICROPY_HW_I2C4_SCL)
    I2CHandle4.Instance = I2C4;
    #endif
}

void pyb_i2c_init(I2C_HandleTypeDef *i2c) {
    int i2c_unit;
    const pin_obj_t *scl_pin;
    const pin_obj_t *sda_pin;

    if (0) {
    #if defined(MICROPY_HW_I2C1_SCL)
    } else if (i2c == &I2CHandle1) {
        i2c_unit = 1;
        scl_pin = MICROPY_HW_I2C1_SCL;
        sda_pin = MICROPY_HW_I2C1_SDA;
        __HAL_RCC_I2C1_CLK_ENABLE();
    #endif
    #if defined(MICROPY_HW_I2C2_SCL)
    } else if (i2c == &I2CHandle2) {
        i2c_unit = 2;
        scl_pin = MICROPY_HW_I2C2_SCL;
        sda_pin = MICROPY_HW_I2C2_SDA;
        __HAL_RCC_I2C2_CLK_ENABLE();
    #endif
    #if defined(MICROPY_HW_I2C3_SCL)
    } else if (i2c == &I2CHandle3) {
        i2c_unit = 3;
        scl_pin = MICROPY_HW_I2C3_SCL;
        sda_pin = MICROPY_HW_I2C3_SDA;
        __HAL_RCC_I2C3_CLK_ENABLE();
    #endif
    #if defined(MICROPY_HW_I2C4_SCL)
    } else if (i2c == &I2CHandle4) {
        i2c_unit = 4;
        scl_pin = MICROPY_HW_I2C4_SCL;
        sda_pin = MICROPY_HW_I2C4_SDA;
        __HAL_RCC_I2C4_CLK_ENABLE();
    #endif
    } else {
        // I2C does not exist for this board (shouldn't get here, should be checked by caller)
        return;
    }

    // init the GPIO lines
    uint32_t mode = MP_HAL_PIN_MODE_ALT_OPEN_DRAIN;
    uint32_t pull = MP_HAL_PIN_PULL_NONE; // have external pull-up resistors on both lines
    mp_hal_pin_config_alt(scl_pin, mode, pull, AF_FN_I2C, i2c_unit);
    mp_hal_pin_config_alt(sda_pin, mode, pull, AF_FN_I2C, i2c_unit);

    // init the I2C device
    if (HAL_I2C_Init(i2c) != HAL_OK) {
        // init error
        // TODO should raise an exception, but this function is not necessarily going to be
        // called via Python, so may not be properly wrapped in an NLR handler
        printf("OSError: HAL_I2C_Init failed\n");
        return;
    }

    // invalidate the DMA channels so they are initialised on first use
    const pyb_i2c_obj_t *self = &pyb_i2c_obj[i2c_unit - 1];
    dma_invalidate_channel(self->tx_dma_descr);
    dma_invalidate_channel(self->rx_dma_descr);

    if (0) {
    #if defined(MICROPY_HW_I2C1_SCL)
    } else if (i2c->Instance == I2C1) {
        HAL_NVIC_EnableIRQ(I2C1_EV_IRQn);
        HAL_NVIC_EnableIRQ(I2C1_ER_IRQn);
    #endif
    #if defined(MICROPY_HW_I2C2_SCL)
    } else if (i2c->Instance == I2C2) {
        HAL_NVIC_EnableIRQ(I2C2_EV_IRQn);
        HAL_NVIC_EnableIRQ(I2C2_ER_IRQn);
    #endif
    #if defined(MICROPY_HW_I2C3_SCL)
    } else if (i2c->Instance == I2C3) {
        HAL_NVIC_EnableIRQ(I2C3_EV_IRQn);
        HAL_NVIC_EnableIRQ(I2C3_ER_IRQn);
    #endif
    #if defined(MICROPY_HW_I2C4_SCL)
    } else if (i2c->Instance == I2C4) {
        HAL_NVIC_EnableIRQ(I2C4_EV_IRQn);
        HAL_NVIC_EnableIRQ(I2C4_ER_IRQn);
    #endif
    }
}

