aboutsummaryrefslogtreecommitdiff
path: root/ports/stm32/dma.c
blob: 15919faf484057c7c9cc012115446a878467e132 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2015-2019 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdio.h>
#include <string.h>
#include <stdint.h>

#include "py/obj.h"
#include "py/mphal.h"
#include "systick.h"
#include "dma.h"
#include "irq.h"

#if defined(STM32WB)

// DMA is currently not implemented for this MCU

void dma_init(DMA_HandleTypeDef *dma, const dma_descr_t *dma_descr, uint32_t dir, void *data) {
}

void dma_deinit(const dma_descr_t *dma_descr) {
}

#else

#define DMA_IDLE_ENABLED()  (dma_idle.enabled != 0)
#define DMA_SYSTICK_LOG2    (3)
#define DMA_SYSTICK_MASK    ((1 << DMA_SYSTICK_LOG2) - 1)
#define DMA_IDLE_TICK_MAX   (8) // 8*8 = 64 msec
#define DMA_IDLE_TICK(tick) (((tick) & ~(SYSTICK_DISPATCH_NUM_SLOTS - 1) & DMA_SYSTICK_MASK) == 0)

#define ENABLE_SDIO (MICROPY_HW_ENABLE_SDCARD || MICROPY_HW_ENABLE_MMCARD)

typedef enum {
    dma_id_not_defined=-1,
    dma_id_0,
    dma_id_1,
    dma_id_2,
    dma_id_3,
    dma_id_4,
    dma_id_5,
    dma_id_6,
    dma_id_7,
    dma_id_8,
    dma_id_9,
    dma_id_10,
    dma_id_11,
    dma_id_12,
    dma_id_13,
    dma_id_14,
    dma_id_15,
} dma_id_t;

typedef union {
    uint16_t enabled; // Used to test if both counters are == 0
    uint8_t counter[2];
} dma_idle_count_t;

struct _dma_descr_t {
    #if defined(STM32F4) || defined(STM32F7) || defined(STM32H7)
    DMA_Stream_TypeDef *instance;
    #elif defined(STM32F0) || defined(STM32L0) || defined(STM32L4)
    DMA_Channel_TypeDef *instance;
    #else
    #error "Unsupported Processor"
    #endif
    uint32_t sub_instance;
    dma_id_t id;
    const DMA_InitTypeDef *init;
};

// Default parameters to dma_init() shared by spi and i2c; Channel and Direction
// vary depending on the peripheral instance so they get passed separately
static const DMA_InitTypeDef dma_init_struct_spi_i2c = {
    #if defined(STM32F4) || defined(STM32F7)
    .Channel = 0,
    #elif defined(STM32H7) || defined(STM32L0) || defined(STM32L4)
    .Request = 0,
    #endif
    .Direction = 0,
    .PeriphInc = DMA_PINC_DISABLE,
    .MemInc = DMA_MINC_ENABLE,
    .PeriphDataAlignment = DMA_PDATAALIGN_BYTE,
    .MemDataAlignment = DMA_MDATAALIGN_BYTE,
    .Mode = DMA_NORMAL,
    .Priority = DMA_PRIORITY_LOW,
    #if defined(STM32F4) || defined(STM32F7) || defined(STM32H7)
    .FIFOMode = DMA_FIFOMODE_DISABLE,
    .FIFOThreshold = DMA_FIFO_THRESHOLD_FULL,
    .MemBurst = DMA_MBURST_INC4,
    .PeriphBurst = DMA_PBURST_INC4
    #endif
};

#if ENABLE_SDIO && !defined(STM32H7)
// Parameters to dma_init() for SDIO tx and rx.
static const DMA_InitTypeDef dma_init_struct_sdio = {
    #if defined(STM32F4) || defined(STM32F7)
    .Channel = 0,
    #elif defined(STM32L0) || defined(STM32L4)
    .Request = 0,
    #endif
    .Direction = 0,
    .PeriphInc = DMA_PINC_DISABLE,
    .MemInc = DMA_MINC_ENABLE,
    .PeriphDataAlignment = DMA_PDATAALIGN_WORD,
    .MemDataAlignment = DMA_MDATAALIGN_WORD,
    #if defined(STM32F4) || defined(STM32F7)
    .Mode = DMA_PFCTRL,
    #elif defined(STM32L0) || defined(STM32L4)
    .Mode = DMA_NORMAL,
    #endif
    .Priority = DMA_PRIORITY_VERY_HIGH,
    #if defined(STM32F4) || defined(STM32F7)
    .FIFOMode = DMA_FIFOMODE_ENABLE,
    .FIFOThreshold = DMA_FIFO_THRESHOLD_FULL,
    .MemBurst = DMA_MBURST_INC4,
    .PeriphBurst = DMA_PBURST_INC4,
    #endif
};
#endif

#if defined(MICROPY_HW_ENABLE_DAC) && MICROPY_HW_ENABLE_DAC
// Default parameters to dma_init() for DAC tx
static const DMA_InitTypeDef dma_init_struct_dac = {
    #if defined(STM32F4) || defined(STM32F7)
    .Channel = 0,
    #elif defined(STM32H7) || defined(STM32L0) || defined(STM32L4)
    .Request = 0,
    #endif
    .Direction = 0,
    .PeriphInc = DMA_PINC_DISABLE,
    .MemInc = DMA_MINC_ENABLE,
    .PeriphDataAlignment = DMA_PDATAALIGN_BYTE,
    .MemDataAlignment = DMA_MDATAALIGN_BYTE,
    .Mode = DMA_NORMAL,
    .Priority = DMA_PRIORITY_HIGH,
    #if defined(STM32F4) || defined(STM32F7) || defined(STM32H7)
    .FIFOMode = DMA_FIFOMODE_DISABLE,
    .FIFOThreshold = DMA_FIFO_THRESHOLD_HALFFULL,
    .MemBurst = DMA_MBURST_SINGLE,
    .PeriphBurst = DMA_PBURST_SINGLE,
    #endif
};
#endif

#if MICROPY_HW_ENABLE_DCMI
static const DMA_InitTypeDef dma_init_struct_dcmi = {
    #if defined(STM32H7)
    .Request = DMA_REQUEST_DCMI,
    #else
    .Channel = DMA_CHANNEL_1,
    #endif
    .Direction = DMA_PERIPH_TO_MEMORY,
    .PeriphInc = DMA_PINC_DISABLE,
    .MemInc = DMA_MINC_ENABLE,
    .PeriphDataAlignment = DMA_PDATAALIGN_WORD,
    .MemDataAlignment = DMA_MDATAALIGN_WORD,
    .Mode = DMA_NORMAL,
    .Priority = DMA_PRIORITY_HIGH,
    .FIFOMode = DMA_FIFOMODE_ENABLE,
    .FIFOThreshold = DMA_FIFO_THRESHOLD_FULL,
    .MemBurst = DMA_MBURST_INC4,
    .PeriphBurst = DMA_PBURST_SINGLE
};
#endif

