aboutsummaryrefslogtreecommitdiff
path: root/ports/stm32/powerctrl.c
blob: e11de8b021fd9e2a7e75ed45a9c5920fb5a1b9a8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013-2018 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include "py/mperrno.h"
#include "py/mphal.h"
#include "powerctrl.h"
#include "rtc.h"
#include "genhdr/pllfreqtable.h"

#if defined(STM32H7)
#define RCC_SR          RSR
#define RCC_SR_SFTRSTF  RCC_RSR_SFTRSTF
#define RCC_SR_RMVF     RCC_RSR_RMVF
#else
#define RCC_SR          CSR
#define RCC_SR_SFTRSTF  RCC_CSR_SFTRSTF
#define RCC_SR_RMVF     RCC_CSR_RMVF
#endif

// Location in RAM of bootloader state (just after the top of the stack)
extern uint32_t _estack[];
#define BL_STATE ((uint32_t *)&_estack)

static inline void powerctrl_disable_hsi_if_unused(void) {
    #if !MICROPY_HW_CLK_USE_HSI && (defined(STM32F4) || defined(STM32F7) || defined(STM32H7))
    // Disable HSI if it's not used to save a little bit of power
    __HAL_RCC_HSI_DISABLE();
    #endif
}

NORETURN void powerctrl_mcu_reset(void) {
    BL_STATE[1] = 1; // invalidate bootloader address
    #if __DCACHE_PRESENT == 1
    SCB_CleanDCache();
    #endif
    NVIC_SystemReset();
}

NORETURN void powerctrl_enter_bootloader(uint32_t r0, uint32_t bl_addr) {
    BL_STATE[0] = r0;
    BL_STATE[1] = bl_addr;
    #if __DCACHE_PRESENT == 1
    SCB_CleanDCache();
    #endif
    NVIC_SystemReset();
}

static __attribute__((naked)) void branch_to_bootloader(uint32_t r0, uint32_t bl_addr) {
    __asm volatile (
        "ldr r2, [r1, #0]\n"    // get address of stack pointer
        "msr msp, r2\n"         // get stack pointer
        "ldr r2, [r1, #4]\n"    // get address of destination
        "bx r2\n"               // branch to bootloader
        );
}

void powerctrl_check_enter_bootloader(void) {
    uint32_t bl_addr = BL_STATE[1];
    BL_STATE[1] = 1; // invalidate bootloader address
    if ((bl_addr & 0xfff) == 0 && (RCC->RCC_SR & RCC_SR_SFTRSTF)) {
        // Reset by NVIC_SystemReset with bootloader data set -> branch to bootloader
        RCC->RCC_SR = RCC_SR_RMVF;
        #if defined(STM32F0) || defined(STM32F4) || defined(STM32L0) || defined(STM32L4) || defined(STM32WB)
        __HAL_SYSCFG_REMAPMEMORY_SYSTEMFLASH();
        #endif
        uint32_t r0 = BL_STATE[0];
        branch_to_bootloader(r0, bl_addr);
    }
}

#if !defined(STM32F0) && !defined(STM32L0) && !defined(STM32WB)

typedef struct _sysclk_scaling_table_entry_t {
    uint16_t mhz;
    uint16_t value;
} sysclk_scaling_table_entry_t;

#if defined(STM32F7)
STATIC const sysclk_scaling_table_entry_t volt_scale_table[] = {
    { 151, PWR_REGULATOR_VOLTAGE_SCALE3 },
    { 180, PWR_REGULATOR_VOLTAGE_SCALE2 },
    // Above 180MHz uses default PWR_REGULATOR_VOLTAGE_SCALE1
};
#elif defined(STM32H7)
STATIC const sysclk_scaling_table_entry_t volt_scale_table[] = {
    // See table 55 "Kernel clock distribution overview" of RM0433.
    {200, PWR_REGULATOR_VOLTAGE_SCALE3},
    {300, PWR_REGULATOR_VOLTAGE_SCALE2},
    // Above 300MHz uses default PWR_REGULATOR_VOLTAGE_SCALE1
    // (above 400MHz needs special handling for overdrive, currently unsupported)
};
#endif