void i2c_deinit(I2C_HandleTypeDef *i2c) {
    HAL_I2C_DeInit(i2c);
    if (0) {
    #if defined(MICROPY_HW_I2C1_SCL)
    } else if (i2c->Instance == I2C1) {
        __HAL_RCC_I2C1_FORCE_RESET();
        __HAL_RCC_I2C1_RELEASE_RESET();
        __HAL_RCC_I2C1_CLK_DISABLE();
        HAL_NVIC_DisableIRQ(I2C1_EV_IRQn);
        HAL_NVIC_DisableIRQ(I2C1_ER_IRQn);
    #endif
    #if defined(MICROPY_HW_I2C2_SCL)
    } else if (i2c->Instance == I2C2) {
        __HAL_RCC_I2C2_FORCE_RESET();
        __HAL_RCC_I2C2_RELEASE_RESET();
        __HAL_RCC_I2C2_CLK_DISABLE();
        HAL_NVIC_DisableIRQ(I2C2_EV_IRQn);
        HAL_NVIC_DisableIRQ(I2C2_ER_IRQn);
    #endif
    #if defined(MICROPY_HW_I2C3_SCL)
    } else if (i2c->Instance == I2C3) {
        __HAL_RCC_I2C3_FORCE_RESET();
        __HAL_RCC_I2C3_RELEASE_RESET();
        __HAL_RCC_I2C3_CLK_DISABLE();
        HAL_NVIC_DisableIRQ(I2C3_EV_IRQn);
        HAL_NVIC_DisableIRQ(I2C3_ER_IRQn);
    #endif
    #if defined(MICROPY_HW_I2C4_SCL)
    } else if (i2c->Instance == I2C4) {
        __HAL_RCC_I2C4_FORCE_RESET();
        __HAL_RCC_I2C4_RELEASE_RESET();
        __HAL_RCC_I2C4_CLK_DISABLE();
        HAL_NVIC_DisableIRQ(I2C4_EV_IRQn);
        HAL_NVIC_DisableIRQ(I2C4_ER_IRQn);
    #endif
    }
}

void pyb_i2c_init_freq(const pyb_i2c_obj_t *self, mp_int_t freq) {
    I2C_InitTypeDef *init = &self->i2c->Init;

    init->AddressingMode = I2C_ADDRESSINGMODE_7BIT;
    init->DualAddressMode = I2C_DUALADDRESS_DISABLED;
    init->GeneralCallMode = I2C_GENERALCALL_DISABLED;
    init->NoStretchMode = I2C_NOSTRETCH_DISABLE;
    init->OwnAddress1 = PYB_I2C_MASTER_ADDRESS;
    init->OwnAddress2 = 0;       // unused
    if (freq != -1) {
        i2c_set_baudrate(init, MIN(freq, MICROPY_HW_I2C_BAUDRATE_MAX));
    }

    *self->use_dma = false;

    // init the I2C bus
    i2c_deinit(self->i2c);
    pyb_i2c_init(self->i2c);
}

STATIC void i2c_reset_after_error(I2C_HandleTypeDef *i2c) {
    // wait for bus-busy flag to be cleared, with a timeout
    for (int timeout = 50; timeout > 0; --timeout) {
        if (!__HAL_I2C_GET_FLAG(i2c, I2C_FLAG_BUSY)) {
            // stop bit was generated and bus is back to normal
            return;
        }
        mp_hal_delay_ms(1);
    }
    // bus was/is busy, need to reset the peripheral to get it to work again
    i2c_deinit(i2c);
    pyb_i2c_init(i2c);
}

void i2c_ev_irq_handler(mp_uint_t i2c_id) {
    I2C_HandleTypeDef *hi2c;

    switch (i2c_id) {
        #if defined(MICROPY_HW_I2C1_SCL)
        case 1:
            hi2c = &I2CHandle1;
            break;
        #endif
        #if defined(MICROPY_HW_I2C2_SCL)
        case 2:
            hi2c = &I2CHandle2;
            break;
        #endif
        #if defined(MICROPY_HW_I2C3_SCL)
        case 3:
            hi2c = &I2CHandle3;
            break;
        #endif
        #if defined(MICROPY_HW_I2C4_SCL)
        case 4:
            hi2c = &I2CHandle4;
            break;
        #endif
        default:
            return;
    }