#if defined(STM32F0)

#define NCONTROLLERS            (2)
#define NSTREAMS_PER_CONTROLLER (7)
#define NSTREAM                 (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)

#define DMA_SUB_INSTANCE_AS_UINT8(dma_channel) ((dma_channel) >> ((dma_channel >> 28) * 4))

#define DMA1_ENABLE_MASK (0x007f) // Bits in dma_enable_mask corresponding to DMA1 (7 channels)
#define DMA2_ENABLE_MASK (0x0f80) // Bits in dma_enable_mask corresponding to DMA2 (only 5 channels)

// DMA1 streams
#if MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_1_TX = { DMA1_Channel3, HAL_DMA1_CH3_DAC_CH1, dma_id_2, &dma_init_struct_dac };
const dma_descr_t dma_DAC_2_TX = { DMA1_Channel4, HAL_DMA1_CH4_DAC_CH2, dma_id_3, &dma_init_struct_dac };
#endif
const dma_descr_t dma_SPI_2_TX = { DMA1_Channel5, HAL_DMA1_CH5_SPI2_TX, dma_id_4, &dma_init_struct_spi_i2c};
const dma_descr_t dma_SPI_2_RX = { DMA1_Channel6, HAL_DMA1_CH6_SPI2_RX, dma_id_5, &dma_init_struct_spi_i2c};
const dma_descr_t dma_SPI_1_RX = { DMA2_Channel3, HAL_DMA2_CH3_SPI1_RX, dma_id_9, &dma_init_struct_spi_i2c};
const dma_descr_t dma_SPI_1_TX = { DMA2_Channel4, HAL_DMA2_CH4_SPI1_TX, dma_id_10, &dma_init_struct_spi_i2c};

static const uint8_t dma_irqn[NSTREAM] = {
    DMA1_Ch1_IRQn,
    DMA1_Ch2_3_DMA2_Ch1_2_IRQn,
    DMA1_Ch2_3_DMA2_Ch1_2_IRQn,
    DMA1_Ch4_7_DMA2_Ch3_5_IRQn,
    DMA1_Ch4_7_DMA2_Ch3_5_IRQn,
    DMA1_Ch4_7_DMA2_Ch3_5_IRQn,
    DMA1_Ch4_7_DMA2_Ch3_5_IRQn,

    DMA1_Ch2_3_DMA2_Ch1_2_IRQn,
    DMA1_Ch2_3_DMA2_Ch1_2_IRQn,
    DMA1_Ch4_7_DMA2_Ch3_5_IRQn,
    DMA1_Ch4_7_DMA2_Ch3_5_IRQn,
    DMA1_Ch4_7_DMA2_Ch3_5_IRQn,
    0,
    0,
};

#elif defined(STM32F4) || defined(STM32F7)

#define NCONTROLLERS            (2)
#define NSTREAMS_PER_CONTROLLER (8)
#define NSTREAM                 (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)

#define DMA_SUB_INSTANCE_AS_UINT8(dma_channel) (((dma_channel) & DMA_SxCR_CHSEL) >> 25)

#define DMA1_ENABLE_MASK (0x00ff) // Bits in dma_enable_mask corresponding to DMA1
#define DMA2_ENABLE_MASK (0xff00) // Bits in dma_enable_mask corresponding to DMA2

// These descriptors are ordered by DMAx_Stream number, and within a stream by channel
// number. The duplicate streams are ok as long as they aren't used at the same time.
//
// Currently I2C and SPI are synchronous and they call dma_init/dma_deinit
// around each transfer.

// DMA1 streams
const dma_descr_t dma_I2C_1_RX = { DMA1_Stream0, DMA_CHANNEL_1, dma_id_0,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_3_RX = { DMA1_Stream2, DMA_CHANNEL_0, dma_id_2,   &dma_init_struct_spi_i2c };
#if defined(STM32F7)
const dma_descr_t dma_I2C_4_RX = { DMA1_Stream2, DMA_CHANNEL_2, dma_id_2,   &dma_init_struct_spi_i2c };
#endif
const dma_descr_t dma_I2C_3_RX = { DMA1_Stream2, DMA_CHANNEL_3, dma_id_2,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_RX = { DMA1_Stream2, DMA_CHANNEL_7, dma_id_2,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_RX = { DMA1_Stream3, DMA_CHANNEL_0, dma_id_3,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_TX = { DMA1_Stream4, DMA_CHANNEL_0, dma_id_4,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_3_TX = { DMA1_Stream4, DMA_CHANNEL_3, dma_id_4,   &dma_init_struct_spi_i2c };
#if defined(STM32F7)
const dma_descr_t dma_I2C_4_TX = { DMA1_Stream5, DMA_CHANNEL_2, dma_id_5,   &dma_init_struct_spi_i2c };
#endif
#if defined(MICROPY_HW_ENABLE_DAC) && MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_1_TX = { DMA1_Stream5, DMA_CHANNEL_7, dma_id_5,   &dma_init_struct_dac };
const dma_descr_t dma_DAC_2_TX = { DMA1_Stream6, DMA_CHANNEL_7, dma_id_6,   &dma_init_struct_dac };
#endif
const dma_descr_t dma_SPI_3_TX = { DMA1_Stream7, DMA_CHANNEL_0, dma_id_7,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_TX = { DMA1_Stream7, DMA_CHANNEL_1, dma_id_7,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_TX = { DMA1_Stream7, DMA_CHANNEL_7, dma_id_7,   &dma_init_struct_spi_i2c };
/* not preferred streams
const dma_descr_t dma_SPI_3_RX = { DMA1_Stream0, DMA_CHANNEL_0, dma_id_0,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_TX = { DMA1_Stream6, DMA_CHANNEL_1, dma_id_6,   &dma_init_struct_spi_i2c };
*/