STATIC int powerctrl_config_vos(uint32_t sysclk_mhz) {
    #if defined(STM32F7) || defined(STM32H7)
    uint32_t volt_scale = PWR_REGULATOR_VOLTAGE_SCALE1;
    for (int i = 0; i < MP_ARRAY_SIZE(volt_scale_table); ++i) {
        if (sysclk_mhz <= volt_scale_table[i].mhz) {
            volt_scale = volt_scale_table[i].value;
            break;
        }
    }
    if (HAL_PWREx_ControlVoltageScaling(volt_scale) != HAL_OK) {
        return -MP_EIO;
    }
    #endif
    return 0;
}

// Assumes that PLL is used as the SYSCLK source
int powerctrl_rcc_clock_config_pll(RCC_ClkInitTypeDef *rcc_init, uint32_t sysclk_mhz, bool need_pllsai) {
    uint32_t flash_latency;

    #if defined(STM32F7)
    if (need_pllsai) {
        // Configure PLLSAI at 48MHz for those peripherals that need this freq
        // (calculation assumes it can get an integral value of PLLSAIN)
        const uint32_t pllm = (RCC->PLLCFGR >> RCC_PLLCFGR_PLLM_Pos) & 0x3f;
        const uint32_t pllsaip = 4;
        const uint32_t pllsaiq = 2;
        const uint32_t pllsain = 48 * pllsaip * pllm / (HSE_VALUE / 1000000);
        RCC->PLLSAICFGR = pllsaiq << RCC_PLLSAICFGR_PLLSAIQ_Pos
            | (pllsaip / 2 - 1) << RCC_PLLSAICFGR_PLLSAIP_Pos
            | pllsain << RCC_PLLSAICFGR_PLLSAIN_Pos;
        RCC->CR |= RCC_CR_PLLSAION;
        uint32_t ticks = mp_hal_ticks_ms();
        while (!(RCC->CR & RCC_CR_PLLSAIRDY)) {
            if (mp_hal_ticks_ms() - ticks > 200) {
                return -MP_ETIMEDOUT;
            }
        }
        RCC->DCKCFGR2 |= RCC_DCKCFGR2_CK48MSEL;
    }
    #endif

    // If possible, scale down the internal voltage regulator to save power
    int ret = powerctrl_config_vos(sysclk_mhz);
    if (ret) {
        return ret;
    }

    #if defined(STM32F7)

    // These flash_latency values assume a supply voltage between 2.7V and 3.6V
    if (sysclk_mhz <= 30) {
        flash_latency = FLASH_LATENCY_0;
    } else if (sysclk_mhz <= 60) {
        flash_latency = FLASH_LATENCY_1;
    } else if (sysclk_mhz <= 90) {
        flash_latency = FLASH_LATENCY_2;
    } else if (sysclk_mhz <= 120) {
        flash_latency = FLASH_LATENCY_3;
    } else if (sysclk_mhz <= 150) {
        flash_latency = FLASH_LATENCY_4;
    } else if (sysclk_mhz <= 180) {
        flash_latency = FLASH_LATENCY_5;
    } else if (sysclk_mhz <= 210) {
        flash_latency = FLASH_LATENCY_6;
    } else {
        flash_latency = FLASH_LATENCY_7;
    }

    #elif defined(MICROPY_HW_FLASH_LATENCY)
    flash_latency = MICROPY_HW_FLASH_LATENCY;
    #else
    flash_latency = FLASH_LATENCY_5;
    #endif

    rcc_init->SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
    if (HAL_RCC_ClockConfig(rcc_init, flash_latency) != HAL_OK) {
        return -MP_EIO;
    }

    powerctrl_disable_hsi_if_unused();

    return 0;
}

#endif

#if !defined(STM32F0) && !defined(STM32L0) && !defined(STM32L4) && !defined(STM32WB)