    #if defined(STM32F4)

    if (hi2c->Instance->SR1 & I2C_FLAG_BTF && hi2c->State == HAL_I2C_STATE_BUSY_TX) {
        if (hi2c->XferCount != 0U) {
            hi2c->Instance->DR = *hi2c->pBuffPtr++;
            hi2c->XferCount--;
        } else {
            __HAL_I2C_DISABLE_IT(hi2c, I2C_IT_EVT | I2C_IT_BUF | I2C_IT_ERR);
            if (hi2c->XferOptions != I2C_FIRST_FRAME) {
                hi2c->Instance->CR1 |= I2C_CR1_STOP;
            }
            hi2c->Mode = HAL_I2C_MODE_NONE;
            hi2c->State = HAL_I2C_STATE_READY;
        }
    }

    #else

    // if not an F4 MCU, use the HAL's IRQ handler
    HAL_I2C_EV_IRQHandler(hi2c);

    #endif
}

void i2c_er_irq_handler(mp_uint_t i2c_id) {
    I2C_HandleTypeDef *hi2c;

    switch (i2c_id) {
        #if defined(MICROPY_HW_I2C1_SCL)
        case 1:
            hi2c = &I2CHandle1;
            break;
        #endif
        #if defined(MICROPY_HW_I2C2_SCL)
        case 2:
            hi2c = &I2CHandle2;
            break;
        #endif
        #if defined(MICROPY_HW_I2C3_SCL)
        case 3:
            hi2c = &I2CHandle3;
            break;
        #endif
        #if defined(MICROPY_HW_I2C4_SCL)
        case 4:
            hi2c = &I2CHandle4;
            break;
        #endif
        default:
            return;
    }

    #if defined(STM32F4)

    uint32_t sr1 = hi2c->Instance->SR1;

    // I2C Bus error
    if (sr1 & I2C_FLAG_BERR) {
        hi2c->ErrorCode |= HAL_I2C_ERROR_BERR;
        __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_BERR);
    }

    // I2C Arbitration Loss error
    if (sr1 & I2C_FLAG_ARLO) {
        hi2c->ErrorCode |= HAL_I2C_ERROR_ARLO;
        __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_ARLO);
    }

    // I2C Acknowledge failure
    if (sr1 & I2C_FLAG_AF) {
        hi2c->ErrorCode |= HAL_I2C_ERROR_AF;
        SET_BIT(hi2c->Instance->CR1,I2C_CR1_STOP);
        __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_AF);
    }

    // I2C Over-Run/Under-Run
    if (sr1 & I2C_FLAG_OVR) {
        hi2c->ErrorCode |= HAL_I2C_ERROR_OVR;
        __HAL_I2C_CLEAR_FLAG(hi2c, I2C_FLAG_OVR);
    }

    #else

    // if not an F4 MCU, use the HAL's IRQ handler
    HAL_I2C_ER_IRQHandler(hi2c);

    #endif
}

STATIC HAL_StatusTypeDef i2c_wait_dma_finished(I2C_HandleTypeDef *i2c, uint32_t timeout) {
    // Note: we can't use WFI to idle in this loop because the DMA completion
    // interrupt may occur before the WFI.  Hence we miss it and have to wait
    // until the next sys-tick (up to 1ms).
    uint32_t start = HAL_GetTick();
    while (HAL_I2C_GetState(i2c) != HAL_I2C_STATE_READY) {
        if (HAL_GetTick() - start >= timeout) {
            return HAL_TIMEOUT;
        }
    }
    return HAL_OK;
}

/******************************************************************************/
/* MicroPython bindings                                                       */

static inline bool in_master_mode(pyb_i2c_obj_t *self) {
    return self->i2c->Init.OwnAddress1 == PYB_I2C_MASTER_ADDRESS;
}

STATIC void pyb_i2c_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
    pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in);

    uint i2c_num = 0;
    if (0) {
    }
    #if defined(MICROPY_HW_I2C1_SCL)
    else if (self->i2c->Instance == I2C1) {
        i2c_num = 1;
    }
    #endif
    #if defined(MICROPY_HW_I2C2_SCL)
    else if (self->i2c->Instance == I2C2) {
        i2c_num = 2;
    }
    #endif
    #if defined(MICROPY_HW_I2C3_SCL)
    else if (self->i2c->Instance == I2C3) {
        i2c_num = 3;
    }
    #endif
    #if defined(MICROPY_HW_I2C4_SCL)
    else if (self->i2c->Instance == I2C4) {
        i2c_num = 4;
    }
    #endif