// DMA2 streams
#if defined(STM32F7) && defined(SDMMC2) && ENABLE_SDIO
const dma_descr_t dma_SDMMC_2 = { DMA2_Stream0, DMA_CHANNEL_11, dma_id_8,  &dma_init_struct_sdio };
#endif
#if MICROPY_HW_ENABLE_DCMI
const dma_descr_t dma_DCMI_0 = { DMA2_Stream1, DMA_CHANNEL_1, dma_id_9,  &dma_init_struct_dcmi };
#endif
const dma_descr_t dma_SPI_1_RX = { DMA2_Stream2, DMA_CHANNEL_3, dma_id_10,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_5_RX = { DMA2_Stream3, DMA_CHANNEL_2, dma_id_11,  &dma_init_struct_spi_i2c };
#if ENABLE_SDIO
const dma_descr_t dma_SDIO_0 = { DMA2_Stream3, DMA_CHANNEL_4, dma_id_11,  &dma_init_struct_sdio };
#endif
const dma_descr_t dma_SPI_4_RX = { DMA2_Stream3, DMA_CHANNEL_5, dma_id_11,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_5_TX = { DMA2_Stream4, DMA_CHANNEL_2, dma_id_12,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_4_TX = { DMA2_Stream4, DMA_CHANNEL_5, dma_id_12,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_6_TX = { DMA2_Stream5, DMA_CHANNEL_1, dma_id_13,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_1_TX = { DMA2_Stream5, DMA_CHANNEL_3, dma_id_13,  &dma_init_struct_spi_i2c };
//#if defined(STM32F7) && defined(SDMMC2) && ENABLE_SDIO
//const dma_descr_t dma_SDMMC_2 = { DMA2_Stream5, DMA_CHANNEL_11, dma_id_13,  &dma_init_struct_sdio };
//#endif
const dma_descr_t dma_SPI_6_RX = { DMA2_Stream6, DMA_CHANNEL_1, dma_id_14,  &dma_init_struct_spi_i2c };
//#if ENABLE_SDIO
//const dma_descr_t dma_SDIO_0 = { DMA2_Stream6, DMA_CHANNEL_4, dma_id_14,  &dma_init_struct_sdio };
//#endif
/* not preferred streams
const dma_descr_t dma_SPI_1_TX = { DMA2_Stream3, DMA_CHANNEL_3, dma_id_11,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_1_RX = { DMA2_Stream0, DMA_CHANNEL_3, dma_id_8,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_4_RX = { DMA2_Stream0, DMA_CHANNEL_4, dma_id_8,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_4_TX = { DMA2_Stream1, DMA_CHANNEL_4, dma_id_9,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_5_RX = { DMA2_Stream5, DMA_CHANNEL_7, dma_id_13,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_5_TX = { DMA2_Stream6, DMA_CHANNEL_7, dma_id_14,  &dma_init_struct_spi_i2c };
*/

static const uint8_t dma_irqn[NSTREAM] = {
    DMA1_Stream0_IRQn,
    DMA1_Stream1_IRQn,
    DMA1_Stream2_IRQn,
    DMA1_Stream3_IRQn,
    DMA1_Stream4_IRQn,
    DMA1_Stream5_IRQn,
    DMA1_Stream6_IRQn,
    DMA1_Stream7_IRQn,
    DMA2_Stream0_IRQn,
    DMA2_Stream1_IRQn,
    DMA2_Stream2_IRQn,
    DMA2_Stream3_IRQn,
    DMA2_Stream4_IRQn,
    DMA2_Stream5_IRQn,
    DMA2_Stream6_IRQn,
    DMA2_Stream7_IRQn,
};

#elif defined(STM32L0)

#define NCONTROLLERS            (1)
#define NSTREAMS_PER_CONTROLLER (7)
#define NSTREAM                 (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)

#define DMA_SUB_INSTANCE_AS_UINT8(dma_request) (dma_request)

#define DMA1_ENABLE_MASK (0x007f) // Bits in dma_enable_mask corresponding to DMA1

// These descriptors are ordered by DMAx_Channel number, and within a channel by request
// number. The duplicate streams are ok as long as they aren't used at the same time.

// DMA1 streams
const dma_descr_t dma_SPI_1_RX = { DMA1_Channel2, DMA_REQUEST_1,  dma_id_1,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_3_TX = { DMA1_Channel2, DMA_REQUEST_14, dma_id_1,   &dma_init_struct_spi_i2c };
#if MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_1_TX = { DMA1_Channel2, DMA_REQUEST_9,  dma_id_1,   &dma_init_struct_dac };
#endif
const dma_descr_t dma_SPI_1_TX = { DMA1_Channel3, DMA_REQUEST_1,  dma_id_2,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_3_RX = { DMA1_Channel3, DMA_REQUEST_14, dma_id_2,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_RX = { DMA1_Channel4, DMA_REQUEST_2,  dma_id_3,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_TX = { DMA1_Channel4, DMA_REQUEST_7,  dma_id_3,   &dma_init_struct_spi_i2c };
#if MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_2_TX = { DMA1_Channel4, DMA_REQUEST_15, dma_id_3,   &dma_init_struct_dac };
#endif
const dma_descr_t dma_SPI_2_TX = { DMA1_Channel5, DMA_REQUEST_2,  dma_id_4,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_RX = { DMA1_Channel5, DMA_REQUEST_7,  dma_id_4,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_TX = { DMA1_Channel6, DMA_REQUEST_6,  dma_id_5,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_RX = { DMA1_Channel7, DMA_REQUEST_6,  dma_id_6,   &dma_init_struct_spi_i2c };

static const uint8_t dma_irqn[NSTREAM] = {
    DMA1_Channel1_IRQn,
    DMA1_Channel2_3_IRQn,
    DMA1_Channel2_3_IRQn,
    DMA1_Channel4_5_6_7_IRQn,
    DMA1_Channel4_5_6_7_IRQn,
    DMA1_Channel4_5_6_7_IRQn,
    DMA1_Channel4_5_6_7_IRQn,
};

#elif defined(STM32L4)

#define NCONTROLLERS            (2)
#define NSTREAMS_PER_CONTROLLER (7)
#define NSTREAM                 (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)

#define DMA_SUB_INSTANCE_AS_UINT8(dma_request) (dma_request)

#define DMA1_ENABLE_MASK (0x007f) // Bits in dma_enable_mask corresponding to DMA1
#define DMA2_ENABLE_MASK (0x3f80) // Bits in dma_enable_mask corresponding to DMA2

// These descriptors are ordered by DMAx_Channel number, and within a channel by request
// number. The duplicate streams are ok as long as they aren't used at the same time.

