aboutsummaryrefslogtreecommitdiff
path: root/ports/stm32/modmachine.c
blob: 3a24e08f4885d8a99164bedce9e6c33e5cd65da0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013-2015 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdio.h>
#include <string.h>

#include "modmachine.h"
#include "py/gc.h"
#include "py/runtime.h"
#include "py/objstr.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "extmod/machine_bitstream.h"
#include "extmod/machine_mem.h"
#include "extmod/machine_signal.h"
#include "extmod/machine_pulse.h"
#include "extmod/machine_i2c.h"
#include "extmod/machine_spi.h"
#include "shared/runtime/pyexec.h"
#include "lib/oofatfs/ff.h"
#include "extmod/vfs.h"
#include "extmod/vfs_fat.h"
#include "gccollect.h"
#include "irq.h"
#include "powerctrl.h"
#include "pybthread.h"
#include "rng.h"
#include "storage.h"
#include "pin.h"
#include "timer.h"
#include "usb.h"
#include "rtc.h"
#include "i2c.h"
#include "spi.h"
#include "uart.h"
#include "wdt.h"

#if defined(STM32L0)
// L0 does not have a BOR, so use POR instead
#define RCC_CSR_BORRSTF RCC_CSR_PORRSTF
#endif

#if defined(STM32G4) || defined(STM32L4) || defined(STM32WB) || defined(STM32WL)
// L4 does not have a POR, so use BOR instead
#define RCC_CSR_PORRSTF RCC_CSR_BORRSTF
#endif

#if defined(STM32G0)
// G0 has BOR and POR combined
#define RCC_CSR_BORRSTF RCC_CSR_PWRRSTF
#define RCC_CSR_PORRSTF RCC_CSR_PWRRSTF
#endif

#if defined(STM32H7)
#define RCC_SR          RSR
#define RCC_SR_IWDGRSTF RCC_RSR_IWDG1RSTF
#define RCC_SR_WWDGRSTF RCC_RSR_WWDG1RSTF
#define RCC_SR_PORRSTF  RCC_RSR_PORRSTF
#define RCC_SR_BORRSTF  RCC_RSR_BORRSTF
#define RCC_SR_PINRSTF  RCC_RSR_PINRSTF
#define RCC_SR_RMVF     RCC_RSR_RMVF
#else
#define RCC_SR          CSR
#define RCC_SR_IWDGRSTF RCC_CSR_IWDGRSTF
#define RCC_SR_WWDGRSTF RCC_CSR_WWDGRSTF
#define RCC_SR_PORRSTF  RCC_CSR_PORRSTF
#define RCC_SR_BORRSTF  RCC_CSR_BORRSTF
#define RCC_SR_PINRSTF  RCC_CSR_PINRSTF
#define RCC_SR_RMVF     RCC_CSR_RMVF
#endif

#define PYB_RESET_SOFT      (0)
#define PYB_RESET_POWER_ON  (1)
#define PYB_RESET_HARD      (2)
#define PYB_RESET_WDT       (3)
#define PYB_RESET_DEEPSLEEP (4)

STATIC uint32_t reset_cause;

void machine_init(void) {
    #if defined(STM32F4)
    if (PWR->CSR & PWR_CSR_SBF) {
        // came out of standby
        reset_cause = PYB_RESET_DEEPSLEEP;
        PWR->CR |= PWR_CR_CSBF;
    } else
    #elif defined(STM32F7)
    if (PWR->CSR1 & PWR_CSR1_SBF) {
        // came out of standby
        reset_cause = PYB_RESET_DEEPSLEEP;
        PWR->CR1 |= PWR_CR1_CSBF;
    } else
    #elif defined(STM32H7)
    if (PWR->CPUCR & PWR_CPUCR_SBF || PWR->CPUCR & PWR_CPUCR_STOPF) {
        // came out of standby or stop mode
        reset_cause = PYB_RESET_DEEPSLEEP;
        PWR->CPUCR |= PWR_CPUCR_CSSF;
    } else
    #elif defined(STM32L4)
    if (PWR->SR1 & PWR_SR1_SBF) {
        // came out of standby
        reset_cause = PYB_RESET_DEEPSLEEP;
        PWR->SCR |= PWR_SCR_CSBF;
    } else
    #elif defined(STM32WB)
    if (PWR->EXTSCR & PWR_EXTSCR_C1SBF) {
        // came out of standby
        reset_cause = PYB_RESET_DEEPSLEEP;
        PWR->EXTSCR |= PWR_EXTSCR_C1CSSF;
    } else
    #endif
    {
        // get reset cause from RCC flags
        uint32_t state = RCC->RCC_SR;
        if (state & RCC_SR_IWDGRSTF || state & RCC_SR_WWDGRSTF) {
            reset_cause = PYB_RESET_WDT;
        } else if (state & RCC_SR_PORRSTF
                   #if !defined(STM32F0) && !defined(STM32F412Zx)
                   || state & RCC_SR_BORRSTF
                   #endif
                   ) {
            reset_cause = PYB_RESET_POWER_ON;
        } else if (state & RCC_SR_PINRSTF) {
            reset_cause = PYB_RESET_HARD;
        } else {
            // default is soft reset
            reset_cause = PYB_RESET_SOFT;
        }
    }
    // clear RCC reset flags
    RCC->RCC_SR |= RCC_SR_RMVF;
}