    if (self->i2c->State == HAL_I2C_STATE_RESET) {
        mp_printf(print, "I2C(%u)", i2c_num);
    } else {
        if (in_master_mode(self)) {
            mp_printf(print, "I2C(%u, I2C.MASTER, baudrate=%u"
                #if PYB_I2C_TIMINGR
                ", timingr=0x%08x"
                #endif
                ")", i2c_num, pyb_i2c_get_baudrate(self->i2c)
                #if PYB_I2C_TIMINGR
                , self->i2c->Init.Timing
                #endif
                );
        } else {
            mp_printf(print, "I2C(%u, I2C.SLAVE, addr=0x%02x)", i2c_num, (self->i2c->Instance->OAR1 >> 1) & 0x7f);
        }
    }
}

/// \method init(mode, *, addr=0x12, baudrate=400000, gencall=False)
///
/// Initialise the I2C bus with the given parameters:
///
///   - `mode` must be either `I2C.MASTER` or `I2C.SLAVE`
///   - `addr` is the 7-bit address (only sensible for a slave)
///   - `baudrate` is the SCL clock rate (only sensible for a master)
///   - `gencall` is whether to support general call mode
STATIC mp_obj_t pyb_i2c_init_helper(const pyb_i2c_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_mode,     MP_ARG_INT, {.u_int = PYB_I2C_MASTER} },
        { MP_QSTR_addr,     MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0x12} },
        { MP_QSTR_baudrate, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = MICROPY_HW_I2C_BAUDRATE_DEFAULT} },
        { MP_QSTR_gencall,  MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
        { MP_QSTR_dma,      MP_ARG_KW_ONLY | MP_ARG_BOOL, {.u_bool = false} },
        #if PYB_I2C_TIMINGR
        { MP_QSTR_timingr,  MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
        #endif
    };

    // parse args
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // set the I2C configuration values
    I2C_InitTypeDef *init = &self->i2c->Init;

    if (args[0].u_int == PYB_I2C_MASTER) {
        // use a special address to indicate we are a master
        init->OwnAddress1 = PYB_I2C_MASTER_ADDRESS;
    } else {
        init->OwnAddress1 = (args[1].u_int << 1) & 0xfe;
    }

    // Set baudrate or timing value (if supported)
    #if PYB_I2C_TIMINGR
    if (args[5].u_obj != mp_const_none) {
        init->Timing = mp_obj_get_int_truncated(args[5].u_obj);
    } else
    #endif
    {
        i2c_set_baudrate(init, MIN(args[2].u_int, MICROPY_HW_I2C_BAUDRATE_MAX));
    }

    init->AddressingMode = I2C_ADDRESSINGMODE_7BIT;
    init->DualAddressMode = I2C_DUALADDRESS_DISABLED;
    init->GeneralCallMode = args[3].u_bool ? I2C_GENERALCALL_ENABLED : I2C_GENERALCALL_DISABLED;
    init->OwnAddress2 = 0;     // unused
    init->NoStretchMode = I2C_NOSTRETCH_DISABLE;

    *self->use_dma = args[4].u_bool;

    // init the I2C bus
    i2c_deinit(self->i2c);
    pyb_i2c_init(self->i2c);

    return mp_const_none;
}

/// \classmethod \constructor(bus, ...)
///
/// Construct an I2C object on the given bus.  `bus` can be 1 or 2.
/// With no additional parameters, the I2C object is created but not
/// initialised (it has the settings from the last initialisation of
/// the bus, if any).  If extra arguments are given, the bus is initialised.
/// See `init` for parameters of initialisation.
///
/// The physical pins of the I2C busses are:
///
///   - `I2C(1)` is on the X position: `(SCL, SDA) = (X9, X10) = (PB6, PB7)`
///   - `I2C(2)` is on the Y position: `(SCL, SDA) = (Y9, Y10) = (PB10, PB11)`
STATIC mp_obj_t pyb_i2c_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    // check arguments
    mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);