// DMA1 streams
//const dma_descr_t dma_ADC_1_RX = { DMA1_Channel1, DMA_REQUEST_0, dma_id_0,   NULL }; // unused
//const dma_descr_t dma_ADC_2_RX = { DMA1_Channel2, DMA_REQUEST_0, dma_id_1,   NULL }; // unused
const dma_descr_t dma_SPI_1_RX = { DMA1_Channel2, DMA_REQUEST_1, dma_id_1,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_3_TX = { DMA1_Channel2, DMA_REQUEST_3, dma_id_1,   &dma_init_struct_spi_i2c };
//const dma_descr_t dma_ADC_3_RX = { DMA1_Channel3, DMA_REQUEST_0, dma_id_2,   NULL }; // unused
const dma_descr_t dma_SPI_1_TX = { DMA1_Channel3, DMA_REQUEST_1, dma_id_2,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_3_RX = { DMA1_Channel3, DMA_REQUEST_3, dma_id_2,   &dma_init_struct_spi_i2c };
#if MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_1_TX = { DMA1_Channel3, DMA_REQUEST_6, dma_id_2,   &dma_init_struct_dac };
#endif
const dma_descr_t dma_SPI_2_RX = { DMA1_Channel4, DMA_REQUEST_1, dma_id_3,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_TX = { DMA1_Channel4, DMA_REQUEST_3, dma_id_3,   &dma_init_struct_spi_i2c };
#if MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_2_TX = { DMA1_Channel4, DMA_REQUEST_5, dma_id_3,   &dma_init_struct_dac };
#endif
const dma_descr_t dma_SPI_2_TX = { DMA1_Channel5, DMA_REQUEST_1, dma_id_4,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_RX = { DMA1_Channel5, DMA_REQUEST_3, dma_id_4,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_TX = { DMA1_Channel6, DMA_REQUEST_3, dma_id_5,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_RX = { DMA1_Channel7, DMA_REQUEST_3, dma_id_6,   &dma_init_struct_spi_i2c };

// DMA2 streams
const dma_descr_t dma_I2C_4_RX = { DMA2_Channel1, DMA_REQUEST_0, dma_id_0,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_3_RX = { DMA2_Channel1, DMA_REQUEST_3, dma_id_7,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_4_TX = { DMA2_Channel2, DMA_REQUEST_0, dma_id_1,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_3_TX = { DMA2_Channel2, DMA_REQUEST_3, dma_id_8,   &dma_init_struct_spi_i2c };
/* not preferred streams
const dma_descr_t dma_ADC_1_RX = { DMA2_Channel3, DMA_REQUEST_0, dma_id_9,   NULL };
const dma_descr_t dma_SPI_1_RX = { DMA2_Channel3, DMA_REQUEST_4, dma_id_9,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_ADC_2_RX = { DMA2_Channel4, DMA_REQUEST_0, dma_id_10,  NULL };
const dma_descr_t dma_DAC_1_TX = { DMA2_Channel4, DMA_REQUEST_3, dma_id_10,  &dma_init_struct_dac };
const dma_descr_t dma_SPI_1_TX = { DMA2_Channel4, DMA_REQUEST_4, dma_id_10,  &dma_init_struct_spi_i2c };
*/
#if ENABLE_SDIO
const dma_descr_t dma_SDIO_0 = { DMA2_Channel4, DMA_REQUEST_7, dma_id_10,  &dma_init_struct_sdio };
#endif
/* not preferred streams
const dma_descr_t dma_ADC_3_RX = { DMA2_Channel5, DMA_REQUEST_0, dma_id_11,  NULL };
const dma_descr_t dma_DAC_2_TX = { DMA2_Channel5, DMA_REQUEST_3, dma_id_11,  &dma_init_struct_dac };
const dma_descr_t dma_SDIO_0_TX= { DMA2_Channel5, DMA_REQUEST_7, dma_id_11,  &dma_init_struct_sdio };
const dma_descr_t dma_I2C_1_RX = { DMA2_Channel6, DMA_REQUEST_5, dma_id_12,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_TX = { DMA2_Channel7, DMA_REQUEST_5, dma_id_13,  &dma_init_struct_spi_i2c };
*/

static const uint8_t dma_irqn[NSTREAM] = {
    DMA1_Channel1_IRQn,
    DMA1_Channel2_IRQn,
    DMA1_Channel3_IRQn,
    DMA1_Channel4_IRQn,
    DMA1_Channel5_IRQn,
    DMA1_Channel6_IRQn,
    DMA1_Channel7_IRQn,
    DMA2_Channel1_IRQn,
    DMA2_Channel2_IRQn,
    DMA2_Channel3_IRQn,
    DMA2_Channel4_IRQn,
    DMA2_Channel5_IRQn,
    DMA2_Channel6_IRQn,
    DMA2_Channel7_IRQn,
};

#elif defined(STM32H7)

#define NCONTROLLERS            (2)
#define NSTREAMS_PER_CONTROLLER (8)
#define NSTREAM                 (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)

#define DMA_SUB_INSTANCE_AS_UINT8(dma_channel) (dma_channel)

#define DMA1_ENABLE_MASK (0x00ff) // Bits in dma_enable_mask corresponding to DMA1
#define DMA2_ENABLE_MASK (0xff00) // Bits in dma_enable_mask corresponding to DMA2

// These descriptors are ordered by DMAx_Stream number, and within a stream by channel
// number. The duplicate streams are ok as long as they aren't used at the same time.
//
// Currently I2C and SPI are synchronous and they call dma_init/dma_deinit
// around each transfer.

// DMA1 streams
const dma_descr_t dma_I2C_1_RX = { DMA1_Stream0, DMA_REQUEST_I2C1_RX, dma_id_0,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_3_RX = { DMA1_Stream2, DMA_REQUEST_SPI3_RX, dma_id_2,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_4_RX = { DMA1_Stream2, BDMA_REQUEST_I2C4_RX, dma_id_2,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_3_RX = { DMA1_Stream2, DMA_REQUEST_I2C3_RX, dma_id_2,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_RX = { DMA1_Stream2, DMA_REQUEST_I2C2_RX, dma_id_2,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_RX = { DMA1_Stream3, DMA_REQUEST_SPI2_RX, dma_id_3,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_TX = { DMA1_Stream4, DMA_REQUEST_SPI2_TX, dma_id_4,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_3_TX = { DMA1_Stream4, DMA_REQUEST_I2C3_TX, dma_id_4,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_4_TX = { DMA1_Stream5, BDMA_REQUEST_I2C4_TX, dma_id_5,   &dma_init_struct_spi_i2c };
#if defined(MICROPY_HW_ENABLE_DAC) && MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_1_TX = { DMA1_Stream5, DMA_REQUEST_DAC1_CH1, dma_id_5,   &dma_init_struct_dac };
const dma_descr_t dma_DAC_2_TX = { DMA1_Stream6, DMA_REQUEST_DAC1_CH2, dma_id_6,   &dma_init_struct_dac };
#endif
const dma_descr_t dma_SPI_3_TX = { DMA1_Stream7, DMA_REQUEST_SPI3_TX, dma_id_7,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_TX = { DMA1_Stream7, DMA_REQUEST_I2C1_TX, dma_id_7,   &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_TX = { DMA1_Stream7, DMA_REQUEST_I2C2_TX, dma_id_7,   &dma_init_struct_spi_i2c };