void machine_deinit(void) {
    // we are doing a soft-reset so change the reset_cause
    reset_cause = PYB_RESET_SOFT;
}

// machine.info([dump_alloc_table])
// Print out lots of information about the board.
STATIC mp_obj_t machine_info(size_t n_args, const mp_obj_t *args) {
    // get and print unique id; 96 bits
    {
        byte *id = (byte *)MP_HAL_UNIQUE_ID_ADDRESS;
        printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]);
    }

    printf("DEVID=0x%04x\nREVID=0x%04x\n", (unsigned int)HAL_GetDEVID(), (unsigned int)HAL_GetREVID());

    // get and print clock speeds
    // SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
    {
        #if defined(STM32F0) || defined(STM32G0)
        printf("S=%u\nH=%u\nP1=%u\n",
            (unsigned int)HAL_RCC_GetSysClockFreq(),
            (unsigned int)HAL_RCC_GetHCLKFreq(),
            (unsigned int)HAL_RCC_GetPCLK1Freq());
        #else
        printf("S=%u\nH=%u\nP1=%u\nP2=%u\n",
            (unsigned int)HAL_RCC_GetSysClockFreq(),
            (unsigned int)HAL_RCC_GetHCLKFreq(),
            (unsigned int)HAL_RCC_GetPCLK1Freq(),
            (unsigned int)HAL_RCC_GetPCLK2Freq());
        #endif
    }

    // to print info about memory
    {
        printf("_etext=%p\n", &_etext);
        printf("_sidata=%p\n", &_sidata);
        printf("_sdata=%p\n", &_sdata);
        printf("_edata=%p\n", &_edata);
        printf("_sbss=%p\n", &_sbss);
        printf("_ebss=%p\n", &_ebss);
        printf("_sstack=%p\n", &_sstack);
        printf("_estack=%p\n", &_estack);
        printf("_ram_start=%p\n", &_ram_start);
        printf("_heap_start=%p\n", &_heap_start);
        printf("_heap_end=%p\n", &_heap_end);
        printf("_ram_end=%p\n", &_ram_end);
    }

    // qstr info
    {
        size_t n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
        qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
        printf("qstr:\n  n_pool=%u\n  n_qstr=%u\n  n_str_data_bytes=%u\n  n_total_bytes=%u\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes);
    }

    // GC info
    {
        gc_info_t info;
        gc_info(&info);
        printf("GC:\n");
        printf("  %u total\n", info.total);
        printf("  %u : %u\n", info.used, info.free);
        printf("  1=%u 2=%u m=%u\n", info.num_1block, info.num_2block, info.max_block);
    }

    // free space on flash
    {
        #if MICROPY_VFS_FAT
        for (mp_vfs_mount_t *vfs = MP_STATE_VM(vfs_mount_table); vfs != NULL; vfs = vfs->next) {
            if (strncmp("/flash", vfs->str, vfs->len) == 0) {
                // assumes that it's a FatFs filesystem
                fs_user_mount_t *vfs_fat = MP_OBJ_TO_PTR(vfs->obj);
                DWORD nclst;
                f_getfree(&vfs_fat->fatfs, &nclst);
                printf("LFS free: %u bytes\n", (uint)(nclst * vfs_fat->fatfs.csize * 512));
                break;
            }
        }
        #endif
    }