    // work out i2c bus
    int i2c_id = 0;
    if (mp_obj_is_str(args[0])) {
        const char *port = mp_obj_str_get_str(args[0]);
        if (0) {
        #ifdef MICROPY_HW_I2C1_NAME
        } else if (strcmp(port, MICROPY_HW_I2C1_NAME) == 0) {
            i2c_id = 1;
        #endif
        #ifdef MICROPY_HW_I2C2_NAME
        } else if (strcmp(port, MICROPY_HW_I2C2_NAME) == 0) {
            i2c_id = 2;
        #endif
        #ifdef MICROPY_HW_I2C3_NAME
        } else if (strcmp(port, MICROPY_HW_I2C3_NAME) == 0) {
            i2c_id = 3;
        #endif
        #ifdef MICROPY_HW_I2C4_NAME
        } else if (strcmp(port, MICROPY_HW_I2C4_NAME) == 0) {
            i2c_id = 4;
        #endif
        } else {
            mp_raise_msg_varg(&mp_type_ValueError, "I2C(%s) doesn't exist", port);
        }
    } else {
        i2c_id = mp_obj_get_int(args[0]);
        if (i2c_id < 1 || i2c_id > MP_ARRAY_SIZE(pyb_i2c_obj)
            || pyb_i2c_obj[i2c_id - 1].i2c == NULL) {
            mp_raise_msg_varg(&mp_type_ValueError, "I2C(%d) doesn't exist", i2c_id);
        }
    }

    // get I2C object
    const pyb_i2c_obj_t *i2c_obj = &pyb_i2c_obj[i2c_id - 1];

    if (n_args > 1 || n_kw > 0) {
        // start the peripheral
        mp_map_t kw_args;
        mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
        pyb_i2c_init_helper(i2c_obj, n_args - 1, args + 1, &kw_args);
    }

    return MP_OBJ_FROM_PTR(i2c_obj);
}

STATIC mp_obj_t pyb_i2c_init_(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
    return pyb_i2c_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_init_obj, 1, pyb_i2c_init_);

/// \method deinit()
/// Turn off the I2C bus.
STATIC mp_obj_t pyb_i2c_deinit(mp_obj_t self_in) {
    pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in);
    i2c_deinit(self->i2c);
    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_i2c_deinit_obj, pyb_i2c_deinit);

/// \method is_ready(addr)
/// Check if an I2C device responds to the given address.  Only valid when in master mode.
STATIC mp_obj_t pyb_i2c_is_ready(mp_obj_t self_in, mp_obj_t i2c_addr_o) {
    pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in);

    if (!in_master_mode(self)) {
        mp_raise_TypeError("I2C must be a master");
    }

    mp_uint_t i2c_addr = mp_obj_get_int(i2c_addr_o) << 1;

    for (int i = 0; i < 10; i++) {
        HAL_StatusTypeDef status = HAL_I2C_IsDeviceReady(self->i2c, i2c_addr, 10, 200);
        if (status == HAL_OK) {
            return mp_const_true;
        }
    }

    return mp_const_false;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_i2c_is_ready_obj, pyb_i2c_is_ready);

/// \method scan()
/// Scan all I2C addresses from 0x08 to 0x77 and return a list of those that respond.
/// Only valid when in master mode.
STATIC mp_obj_t pyb_i2c_scan(mp_obj_t self_in) {
    pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(self_in);

    if (!in_master_mode(self)) {
        mp_raise_TypeError("I2C must be a master");
    }

    mp_obj_t list = mp_obj_new_list(0, NULL);

    for (uint addr = 0x08; addr <= 0x77; addr++) {
        HAL_StatusTypeDef status = HAL_I2C_IsDeviceReady(self->i2c, addr << 1, 1, 200);
        if (status == HAL_OK) {
            mp_obj_list_append(list, MP_OBJ_NEW_SMALL_INT(addr));
        }
    }

    return list;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_i2c_scan_obj, pyb_i2c_scan);

/// \method send(send, addr=0x00, timeout=5000)
/// Send data on the bus:
///
///   - `send` is the data to send (an integer to send, or a buffer object)
///   - `addr` is the address to send to (only required in master mode)
///   - `timeout` is the timeout in milliseconds to wait for the send
///
/// Return value: `None`.
STATIC mp_obj_t pyb_i2c_send(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_send,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
        { MP_QSTR_addr,    MP_ARG_INT, {.u_int = PYB_I2C_MASTER_ADDRESS} },
        { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
    };

    // parse args
    pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // get the buffer to send from
    mp_buffer_info_t bufinfo;
    uint8_t data[1];
    pyb_buf_get_for_send(args[0].u_obj, &bufinfo, data);

    // if option is set and IRQs are enabled then we can use DMA
    bool use_dma = *self->use_dma && query_irq() == IRQ_STATE_ENABLED;