// DMA2 streams
#if MICROPY_HW_ENABLE_DCMI
const dma_descr_t dma_DCMI_0 = { DMA2_Stream1, DMA_REQUEST_DCMI, dma_id_9,  &dma_init_struct_dcmi };
#endif
const dma_descr_t dma_SPI_1_RX = { DMA2_Stream2, DMA_REQUEST_SPI1_RX, dma_id_10,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_5_RX = { DMA2_Stream3, DMA_REQUEST_SPI5_RX, dma_id_11,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_4_RX = { DMA2_Stream3, DMA_REQUEST_SPI4_RX, dma_id_11,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_5_TX = { DMA2_Stream4, DMA_REQUEST_SPI5_TX, dma_id_12,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_4_TX = { DMA2_Stream4, DMA_REQUEST_SPI4_TX, dma_id_12,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_6_TX = { DMA2_Stream5, BDMA_REQUEST_SPI6_TX, dma_id_13,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_1_TX = { DMA2_Stream5, DMA_REQUEST_SPI1_TX, dma_id_13,  &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_6_RX = { DMA2_Stream6, BDMA_REQUEST_SPI6_RX, dma_id_14,  &dma_init_struct_spi_i2c };

static const uint8_t dma_irqn[NSTREAM] = {
    DMA1_Stream0_IRQn,
    DMA1_Stream1_IRQn,
    DMA1_Stream2_IRQn,
    DMA1_Stream3_IRQn,
    DMA1_Stream4_IRQn,
    DMA1_Stream5_IRQn,
    DMA1_Stream6_IRQn,
    DMA1_Stream7_IRQn,
    DMA2_Stream0_IRQn,
    DMA2_Stream1_IRQn,
    DMA2_Stream2_IRQn,
    DMA2_Stream3_IRQn,
    DMA2_Stream4_IRQn,
    DMA2_Stream5_IRQn,
    DMA2_Stream6_IRQn,
    DMA2_Stream7_IRQn,
};

#endif

static DMA_HandleTypeDef *dma_handle[NSTREAM] = {NULL};
static uint8_t dma_last_sub_instance[NSTREAM];
static volatile uint32_t dma_enable_mask = 0;
volatile dma_idle_count_t dma_idle;

#define DMA_INVALID_CHANNEL 0xff    // Value stored in dma_last_channel which means invalid

#if defined(STM32F0) || defined(STM32L0)
#define DMA1_IS_CLK_ENABLED()   ((RCC->AHBENR & RCC_AHBENR_DMA1EN) != 0)
#if defined(DMA2)
#define DMA2_IS_CLK_ENABLED()   ((RCC->AHBENR & RCC_AHBENR_DMA2EN) != 0)
#endif
#else
#define DMA1_IS_CLK_ENABLED()   ((RCC->AHB1ENR & RCC_AHB1ENR_DMA1EN) != 0)
#define DMA2_IS_CLK_ENABLED()   ((RCC->AHB1ENR & RCC_AHB1ENR_DMA2EN) != 0)
#endif

#if defined(STM32F0)

void DMA1_Ch1_IRQHandler(void) {
    IRQ_ENTER(DMA1_Ch1_IRQn);
    if (dma_handle[dma_id_0] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_0]);
    }
}

void DMA1_Ch2_3_DMA2_Ch1_2_IRQHandler(void) {
    IRQ_ENTER(DMA1_Ch2_3_DMA2_Ch1_2_IRQn);
    if (dma_handle[dma_id_1] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_1]);
    }
    if (dma_handle[dma_id_2] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_2]);
    }
    if (dma_handle[dma_id_7] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_7]);
    }
    if (dma_handle[dma_id_8] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_8]);
    }
    IRQ_EXIT(DMA1_Ch2_3_DMA2_Ch1_2_IRQn);
}

void DMA1_Ch4_7_DMA2_Ch3_5_IRQHandler(void) {
    IRQ_ENTER(DMA1_Ch4_7_DMA2_Ch3_5_IRQn);
    for (unsigned int i = 0; i < 4; ++i) {
        if (dma_handle[dma_id_3 + i] != NULL) {
            HAL_DMA_IRQHandler(dma_handle[dma_id_3 + i]);
        }
        // When i==3 this will check an invalid handle, but it will always be NULL
        if (dma_handle[dma_id_9 + i] != NULL) {
            HAL_DMA_IRQHandler(dma_handle[dma_id_9 + i]);
        }
    }
    IRQ_EXIT(DMA1_Ch4_7_DMA2_Ch3_5_IRQn);
}

#elif defined(STM32F4) || defined(STM32F7) || defined(STM32H7)