    #if MICROPY_PY_THREAD
    pyb_thread_dump();
    #endif

    if (n_args == 1) {
        // arg given means dump gc allocation table
        gc_dump_alloc_table();
    }

    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_info_obj, 0, 1, machine_info);

// Returns a string of 12 bytes (96 bits), which is the unique ID for the MCU.
STATIC mp_obj_t machine_unique_id(void) {
    byte *id = (byte *)MP_HAL_UNIQUE_ID_ADDRESS;
    return mp_obj_new_bytes(id, 12);
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_unique_id_obj, machine_unique_id);

// Resets the pyboard in a manner similar to pushing the external RESET button.
STATIC mp_obj_t machine_reset(void) {
    powerctrl_mcu_reset();
    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_obj, machine_reset);

STATIC mp_obj_t machine_soft_reset(void) {
    pyexec_system_exit = PYEXEC_FORCED_EXIT;
    mp_raise_type(&mp_type_SystemExit);
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_soft_reset_obj, machine_soft_reset);

// Activate the bootloader without BOOT* pins.
STATIC NORETURN mp_obj_t machine_bootloader(size_t n_args, const mp_obj_t *args) {
    #if MICROPY_HW_ENABLE_USB
    pyb_usb_dev_deinit();
    #endif
    #if MICROPY_HW_ENABLE_STORAGE
    storage_flush();
    #endif

    __disable_irq();

    #if MICROPY_HW_USES_BOOTLOADER
    if (n_args == 0 || !mp_obj_is_true(args[0])) {
        // By default, with no args given, we enter the custom bootloader (mboot)
        powerctrl_enter_bootloader(0x70ad0000, MBOOT_VTOR);
    }

    if (n_args == 1 && mp_obj_is_str_or_bytes(args[0])) {
        // With a string/bytes given, pass its data to the custom bootloader
        size_t len;
        const char *data = mp_obj_str_get_data(args[0], &len);
        void *mboot_region = (void *)*((volatile uint32_t *)MBOOT_VTOR);
        memmove(mboot_region, data, len);
        powerctrl_enter_bootloader(0x70ad0080, MBOOT_VTOR);
    }
    #endif

    #if defined(STM32F7) || defined(STM32H7)
    powerctrl_enter_bootloader(0, 0x1ff00000);
    #else
    powerctrl_enter_bootloader(0, 0x00000000);
    #endif

    while (1) {
        ;
    }
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_bootloader_obj, 0, 1, machine_bootloader);

// get or set the MCU frequencies
STATIC mp_obj_t machine_freq(size_t n_args, const mp_obj_t *args) {
    if (n_args == 0) {
        // get
        mp_obj_t tuple[] = {
            mp_obj_new_int(HAL_RCC_GetSysClockFreq()),
            mp_obj_new_int(HAL_RCC_GetHCLKFreq()),
            mp_obj_new_int(HAL_RCC_GetPCLK1Freq()),
            #if !defined(STM32F0) && !defined(STM32G0)
            mp_obj_new_int(HAL_RCC_GetPCLK2Freq()),
            #endif
        };
        return mp_obj_new_tuple(MP_ARRAY_SIZE(tuple), tuple);
    } else {
        // set
        #if defined(STM32F0) || defined(STM32L0) || defined(STM32L4) || defined(STM32G0)
        mp_raise_NotImplementedError(MP_ERROR_TEXT("machine.freq set not supported yet"));
        #else
        mp_int_t sysclk = mp_obj_get_int(args[0]);
        mp_int_t ahb = sysclk;
        #if defined(STM32H7)
        if (ahb > 200000000) {
            ahb /= 2;
        }
        #endif
        #if defined(STM32WB)
        mp_int_t apb1 = ahb;
        mp_int_t apb2 = ahb;
        #else
        mp_int_t apb1 = ahb / 4;
        mp_int_t apb2 = ahb / 2;
        #endif
        if (n_args > 1) {
            ahb = mp_obj_get_int(args[1]);
            if (n_args > 2) {
                apb1 = mp_obj_get_int(args[2]);
                if (n_args > 3) {
                    apb2 = mp_obj_get_int(args[3]);
                }
            }
        }
        int ret = powerctrl_set_sysclk(sysclk, ahb, apb1, apb2);
        if (ret == -MP_EINVAL) {
            mp_raise_ValueError(MP_ERROR_TEXT("invalid freq"));
        } else if (ret < 0) {
            void NORETURN __fatal_error(const char *msg);
            __fatal_error("can't change freq");
        }
        return mp_const_none;
        #endif
    }
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_freq_obj, 0, 4, machine_freq);