    DMA_HandleTypeDef tx_dma;
    if (use_dma) {
        dma_init(&tx_dma, self->tx_dma_descr, DMA_MEMORY_TO_PERIPH, self->i2c);
        self->i2c->hdmatx = &tx_dma;
        self->i2c->hdmarx = NULL;
    }

    // send the data
    HAL_StatusTypeDef status;
    if (in_master_mode(self)) {
        if (args[1].u_int == PYB_I2C_MASTER_ADDRESS) {
            if (use_dma) {
                dma_deinit(self->tx_dma_descr);
            }
            mp_raise_TypeError("addr argument required");
        }
        mp_uint_t i2c_addr = args[1].u_int << 1;
        if (!use_dma) {
            status = HAL_I2C_Master_Transmit(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len, args[2].u_int);
        } else {
            MP_HAL_CLEAN_DCACHE(bufinfo.buf, bufinfo.len);
            status = HAL_I2C_Master_Transmit_DMA(self->i2c, i2c_addr, bufinfo.buf, bufinfo.len);
        }
    } else {
        if (!use_dma) {
            status = HAL_I2C_Slave_Transmit(self->i2c, bufinfo.buf, bufinfo.len, args[2].u_int);
        } else {
            MP_HAL_CLEAN_DCACHE(bufinfo.buf, bufinfo.len);
            status = HAL_I2C_Slave_Transmit_DMA(self->i2c, bufinfo.buf, bufinfo.len);
        }
    }

    // if we used DMA, wait for it to finish
    if (use_dma) {
        if (status == HAL_OK) {
            status = i2c_wait_dma_finished(self->i2c, args[2].u_int);
        }
        dma_deinit(self->tx_dma_descr);
    }

    if (status != HAL_OK) {
        i2c_reset_after_error(self->i2c);
        mp_hal_raise(status);
    }

    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_send_obj, 1, pyb_i2c_send);

/// \method recv(recv, addr=0x00, timeout=5000)
///
/// Receive data on the bus:
///
///   - `recv` can be an integer, which is the number of bytes to receive,
///     or a mutable buffer, which will be filled with received bytes
///   - `addr` is the address to receive from (only required in master mode)
///   - `timeout` is the timeout in milliseconds to wait for the receive
///
/// Return value: if `recv` is an integer then a new buffer of the bytes received,
/// otherwise the same buffer that was passed in to `recv`.
STATIC mp_obj_t pyb_i2c_recv(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_recv,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
        { MP_QSTR_addr,    MP_ARG_INT, {.u_int = PYB_I2C_MASTER_ADDRESS} },
        { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
    };

    // parse args
    pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);

    // get the buffer to receive into
    vstr_t vstr;
    mp_obj_t o_ret = pyb_buf_get_for_recv(args[0].u_obj, &vstr);

    // if option is set and IRQs are enabled then we can use DMA
    bool use_dma = *self->use_dma && query_irq() == IRQ_STATE_ENABLED;

    DMA_HandleTypeDef rx_dma;
    if (use_dma) {
        dma_init(&rx_dma, self->rx_dma_descr, DMA_PERIPH_TO_MEMORY, self->i2c);
        self->i2c->hdmatx = NULL;
        self->i2c->hdmarx = &rx_dma;
    }

    // receive the data
    HAL_StatusTypeDef status;
    if (in_master_mode(self)) {
        if (args[1].u_int == PYB_I2C_MASTER_ADDRESS) {
            mp_raise_TypeError("addr argument required");
        }
        mp_uint_t i2c_addr = args[1].u_int << 1;
        if (!use_dma) {
            status = HAL_I2C_Master_Receive(self->i2c, i2c_addr, (uint8_t *)vstr.buf, vstr.len, args[2].u_int);
        } else {
            MP_HAL_CLEANINVALIDATE_DCACHE(vstr.buf, vstr.len);
            status = HAL_I2C_Master_Receive_DMA(self->i2c, i2c_addr, (uint8_t *)vstr.buf, vstr.len);
        }
    } else {
        if (!use_dma) {
            status = HAL_I2C_Slave_Receive(self->i2c, (uint8_t *)vstr.buf, vstr.len, args[2].u_int);
        } else {
            MP_HAL_CLEANINVALIDATE_DCACHE(vstr.buf, vstr.len);
            status = HAL_I2C_Slave_Receive_DMA(self->i2c, (uint8_t *)vstr.buf, vstr.len);
        }
    }