STATIC uint32_t calc_ahb_div(uint32_t wanted_div) {
    #if defined(STM32H7)
    if (wanted_div <= 1) {
        return RCC_HCLK_DIV1;
    } else if (wanted_div <= 2) {
        return RCC_HCLK_DIV2;
    } else if (wanted_div <= 4) {
        return RCC_HCLK_DIV4;
    } else if (wanted_div <= 8) {
        return RCC_HCLK_DIV8;
    } else if (wanted_div <= 16) {
        return RCC_HCLK_DIV16;
    } else if (wanted_div <= 64) {
        return RCC_HCLK_DIV64;
    } else if (wanted_div <= 128) {
        return RCC_HCLK_DIV128;
    } else if (wanted_div <= 256) {
        return RCC_HCLK_DIV256;
    } else {
        return RCC_HCLK_DIV512;
    }
    #else
    if (wanted_div <= 1) {
        return RCC_SYSCLK_DIV1;
    } else if (wanted_div <= 2) {
        return RCC_SYSCLK_DIV2;
    } else if (wanted_div <= 4) {
        return RCC_SYSCLK_DIV4;
    } else if (wanted_div <= 8) {
        return RCC_SYSCLK_DIV8;
    } else if (wanted_div <= 16) {
        return RCC_SYSCLK_DIV16;
    } else if (wanted_div <= 64) {
        return RCC_SYSCLK_DIV64;
    } else if (wanted_div <= 128) {
        return RCC_SYSCLK_DIV128;
    } else if (wanted_div <= 256) {
        return RCC_SYSCLK_DIV256;
    } else {
        return RCC_SYSCLK_DIV512;
    }
    #endif
}

STATIC uint32_t calc_apb1_div(uint32_t wanted_div) {
    #if defined(STM32H7)
    if (wanted_div <= 1) {
        return RCC_APB1_DIV1;
    } else if (wanted_div <= 2) {
        return RCC_APB1_DIV2;
    } else if (wanted_div <= 4) {
        return RCC_APB1_DIV4;
    } else if (wanted_div <= 8) {
        return RCC_APB1_DIV8;
    } else {
        return RCC_APB1_DIV16;
    }
    #else
    if (wanted_div <= 1) {
        return RCC_HCLK_DIV1;
    } else if (wanted_div <= 2) {
        return RCC_HCLK_DIV2;
    } else if (wanted_div <= 4) {
        return RCC_HCLK_DIV4;
    } else if (wanted_div <= 8) {
        return RCC_HCLK_DIV8;
    } else {
        return RCC_HCLK_DIV16;
    }
    #endif
}

STATIC uint32_t calc_apb2_div(uint32_t wanted_div) {
    #if defined(STM32H7)
    if (wanted_div <= 1) {
        return RCC_APB2_DIV1;
    } else if (wanted_div <= 2) {
        return RCC_APB2_DIV2;
    } else if (wanted_div <= 4) {
        return RCC_APB2_DIV4;
    } else if (wanted_div <= 8) {
        return RCC_APB2_DIV8;
    } else {
        return RCC_APB2_DIV16;
    }
    #else
    return calc_apb1_div(wanted_div);
    #endif
}

int powerctrl_set_sysclk(uint32_t sysclk, uint32_t ahb, uint32_t apb1, uint32_t apb2) {
    // Return straightaway if the clocks are already at the desired frequency
    if (sysclk == HAL_RCC_GetSysClockFreq()
        && ahb == HAL_RCC_GetHCLKFreq()
        && apb1 == HAL_RCC_GetPCLK1Freq()
        && apb2 == HAL_RCC_GetPCLK2Freq()) {
        return 0;
    }

    // Default PLL parameters that give 48MHz on PLL48CK
    uint32_t m = MICROPY_HW_CLK_VALUE / 1000000, n = 336, p = 2, q = 7;
    uint32_t sysclk_source;
    bool need_pllsai = false;