// idle()
// This executies a wfi machine instruction which reduces power consumption
// of the MCU until an interrupt occurs, at which point execution continues.
STATIC mp_obj_t machine_idle(void) {
    __WFI();
    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_idle_obj, machine_idle);

STATIC mp_obj_t machine_lightsleep(size_t n_args, const mp_obj_t *args) {
    if (n_args != 0) {
        mp_obj_t args2[2] = {MP_OBJ_NULL, args[0]};
        pyb_rtc_wakeup(2, args2);
    }
    powerctrl_enter_stop_mode();
    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_lightsleep_obj, 0, 1, machine_lightsleep);

STATIC mp_obj_t machine_deepsleep(size_t n_args, const mp_obj_t *args) {
    if (n_args != 0) {
        mp_obj_t args2[2] = {MP_OBJ_NULL, args[0]};
        pyb_rtc_wakeup(2, args2);
    }
    powerctrl_enter_standby_mode();
    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_deepsleep_obj, 0, 1, machine_deepsleep);

STATIC mp_obj_t machine_reset_cause(void) {
    return MP_OBJ_NEW_SMALL_INT(reset_cause);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_cause_obj, machine_reset_cause);

STATIC const mp_rom_map_elem_t machine_module_globals_table[] = {
    { MP_ROM_QSTR(MP_QSTR___name__),            MP_ROM_QSTR(MP_QSTR_umachine) },
    { MP_ROM_QSTR(MP_QSTR_info),                MP_ROM_PTR(&machine_info_obj) },
    { MP_ROM_QSTR(MP_QSTR_unique_id),           MP_ROM_PTR(&machine_unique_id_obj) },
    { MP_ROM_QSTR(MP_QSTR_reset),               MP_ROM_PTR(&machine_reset_obj) },
    { MP_ROM_QSTR(MP_QSTR_soft_reset),          MP_ROM_PTR(&machine_soft_reset_obj) },
    { MP_ROM_QSTR(MP_QSTR_bootloader),          MP_ROM_PTR(&machine_bootloader_obj) },
    { MP_ROM_QSTR(MP_QSTR_freq),                MP_ROM_PTR(&machine_freq_obj) },
    #if MICROPY_HW_ENABLE_RNG
    { MP_ROM_QSTR(MP_QSTR_rng),                 MP_ROM_PTR(&pyb_rng_get_obj) },
    #endif
    { MP_ROM_QSTR(MP_QSTR_idle),                MP_ROM_PTR(&machine_idle_obj) },
    { MP_ROM_QSTR(MP_QSTR_sleep),               MP_ROM_PTR(&machine_lightsleep_obj) },
    { MP_ROM_QSTR(MP_QSTR_lightsleep),          MP_ROM_PTR(&machine_lightsleep_obj) },
    { MP_ROM_QSTR(MP_QSTR_deepsleep),           MP_ROM_PTR(&machine_deepsleep_obj) },
    { MP_ROM_QSTR(MP_QSTR_reset_cause),         MP_ROM_PTR(&machine_reset_cause_obj) },
    #if 0
    { MP_ROM_QSTR(MP_QSTR_wake_reason),         MP_ROM_PTR(&machine_wake_reason_obj) },
    #endif

    { MP_ROM_QSTR(MP_QSTR_disable_irq),         MP_ROM_PTR(&machine_disable_irq_obj) },
    { MP_ROM_QSTR(MP_QSTR_enable_irq),          MP_ROM_PTR(&machine_enable_irq_obj) },

    #if MICROPY_PY_MACHINE_BITSTREAM
    { MP_ROM_QSTR(MP_QSTR_bitstream),           MP_ROM_PTR(&machine_bitstream_obj) },
    #endif
    #if MICROPY_PY_MACHINE_PULSE
    { MP_ROM_QSTR(MP_QSTR_time_pulse_us),       MP_ROM_PTR(&machine_time_pulse_us_obj) },
    #endif

    { MP_ROM_QSTR(MP_QSTR_mem8),                MP_ROM_PTR(&machine_mem8_obj) },
    { MP_ROM_QSTR(MP_QSTR_mem16),               MP_ROM_PTR(&machine_mem16_obj) },
    { MP_ROM_QSTR(MP_QSTR_mem32),               MP_ROM_PTR(&machine_mem32_obj) },