    // if we used DMA, wait for it to finish
    if (use_dma) {
        if (status == HAL_OK) {
            status = i2c_wait_dma_finished(self->i2c, args[2].u_int);
        }
        dma_deinit(self->rx_dma_descr);
    }

    if (status != HAL_OK) {
        i2c_reset_after_error(self->i2c);
        mp_hal_raise(status);
    }

    // return the received data
    if (o_ret != MP_OBJ_NULL) {
        return o_ret;
    } else {
        return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_recv_obj, 1, pyb_i2c_recv);

/// \method mem_read(data, addr, memaddr, timeout=5000, addr_size=8)
///
/// Read from the memory of an I2C device:
///
///   - `data` can be an integer or a buffer to read into
///   - `addr` is the I2C device address
///   - `memaddr` is the memory location within the I2C device
///   - `timeout` is the timeout in milliseconds to wait for the read
///   - `addr_size` selects width of memaddr: 8 or 16 bits
///
/// Returns the read data.
/// This is only valid in master mode.
STATIC const mp_arg_t pyb_i2c_mem_read_allowed_args[] = {
    { MP_QSTR_data,    MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
    { MP_QSTR_addr,    MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
    { MP_QSTR_memaddr, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
    { MP_QSTR_timeout, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 5000} },
    { MP_QSTR_addr_size, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
};

STATIC mp_obj_t pyb_i2c_mem_read(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    // parse args
    pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
    mp_arg_val_t args[MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args)];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args), pyb_i2c_mem_read_allowed_args, args);

    if (!in_master_mode(self)) {
        mp_raise_TypeError("I2C must be a master");
    }

    // get the buffer to read into
    vstr_t vstr;
    mp_obj_t o_ret = pyb_buf_get_for_recv(args[0].u_obj, &vstr);

    // get the addresses
    mp_uint_t i2c_addr = args[1].u_int << 1;
    mp_uint_t mem_addr = args[2].u_int;
    // determine width of mem_addr; default is 8 bits, entering any other value gives 16 bit width
    mp_uint_t mem_addr_size = I2C_MEMADD_SIZE_8BIT;
    if (args[4].u_int != 8) {
        mem_addr_size = I2C_MEMADD_SIZE_16BIT;
    }

    // if option is set and IRQs are enabled then we can use DMA
    bool use_dma = *self->use_dma && query_irq() == IRQ_STATE_ENABLED;

    HAL_StatusTypeDef status;
    if (!use_dma) {
        status = HAL_I2C_Mem_Read(self->i2c, i2c_addr, mem_addr, mem_addr_size, (uint8_t *)vstr.buf, vstr.len, args[3].u_int);
    } else {
        DMA_HandleTypeDef rx_dma;
        dma_init(&rx_dma, self->rx_dma_descr, DMA_PERIPH_TO_MEMORY, self->i2c);
        self->i2c->hdmatx = NULL;
        self->i2c->hdmarx = &rx_dma;
        MP_HAL_CLEANINVALIDATE_DCACHE(vstr.buf, vstr.len);
        status = HAL_I2C_Mem_Read_DMA(self->i2c, i2c_addr, mem_addr, mem_addr_size, (uint8_t *)vstr.buf, vstr.len);
        if (status == HAL_OK) {
            status = i2c_wait_dma_finished(self->i2c, args[3].u_int);
        }
        dma_deinit(self->rx_dma_descr);
    }

    if (status != HAL_OK) {
        i2c_reset_after_error(self->i2c);
        mp_hal_raise(status);
    }

    // return the read data
    if (o_ret != MP_OBJ_NULL) {
        return o_ret;
    } else {
        return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
    }
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_mem_read_obj, 1, pyb_i2c_mem_read);

/// \method mem_write(data, addr, memaddr, timeout=5000, addr_size=8)
///
/// Write to the memory of an I2C device:
///
///   - `data` can be an integer or a buffer to write from
///   - `addr` is the I2C device address
///   - `memaddr` is the memory location within the I2C device
///   - `timeout` is the timeout in milliseconds to wait for the write
///   - `addr_size` selects width of memaddr: 8 or 16 bits
///
/// Returns `None`.
/// This is only valid in master mode.
STATIC mp_obj_t pyb_i2c_mem_write(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    // parse args (same as mem_read)
    pyb_i2c_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
    mp_arg_val_t args[MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args)];
    mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(pyb_i2c_mem_read_allowed_args), pyb_i2c_mem_read_allowed_args, args);

    if (!in_master_mode(self)) {
        mp_raise_TypeError("I2C must be a master");
    }