void DMA1_Stream0_IRQHandler(void) {
    IRQ_ENTER(DMA1_Stream0_IRQn);
    if (dma_handle[dma_id_0] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_0]);
    }
    IRQ_EXIT(DMA1_Stream0_IRQn);
}
void DMA1_Stream1_IRQHandler(void) {
    IRQ_ENTER(DMA1_Stream1_IRQn);
    if (dma_handle[dma_id_1] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_1]);
    }
    IRQ_EXIT(DMA1_Stream1_IRQn);
}
void DMA1_Stream2_IRQHandler(void) {
    IRQ_ENTER(DMA1_Stream2_IRQn);
    if (dma_handle[dma_id_2] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_2]);
    }
    IRQ_EXIT(DMA1_Stream2_IRQn);
}
void DMA1_Stream3_IRQHandler(void) {
    IRQ_ENTER(DMA1_Stream3_IRQn);
    if (dma_handle[dma_id_3] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_3]);
    }
    IRQ_EXIT(DMA1_Stream3_IRQn);
}
void DMA1_Stream4_IRQHandler(void) {
    IRQ_ENTER(DMA1_Stream4_IRQn);
    if (dma_handle[dma_id_4] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_4]);
    }
    IRQ_EXIT(DMA1_Stream4_IRQn);
}
void DMA1_Stream5_IRQHandler(void) {
    IRQ_ENTER(DMA1_Stream5_IRQn);
    if (dma_handle[dma_id_5] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_5]);
    }
    IRQ_EXIT(DMA1_Stream5_IRQn);
}
void DMA1_Stream6_IRQHandler(void) {
    IRQ_ENTER(DMA1_Stream6_IRQn);
    if (dma_handle[dma_id_6] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_6]);
    }
    IRQ_EXIT(DMA1_Stream6_IRQn);
}
void DMA1_Stream7_IRQHandler(void) {
    IRQ_ENTER(DMA1_Stream7_IRQn);
    if (dma_handle[dma_id_7] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_7]);
    }
    IRQ_EXIT(DMA1_Stream7_IRQn);
}
void DMA2_Stream0_IRQHandler(void) {
    IRQ_ENTER(DMA2_Stream0_IRQn);
    if (dma_handle[dma_id_8] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_8]);
    }
    IRQ_EXIT(DMA2_Stream0_IRQn);
}
void DMA2_Stream1_IRQHandler(void) {
    IRQ_ENTER(DMA2_Stream1_IRQn);
    if (dma_handle[dma_id_9] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_9]);
    }
    IRQ_EXIT(DMA2_Stream1_IRQn);
}
void DMA2_Stream2_IRQHandler(void) {
    IRQ_ENTER(DMA2_Stream2_IRQn);
    if (dma_handle[dma_id_10] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_10]);
    }
    IRQ_EXIT(DMA2_Stream2_IRQn);
}
void DMA2_Stream3_IRQHandler(void) {
    IRQ_ENTER(DMA2_Stream3_IRQn);
    if (dma_handle[dma_id_11] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_11]);
    }
    IRQ_EXIT(DMA2_Stream3_IRQn);
}
void DMA2_Stream4_IRQHandler(void) {
    IRQ_ENTER(DMA2_Stream4_IRQn);
    if (dma_handle[dma_id_12] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_12]);
    }
    IRQ_EXIT(DMA2_Stream4_IRQn);
}
void DMA2_Stream5_IRQHandler(void) {
    IRQ_ENTER(DMA2_Stream5_IRQn);
    if (dma_handle[dma_id_13] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_13]);
    }
    IRQ_EXIT(DMA2_Stream5_IRQn);
}
void DMA2_Stream6_IRQHandler(void) {
    IRQ_ENTER(DMA2_Stream6_IRQn);
    if (dma_handle[dma_id_14] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_14]);
    }
    IRQ_EXIT(DMA2_Stream6_IRQn);
}
void DMA2_Stream7_IRQHandler(void) {
    IRQ_ENTER(DMA2_Stream7_IRQn);
    if (dma_handle[dma_id_15] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_15]);
    }
    IRQ_EXIT(DMA2_Stream7_IRQn);
}

#elif defined(STM32L0)

void DMA1_Channel1_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel1_IRQn);
    if (dma_handle[dma_id_0] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_0]);
    }
    IRQ_EXIT(DMA1_Channel1_IRQn);
}

void DMA1_Channel2_3_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel2_3_IRQn);
    if (dma_handle[dma_id_1] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_1]);
    }
    if (dma_handle[dma_id_2] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_2]);
    }
    IRQ_EXIT(DMA1_Channel2_3_IRQn);
}

void DMA1_Channel4_5_6_7_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel4_5_6_7_IRQn);
    if (dma_handle[dma_id_3] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_3]);
    }
    if (dma_handle[dma_id_4] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_4]);
    }
    if (dma_handle[dma_id_5] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_5]);
    }
    if (dma_handle[dma_id_6] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_6]);
    }
    IRQ_EXIT(DMA1_Channel4_5_6_7_IRQn);
}

#elif defined(STM32L4)

void DMA1_Channel1_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel1_IRQn);
    if (dma_handle[dma_id_0] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_0]);
    }
    IRQ_EXIT(DMA1_Channel1_IRQn);
}
void DMA1_Channel2_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel2_IRQn);
    if (dma_handle[dma_id_1] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_1]);
    }
    IRQ_EXIT(DMA1_Channel2_IRQn);
}
void DMA1_Channel3_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel3_IRQn);
    if (dma_handle[dma_id_2] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_2]);
    }
    IRQ_EXIT(DMA1_Channel3_IRQn);
}
void DMA1_Channel4_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel4_IRQn);
    if (dma_handle[dma_id_3] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_3]);
    }
    IRQ_EXIT(DMA1_Channel4_IRQn);
}
void DMA1_Channel5_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel5_IRQn);
    if (dma_handle[dma_id_4] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_4]);
    }
    IRQ_EXIT(DMA1_Channel5_IRQn);
}
void DMA1_Channel6_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel6_IRQn);
    if (dma_handle[dma_id_5] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_5]);
    }
    IRQ_EXIT(DMA1_Channel6_IRQn);
}
void DMA1_Channel7_IRQHandler(void) {
    IRQ_ENTER(DMA1_Channel7_IRQn);
    if (dma_handle[dma_id_6] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_6]);
    }
    IRQ_EXIT(DMA1_Channel7_IRQn);
}
void DMA2_Channel1_IRQHandler(void) {
    IRQ_ENTER(DMA2_Channel1_IRQn);
    if (dma_handle[dma_id_7] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_7]);
    }
    IRQ_EXIT(DMA2_Channel1_IRQn);
}
void DMA2_Channel2_IRQHandler(void) {
    IRQ_ENTER(DMA2_Channel2_IRQn);
    if (dma_handle[dma_id_8] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_8]);
    }
    IRQ_EXIT(DMA2_Channel2_IRQn);
}
void DMA2_Channel3_IRQHandler(void) {
    IRQ_ENTER(DMA2_Channel3_IRQn);
    if (dma_handle[dma_id_9] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_9]);
    }
    IRQ_EXIT(DMA2_Channel3_IRQn);
}
void DMA2_Channel4_IRQHandler(void) {
    IRQ_ENTER(DMA2_Channel4_IRQn);
    if (dma_handle[dma_id_10] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_10]);
    }
    IRQ_EXIT(DMA2_Channel4_IRQn);
}
void DMA2_Channel5_IRQHandler(void) {
    IRQ_ENTER(DMA2_Channel5_IRQn);
    if (dma_handle[dma_id_11] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_11]);
    }
    IRQ_EXIT(DMA2_Channel5_IRQn);
}
void DMA2_Channel6_IRQHandler(void) {
    IRQ_ENTER(DMA2_Channel6_IRQn);
    if (dma_handle[dma_id_12] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_12]);
    }
    IRQ_EXIT(DMA2_Channel6_IRQn);
}
void DMA2_Channel7_IRQHandler(void) {
    IRQ_ENTER(DMA2_Channel7_IRQn);
    if (dma_handle[dma_id_13] != NULL) {
        HAL_DMA_IRQHandler(dma_handle[dma_id_13]);
    }
    IRQ_EXIT(DMA2_Channel7_IRQn);
}