    { MP_ROM_QSTR(MP_QSTR_Pin),                 MP_ROM_PTR(&pin_type) },
    { MP_ROM_QSTR(MP_QSTR_Signal),              MP_ROM_PTR(&machine_signal_type) },

    { MP_ROM_QSTR(MP_QSTR_RTC),                 MP_ROM_PTR(&pyb_rtc_type) },
    { MP_ROM_QSTR(MP_QSTR_ADC),                 MP_ROM_PTR(&machine_adc_type) },
    #if MICROPY_PY_MACHINE_I2C
    #if MICROPY_HW_ENABLE_HW_I2C
    { MP_ROM_QSTR(MP_QSTR_I2C),                 MP_ROM_PTR(&machine_hard_i2c_type) },
    #else
    { MP_ROM_QSTR(MP_QSTR_I2C),                 MP_ROM_PTR(&mp_machine_soft_i2c_type) },
    #endif
    { MP_ROM_QSTR(MP_QSTR_SoftI2C),             MP_ROM_PTR(&mp_machine_soft_i2c_type) },
    #endif
    #if MICROPY_PY_MACHINE_SPI
    { MP_ROM_QSTR(MP_QSTR_SPI),                 MP_ROM_PTR(&machine_hard_spi_type) },
    { MP_ROM_QSTR(MP_QSTR_SoftSPI),             MP_ROM_PTR(&mp_machine_soft_spi_type) },
    #endif
    #if MICROPY_HW_ENABLE_I2S
    { MP_ROM_QSTR(MP_QSTR_I2S),                 MP_ROM_PTR(&machine_i2s_type) },
    #endif
    { MP_ROM_QSTR(MP_QSTR_UART),                MP_ROM_PTR(&pyb_uart_type) },
    { MP_ROM_QSTR(MP_QSTR_WDT),                 MP_ROM_PTR(&pyb_wdt_type) },
    { MP_ROM_QSTR(MP_QSTR_Timer),               MP_ROM_PTR(&machine_timer_type) },
    #if 0
    { MP_ROM_QSTR(MP_QSTR_HeartBeat),           MP_ROM_PTR(&pyb_heartbeat_type) },
    { MP_ROM_QSTR(MP_QSTR_SD),                  MP_ROM_PTR(&pyb_sd_type) },

    // class constants
    { MP_ROM_QSTR(MP_QSTR_IDLE),                MP_ROM_INT(PYB_PWR_MODE_ACTIVE) },
    { MP_ROM_QSTR(MP_QSTR_SLEEP),               MP_ROM_INT(PYB_PWR_MODE_LPDS) },
    { MP_ROM_QSTR(MP_QSTR_DEEPSLEEP),           MP_ROM_INT(PYB_PWR_MODE_HIBERNATE) },
    #endif
    { MP_ROM_QSTR(MP_QSTR_PWRON_RESET),         MP_ROM_INT(PYB_RESET_POWER_ON) },
    { MP_ROM_QSTR(MP_QSTR_HARD_RESET),          MP_ROM_INT(PYB_RESET_HARD) },
    { MP_ROM_QSTR(MP_QSTR_WDT_RESET),           MP_ROM_INT(PYB_RESET_WDT) },
    { MP_ROM_QSTR(MP_QSTR_DEEPSLEEP_RESET),     MP_ROM_INT(PYB_RESET_DEEPSLEEP) },
    { MP_ROM_QSTR(MP_QSTR_SOFT_RESET),          MP_ROM_INT(PYB_RESET_SOFT) },
    #if 0
    { MP_ROM_QSTR(MP_QSTR_WLAN_WAKE),           MP_ROM_INT(PYB_SLP_WAKED_BY_WLAN) },
    { MP_ROM_QSTR(MP_QSTR_PIN_WAKE),            MP_ROM_INT(PYB_SLP_WAKED_BY_GPIO) },
    { MP_ROM_QSTR(MP_QSTR_RTC_WAKE),            MP_ROM_INT(PYB_SLP_WAKED_BY_RTC) },
    #endif
};

STATIC MP_DEFINE_CONST_DICT(machine_module_globals, machine_module_globals_table);

const mp_obj_module_t mp_module_machine = {
    .base = { &mp_type_module },
    .globals = (mp_obj_dict_t *)&machine_module_globals,
};