    // Search for a valid PLL configuration that keeps USB at 48MHz
    uint32_t sysclk_mhz = sysclk / 1000000;
    for (const pll_freq_table_t *pll = &pll_freq_table[MP_ARRAY_SIZE(pll_freq_table) - 1]; pll >= &pll_freq_table[0]; --pll) {
        uint32_t sys = PLL_FREQ_TABLE_SYS(*pll);
        if (sys <= sysclk_mhz) {
            m = PLL_FREQ_TABLE_M(*pll);
            p = PLL_FREQ_TABLE_P(*pll);
            if (m == 0) {
                // special entry for using HSI directly
                sysclk_source = RCC_SYSCLKSOURCE_HSI;
            } else if (m == 1) {
                // special entry for using HSE directly
                sysclk_source = RCC_SYSCLKSOURCE_HSE;
            } else {
                // use PLL
                sysclk_source = RCC_SYSCLKSOURCE_PLLCLK;
                uint32_t vco_out = sys * p;
                n = vco_out * m / (MICROPY_HW_CLK_VALUE / 1000000);
                q = vco_out / 48;
                #if defined(STM32F7)
                need_pllsai = vco_out % 48 != 0;
                #endif
            }
            goto set_clk;
        }
    }
    return -MP_EINVAL;

set_clk:
    // Let the USB CDC have a chance to process before we change the clock
    mp_hal_delay_ms(5);

    // Desired system clock source is in sysclk_source
    RCC_ClkInitTypeDef RCC_ClkInitStruct;
    RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
    if (sysclk_source == RCC_SYSCLKSOURCE_PLLCLK) {
        // Set HSE as system clock source to allow modification of the PLL configuration
        // We then change to PLL after re-configuring PLL
        #if MICROPY_HW_CLK_USE_HSI
        RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
        #else
        RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE;
        #endif
    } else {
        // Directly set the system clock source as desired
        RCC_ClkInitStruct.SYSCLKSource = sysclk_source;
    }

    // Determine the bus clock dividers
    // Note: AHB freq required to be >= 14.2MHz for USB operation
    RCC_ClkInitStruct.AHBCLKDivider = calc_ahb_div(sysclk / ahb);
    #if !defined(STM32H7)
    ahb = sysclk >> AHBPrescTable[RCC_ClkInitStruct.AHBCLKDivider >> RCC_CFGR_HPRE_Pos];
    #endif
    RCC_ClkInitStruct.APB1CLKDivider = calc_apb1_div(ahb / apb1);
    RCC_ClkInitStruct.APB2CLKDivider = calc_apb2_div(ahb / apb2);
    #if defined(STM32H7)
    RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1;
    RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV2;
    RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV2;
    #endif

    #if MICROPY_HW_CLK_LAST_FREQ
    // Save the bus dividers for use later
    uint32_t h = RCC_ClkInitStruct.AHBCLKDivider >> 4;
    uint32_t b1 = RCC_ClkInitStruct.APB1CLKDivider >> 10;
    uint32_t b2 = RCC_ClkInitStruct.APB2CLKDivider >> 10;
    #endif

    // Configure clock
    if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) {
        return -MP_EIO;
    }

    #if defined(STM32F7)
    // Deselect PLLSAI as 48MHz source if we were using it
    RCC->DCKCFGR2 &= ~RCC_DCKCFGR2_CK48MSEL;
    // Turn PLLSAI off because we are changing PLLM (which drives PLLSAI)
    RCC->CR &= ~RCC_CR_PLLSAION;
    #endif

    // Re-configure PLL
    // Even if we don't use the PLL for the system clock, we still need it for USB, RNG and SDIO
    RCC_OscInitTypeDef RCC_OscInitStruct;
    RCC_OscInitStruct.OscillatorType = MICROPY_HW_RCC_OSCILLATOR_TYPE;
    RCC_OscInitStruct.HSEState = MICROPY_HW_RCC_HSE_STATE;
    RCC_OscInitStruct.HSIState = MICROPY_HW_RCC_HSI_STATE;
    RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
    RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
    RCC_OscInitStruct.PLL.PLLSource = MICROPY_HW_RCC_PLL_SRC;
    RCC_OscInitStruct.PLL.PLLM = m;
    RCC_OscInitStruct.PLL.PLLN = n;
    RCC_OscInitStruct.PLL.PLLP = p;
    RCC_OscInitStruct.PLL.PLLQ = q;