#endif

static void dma_idle_handler(uint32_t tick);

// Resets the idle counter for the DMA controller associated with dma_id.
static void dma_tickle(dma_id_t dma_id) {
    dma_idle.counter[(dma_id < NSTREAMS_PER_CONTROLLER) ? 0 : 1] = 1;
    systick_enable_dispatch(SYSTICK_DISPATCH_DMA, dma_idle_handler);
}

static void dma_enable_clock(dma_id_t dma_id) {
    // We don't want dma_tick_handler() to turn off the clock right after we
    // enable it, so we need to mark the channel in use in an atomic fashion.
    mp_uint_t irq_state = MICROPY_BEGIN_ATOMIC_SECTION();
    uint32_t old_enable_mask = dma_enable_mask;
    dma_enable_mask |= (1 << dma_id);
    MICROPY_END_ATOMIC_SECTION(irq_state);

    if (dma_id < NSTREAMS_PER_CONTROLLER) {
        if (((old_enable_mask & DMA1_ENABLE_MASK) == 0) && !DMA1_IS_CLK_ENABLED()) {
            __HAL_RCC_DMA1_CLK_ENABLE();

            // We just turned on the clock. This means that anything stored
            // in dma_last_channel (for DMA1) needs to be invalidated.

            for (int channel = 0; channel < NSTREAMS_PER_CONTROLLER; channel++) {
                dma_last_sub_instance[channel] = DMA_INVALID_CHANNEL;
            }
        }
    }
    #if defined(DMA2)
    else {
        if (((old_enable_mask & DMA2_ENABLE_MASK) == 0) && !DMA2_IS_CLK_ENABLED()) {
            __HAL_RCC_DMA2_CLK_ENABLE();

            // We just turned on the clock. This means that anything stored
            // in dma_last_channel (for DMA2) needs to be invalidated.

            for (int channel = NSTREAMS_PER_CONTROLLER; channel < NSTREAM; channel++) {
                dma_last_sub_instance[channel] = DMA_INVALID_CHANNEL;
            }
        }
    }
    #endif
}

static void dma_disable_clock(dma_id_t dma_id) {
    // We just mark the clock as disabled here, but we don't actually disable it.
    // We wait for the timer to expire first, which means that back-to-back
    // transfers don't have to initialize as much.
    dma_tickle(dma_id);
    dma_enable_mask &= ~(1 << dma_id);
}

void dma_init_handle(DMA_HandleTypeDef *dma, const dma_descr_t *dma_descr, uint32_t dir, void *data) {
    // initialise parameters
    dma->Instance = dma_descr->instance;
    dma->Init = *dma_descr->init;
    dma->Init.Direction = dir;
    #if defined(STM32L0) || defined(STM32L4) || defined(STM32H7)
    dma->Init.Request = dma_descr->sub_instance;
    #else
    #if !defined(STM32F0)
    dma->Init.Channel = dma_descr->sub_instance;
    #endif
    #endif
    // half of __HAL_LINKDMA(data, xxx, *dma)
    // caller must implement other half by doing: data->xxx = dma
    dma->Parent = data;
}

void dma_init(DMA_HandleTypeDef *dma, const dma_descr_t *dma_descr, uint32_t dir, void *data) {
    // Some drivers allocate the DMA_HandleTypeDef from the stack
    // (i.e. dac, i2c, spi) and for those cases we need to clear the
    // structure so we don't get random values from the stack)
    memset(dma, 0, sizeof(*dma));

    if (dma_descr != NULL) {
        dma_id_t dma_id = dma_descr->id;

        dma_init_handle(dma, dma_descr, dir, data);
        // set global pointer for IRQ handler
        dma_handle[dma_id] = dma;

        dma_enable_clock(dma_id);

        #if defined(STM32H7) || defined(STM32L0) || defined(STM32L4)
        // Always reset and configure the H7 and L0/L4 DMA peripheral
        // (dma->State is set to HAL_DMA_STATE_RESET by memset above)
        // TODO: understand how L0/L4 DMA works so this is not needed
        HAL_DMA_DeInit(dma);
        HAL_DMA_Init(dma);
        NVIC_SetPriority(IRQn_NONNEG(dma_irqn[dma_id]), IRQ_PRI_DMA);
        #else
        // if this stream was previously configured for this channel/request and direction then we
        // can skip most of the initialisation
        uint8_t sub_inst = DMA_SUB_INSTANCE_AS_UINT8(dma_descr->sub_instance) | (dir == DMA_PERIPH_TO_MEMORY) << 7;
        if (dma_last_sub_instance[dma_id] != sub_inst) {
            dma_last_sub_instance[dma_id] = sub_inst;

            // reset and configure DMA peripheral
            // (dma->State is set to HAL_DMA_STATE_RESET by memset above)
            HAL_DMA_DeInit(dma);
            HAL_DMA_Init(dma);
            NVIC_SetPriority(IRQn_NONNEG(dma_irqn[dma_id]), IRQ_PRI_DMA);
            #if defined(STM32F0)
            if (dma->Instance < DMA2_Channel1) {
                __HAL_DMA1_REMAP(dma_descr->sub_instance);
            } else {
                __HAL_DMA2_REMAP(dma_descr->sub_instance);
            }
            #endif
        } else {
            // only necessary initialization
            dma->State = HAL_DMA_STATE_READY;
            #if defined(STM32F0)
            // These variables are used to access the relevant 4 bits in ISR and IFCR
            if (dma_id < NSTREAMS_PER_CONTROLLER) {
                dma->DmaBaseAddress = DMA1;
                dma->ChannelIndex = dma_id * 4;
            } else {
                dma->DmaBaseAddress = DMA2;
                dma->ChannelIndex = (dma_id - NSTREAMS_PER_CONTROLLER) * 4;
            }
            #elif defined(STM32F4) || defined(STM32F7)
            // calculate DMA base address and bitshift to be used in IRQ handler
            extern uint32_t DMA_CalcBaseAndBitshift(DMA_HandleTypeDef *hdma);
            DMA_CalcBaseAndBitshift(dma);
            #endif
        }
        #endif