    // get the buffer to write from
    mp_buffer_info_t bufinfo;
    uint8_t data[1];
    pyb_buf_get_for_send(args[0].u_obj, &bufinfo, data);

    // get the addresses
    mp_uint_t i2c_addr = args[1].u_int << 1;
    mp_uint_t mem_addr = args[2].u_int;
    // determine width of mem_addr; default is 8 bits, entering any other value gives 16 bit width
    mp_uint_t mem_addr_size = I2C_MEMADD_SIZE_8BIT;
    if (args[4].u_int != 8) {
        mem_addr_size = I2C_MEMADD_SIZE_16BIT;
    }

    // if option is set and IRQs are enabled then we can use DMA
    bool use_dma = *self->use_dma && query_irq() == IRQ_STATE_ENABLED;

    HAL_StatusTypeDef status;
    if (!use_dma) {
        status = HAL_I2C_Mem_Write(self->i2c, i2c_addr, mem_addr, mem_addr_size, bufinfo.buf, bufinfo.len, args[3].u_int);
    } else {
        DMA_HandleTypeDef tx_dma;
        dma_init(&tx_dma, self->tx_dma_descr, DMA_MEMORY_TO_PERIPH, self->i2c);
        self->i2c->hdmatx = &tx_dma;
        self->i2c->hdmarx = NULL;
        MP_HAL_CLEAN_DCACHE(bufinfo.buf, bufinfo.len);
        status = HAL_I2C_Mem_Write_DMA(self->i2c, i2c_addr, mem_addr, mem_addr_size, bufinfo.buf, bufinfo.len);
        if (status == HAL_OK) {
            status = i2c_wait_dma_finished(self->i2c, args[3].u_int);
        }
        dma_deinit(self->tx_dma_descr);
    }

    if (status != HAL_OK) {
        i2c_reset_after_error(self->i2c);
        mp_hal_raise(status);
    }

    return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_i2c_mem_write_obj, 1, pyb_i2c_mem_write);

STATIC const mp_rom_map_elem_t pyb_i2c_locals_dict_table[] = {
    // instance methods
    { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_i2c_init_obj) },
    { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_i2c_deinit_obj) },
    { MP_ROM_QSTR(MP_QSTR_is_ready), MP_ROM_PTR(&pyb_i2c_is_ready_obj) },
    { MP_ROM_QSTR(MP_QSTR_scan), MP_ROM_PTR(&pyb_i2c_scan_obj) },
    { MP_ROM_QSTR(MP_QSTR_send), MP_ROM_PTR(&pyb_i2c_send_obj) },
    { MP_ROM_QSTR(MP_QSTR_recv), MP_ROM_PTR(&pyb_i2c_recv_obj) },
    { MP_ROM_QSTR(MP_QSTR_mem_read), MP_ROM_PTR(&pyb_i2c_mem_read_obj) },
    { MP_ROM_QSTR(MP_QSTR_mem_write), MP_ROM_PTR(&pyb_i2c_mem_write_obj) },

    // class constants
    /// \constant MASTER - for initialising the bus to master mode
    /// \constant SLAVE - for initialising the bus to slave mode
    { MP_ROM_QSTR(MP_QSTR_MASTER), MP_ROM_INT(PYB_I2C_MASTER) },
    { MP_ROM_QSTR(MP_QSTR_SLAVE), MP_ROM_INT(PYB_I2C_SLAVE) },
};

STATIC MP_DEFINE_CONST_DICT(pyb_i2c_locals_dict, pyb_i2c_locals_dict_table);

const mp_obj_type_t pyb_i2c_type = {
    { &mp_type_type },
    .name = MP_QSTR_I2C,
    .print = pyb_i2c_print,
    .make_new = pyb_i2c_make_new,
    .locals_dict = (mp_obj_dict_t *)&pyb_i2c_locals_dict,
};

#endif // MICROPY_PY_PYB_LEGACY && MICROPY_HW_ENABLE_HW_I2C