    #if defined(STM32H7)
    RCC_OscInitStruct.PLL.PLLR = 0;
    if (MICROPY_HW_CLK_VALUE / 1000000 <= 2 * m) {
        RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_0; // 1-2MHz
    } else if (MICROPY_HW_CLK_VALUE / 1000000 <= 4 * m) {
        RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_1; // 2-4MHz
    } else if (MICROPY_HW_CLK_VALUE / 1000000 <= 8 * m) {
        RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_2; // 4-8MHz
    } else {
        RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_3; // 8-16MHz
    }
    if (MICROPY_HW_CLK_VALUE / 1000000 * n <= 420 * m) {
        RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOMEDIUM; // 150-420MHz
    } else {
        RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE; // 192-960MHz
    }
    RCC_OscInitStruct.PLL.PLLFRACN = 0;
    #endif

    if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
        return -MP_EIO;
    }

    // Set PLL as system clock source if wanted
    if (sysclk_source == RCC_SYSCLKSOURCE_PLLCLK) {
        RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
        int ret = powerctrl_rcc_clock_config_pll(&RCC_ClkInitStruct, sysclk_mhz, need_pllsai);
        if (ret != 0) {
            return ret;
        }
    }

    #if MICROPY_HW_CLK_LAST_FREQ
    // Save settings in RTC backup register to reconfigure clocks on hard-reset
    #if defined(STM32F7)
    #define FREQ_BKP BKP31R
    #else
    #define FREQ_BKP BKP19R
    #endif
    // qqqqqqqq pppppppp nnnnnnnn nnmmmmmm
    // qqqqQQQQ ppppppPP nNNNNNNN NNMMMMMM
    // 222111HH HHQQQQPP nNNNNNNN NNMMMMMM
    p = (p / 2) - 1;
    RTC->FREQ_BKP = m
        | (n << 6) | (p << 16) | (q << 18)
        | (h << 22)
        | (b1 << 26)
        | (b2 << 29);
    #endif

    return 0;
}

#endif

void powerctrl_enter_stop_mode(void) {
    // Disable IRQs so that the IRQ that wakes the device from stop mode is not
    // executed until after the clocks are reconfigured
    uint32_t irq_state = disable_irq();

    #if defined(MICROPY_BOARD_ENTER_STOP)
    MICROPY_BOARD_ENTER_STOP
    #endif

    #if defined(STM32L4)
    // Configure the MSI as the clock source after waking up
    __HAL_RCC_WAKEUPSTOP_CLK_CONFIG(RCC_STOP_WAKEUPCLOCK_MSI);
    #endif

    #if !defined(STM32F0) && !defined(STM32L0) && !defined(STM32L4) && !defined(STM32WB)
    // takes longer to wake but reduces stop current
    HAL_PWREx_EnableFlashPowerDown();
    #endif

    #if defined(STM32F7)
    HAL_PWR_EnterSTOPMode((PWR_CR1_LPDS | PWR_CR1_LPUDS | PWR_CR1_FPDS | PWR_CR1_UDEN), PWR_STOPENTRY_WFI);
    #else
    HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI);
    #endif

    // reconfigure the system clock after waking up

    #if defined(STM32F0)

    // Enable HSI48
    __HAL_RCC_HSI48_ENABLE();
    while (!__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY)) {
    }

    // Select HSI48 as system clock source
    MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_SYSCLKSOURCE_HSI48);
    while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_HSI48) {
    }

    #else

    #if !defined(STM32L4)
    // enable clock
    __HAL_RCC_HSE_CONFIG(MICROPY_HW_RCC_HSE_STATE);
    #if MICROPY_HW_CLK_USE_HSI
    __HAL_RCC_HSI_ENABLE();
    #endif
    while (!__HAL_RCC_GET_FLAG(MICROPY_HW_RCC_FLAG_HSxRDY)) {
    }
    #endif

    #if defined(STM32F7)
    // Enable overdrive to reach 216MHz (if needed)
    HAL_PWREx_EnableOverDrive();
    #endif

    // enable PLL
    __HAL_RCC_PLL_ENABLE();
    while (!__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)) {
    }

    // select PLL as system clock source
    MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_SYSCLKSOURCE_PLLCLK);
    #if defined(STM32H7)
    while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL1) {
    }
    #elif defined(STM32WB)
    while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK) {
    }
    #else
    while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL) {
    }
    #endif

    powerctrl_disable_hsi_if_unused();