        HAL_NVIC_EnableIRQ(dma_irqn[dma_id]);
    }
}

void dma_deinit(const dma_descr_t *dma_descr) {
    if (dma_descr != NULL) {
        #if !defined(STM32F0)
        HAL_NVIC_DisableIRQ(dma_irqn[dma_descr->id]);
        #endif
        dma_handle[dma_descr->id] = NULL;

        dma_disable_clock(dma_descr->id);
    }
}

void dma_invalidate_channel(const dma_descr_t *dma_descr) {
    if (dma_descr != NULL) {
        dma_id_t dma_id = dma_descr->id;
        // Only compare the sub-instance, not the direction bit (MSB)
        if ((dma_last_sub_instance[dma_id] & 0x7f) == DMA_SUB_INSTANCE_AS_UINT8(dma_descr->sub_instance) ) {
            dma_last_sub_instance[dma_id] = DMA_INVALID_CHANNEL;
        }
    }
}

// Called from the SysTick handler
// We use LSB of tick to select which controller to process
static void dma_idle_handler(uint32_t tick) {
    if (!DMA_IDLE_ENABLED() || !DMA_IDLE_TICK(tick)) {
        return;
    }

    static const uint32_t controller_mask[] = {
        DMA1_ENABLE_MASK,
        #if defined(DMA2)
        DMA2_ENABLE_MASK,
        #endif
    };
    {
        int controller = (tick >> DMA_SYSTICK_LOG2) & 1;
        if (dma_idle.counter[controller] == 0) {
            return;
        }
        if (++dma_idle.counter[controller] > DMA_IDLE_TICK_MAX) {
            if ((dma_enable_mask & controller_mask[controller]) == 0) {
                // Nothing is active and we've reached our idle timeout,
                // Now we'll really disable the clock.
                dma_idle.counter[controller] = 0;
                if (controller == 0) {
                    __HAL_RCC_DMA1_CLK_DISABLE();
                }
                #if defined(DMA2)
                else {
                    __HAL_RCC_DMA2_CLK_DISABLE();
                }
                #endif
            } else {
                // Something is still active, but the counter never got
                // reset, so we'll reset the counter here.
                dma_idle.counter[controller] = 1;
            }
        }
    }
}

#if defined(STM32F0) || defined(STM32L0) || defined(STM32L4)

void dma_nohal_init(const dma_descr_t *descr, uint32_t config) {
    DMA_Channel_TypeDef *dma = descr->instance;

    // Enable the DMA peripheral
    dma_enable_clock(descr->id);

    // Set main configuration register
    dma->CCR =
        descr->init->Priority       // PL
        | descr->init->MemInc       // MINC
        | descr->init->PeriphInc    // PINC
        | config                    // MSIZE | PSIZE | CIRC | DIR
    ;

    // Select channel that the DMA stream uses
    #if defined(STM32F0)
    if (dma < DMA2_Channel1) {
        __HAL_DMA1_REMAP(descr->sub_instance);
    } else {
        __HAL_DMA2_REMAP(descr->sub_instance);
    }
    #else
    DMA_Request_TypeDef *dma_ctrl = (void *)(((uint32_t)dma & ~0xff) + (DMA1_CSELR_BASE - DMA1_BASE)); // DMA1_CSELR or DMA2_CSELR
    uint32_t channel_number = (((uint32_t)dma & 0xff) - 0x08) / 20; // 0 through 6
    uint32_t channel_pos = channel_number * 4;
    dma_ctrl->CSELR = (dma_ctrl->CSELR & ~(0xf << channel_pos)) | (descr->sub_instance << channel_pos);
    #endif
}

void dma_nohal_deinit(const dma_descr_t *descr) {
    DMA_Channel_TypeDef *dma = descr->instance;
    dma->CCR &= ~DMA_CCR_EN;
    dma->CCR = 0;
    dma->CNDTR = 0;
    dma_deinit(descr);
}

void dma_nohal_start(const dma_descr_t *descr, uint32_t src_addr, uint32_t dst_addr, uint16_t len) {
    DMA_Channel_TypeDef *dma = descr->instance;
    dma->CNDTR = len;
    dma->CPAR = dst_addr;
    dma->CMAR = src_addr;
    dma->CCR |= DMA_CCR_EN;
}

#else

void dma_nohal_init(const dma_descr_t *descr, uint32_t config) {
    DMA_Stream_TypeDef *dma = descr->instance;

    // Enable the DMA peripheral
    dma_enable_clock(descr->id);

    // Set main configuration register
    const DMA_InitTypeDef *init = descr->init;
    dma->CR =
        descr->sub_instance         // CHSEL
        | init->MemBurst            // MBURST
        | init->PeriphBurst         // PBURST
        | init->Priority            // PL
        | init->MemInc              // MINC
        | init->PeriphInc           // PINC
        | config                    // MSIZE | PSIZE | CIRC | DIR
    ;

    // Set FIFO control register
    dma->FCR =
        init->FIFOMode              // DMDIS
        | init->FIFOThreshold       // FTH
    ;
}

void dma_nohal_deinit(const dma_descr_t *descr) {
    DMA_Stream_TypeDef *dma = descr->instance;
    dma->CR &= ~DMA_SxCR_EN;
    uint32_t t0 = mp_hal_ticks_ms();
    while ((dma->CR & DMA_SxCR_EN) && mp_hal_ticks_ms() - t0 < 100) {
    }
    dma->CR = 0;
    dma->NDTR = 0;
    dma->FCR = 0x21;
    dma_deinit(descr);
}

void dma_nohal_start(const dma_descr_t *descr, uint32_t src_addr, uint32_t dst_addr, uint16_t len) {
    // Must clear all event flags for this stream before enabling it
    DMA_TypeDef *dma_ctrl;
    uint32_t ch = descr->id;
    if (ch < NSTREAMS_PER_CONTROLLER) {
        dma_ctrl = DMA1;
    } else {
        dma_ctrl = DMA2;
        ch -= NSTREAMS_PER_CONTROLLER;
    }
    __IO uint32_t *ifcr;
    if (ch <= 3) {
        ifcr = &dma_ctrl->LIFCR;
    } else {
        ifcr = &dma_ctrl->HIFCR;
        ch -= 4;
    }
    if (ch <= 1) {
        ch = ch * 6;
    } else {
        ch = 4 + ch * 6;
    }
    *ifcr = 0x3d << ch;

    // Configure and enable stream
    DMA_Stream_TypeDef *dma = descr->instance;
    dma->CR &= ~DMA_SxCR_DBM;
    dma->NDTR = len;
    dma->PAR = dst_addr;
    dma->M0AR = src_addr;
    dma->CR |= DMA_SxCR_EN;
}

#endif

#endif // defined(STM32WB)