    #if defined(STM32F7)
    if (RCC->DCKCFGR2 & RCC_DCKCFGR2_CK48MSEL) {
        // Enable PLLSAI if it is selected as 48MHz source
        RCC->CR |= RCC_CR_PLLSAION;
        while (!(RCC->CR & RCC_CR_PLLSAIRDY)) {
        }
    }
    #endif

    #if defined(STM32H7)
    // Enable PLL3 for USB
    RCC->CR |= RCC_CR_PLL3ON;
    while (!(RCC->CR & RCC_CR_PLL3RDY)) {
    }
    #endif

    #if defined(STM32L4)
    // Enable PLLSAI1 for peripherals that use it
    RCC->CR |= RCC_CR_PLLSAI1ON;
    while (!(RCC->CR & RCC_CR_PLLSAI1RDY)) {
    }
    #endif

    #endif

    #if defined(MICROPY_BOARD_LEAVE_STOP)
    MICROPY_BOARD_LEAVE_STOP
    #endif

    // Enable IRQs now that all clocks are reconfigured
    enable_irq(irq_state);
}

void powerctrl_enter_standby_mode(void) {
    rtc_init_finalise();

    #if defined(MICROPY_BOARD_ENTER_STANDBY)
    MICROPY_BOARD_ENTER_STANDBY
    #endif

    // We need to clear the PWR wake-up-flag before entering standby, since
    // the flag may have been set by a previous wake-up event.  Furthermore,
    // we need to disable the wake-up sources while clearing this flag, so
    // that if a source is active it does actually wake the device.
    // See section 5.3.7 of RM0090.

    // Note: we only support RTC ALRA, ALRB, WUT and TS.
    // TODO support TAMP and WKUP (PA0 external pin).
    #if defined(STM32F0) || defined(STM32L0)
    #define CR_BITS (RTC_CR_ALRAIE | RTC_CR_WUTIE | RTC_CR_TSIE)
    #define ISR_BITS (RTC_ISR_ALRAF | RTC_ISR_WUTF | RTC_ISR_TSF)
    #else
    #define CR_BITS (RTC_CR_ALRAIE | RTC_CR_ALRBIE | RTC_CR_WUTIE | RTC_CR_TSIE)
    #define ISR_BITS (RTC_ISR_ALRAF | RTC_ISR_ALRBF | RTC_ISR_WUTF | RTC_ISR_TSF)
    #endif

    // save RTC interrupts
    uint32_t save_irq_bits = RTC->CR & CR_BITS;

    // disable RTC interrupts
    RTC->CR &= ~CR_BITS;

    // clear RTC wake-up flags
    RTC->ISR &= ~ISR_BITS;

    #if defined(STM32F7)
    // disable wake-up flags
    PWR->CSR2 &= ~(PWR_CSR2_EWUP6 | PWR_CSR2_EWUP5 | PWR_CSR2_EWUP4 | PWR_CSR2_EWUP3 | PWR_CSR2_EWUP2 | PWR_CSR2_EWUP1);
    // clear global wake-up flag
    PWR->CR2 |= PWR_CR2_CWUPF6 | PWR_CR2_CWUPF5 | PWR_CR2_CWUPF4 | PWR_CR2_CWUPF3 | PWR_CR2_CWUPF2 | PWR_CR2_CWUPF1;
    #elif defined(STM32H7)
    // TODO
    #elif defined(STM32L4) || defined(STM32WB)
    // clear all wake-up flags
    PWR->SCR |= PWR_SCR_CWUF5 | PWR_SCR_CWUF4 | PWR_SCR_CWUF3 | PWR_SCR_CWUF2 | PWR_SCR_CWUF1;
    // TODO
    #else
    // clear global wake-up flag
    PWR->CR |= PWR_CR_CWUF;
    #endif

    // enable previously-enabled RTC interrupts
    RTC->CR |= save_irq_bits;

    #if defined(STM32F7)
    // Enable the internal (eg RTC) wakeup sources
    // See Errata 2.2.2 "Wakeup from Standby mode when the back-up SRAM regulator is enabled"
    PWR->CSR1 |= PWR_CSR1_EIWUP;
    #endif

    // enter standby mode
    HAL_PWR_EnterSTANDBYMode();
    // we never return; MCU is reset on exit from standby
}