aboutsummaryrefslogtreecommitdiff
path: root/ports/stm32/boards/pllvalues.py
blob: 59d660364afca1a7c9961a89de76b5a9f056e3aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
"""
This is an auxiliary script that is used to compute valid PLL values to set
the CPU frequency to a given value.  The algorithm here appears as C code
for the machine.freq() function.
"""

from __future__ import print_function
import re


class MCU:
    def __init__(
        self, range_sysclk, range_m, range_n, range_p, range_q, range_vco_in, range_vco_out
    ):
        self.range_sysclk = range_sysclk
        self.range_m = range_m
        self.range_n = range_n
        self.range_p = range_p
        self.range_q = range_q
        self.range_vco_in = range_vco_in
        self.range_vco_out = range_vco_out


mcu_default = MCU(
    range_sysclk=range(2, 216 + 1, 2),
    range_m=range(2, 63 + 1),
    range_n=range(192, 432 + 1),
    range_p=range(2, 8 + 1, 2),
    range_q=range(2, 15 + 1),
    range_vco_in=range(1, 2 + 1),
    range_vco_out=range(192, 432 + 1),
)

mcu_h7 = MCU(
    range_sysclk=range(2, 400 + 1, 2),  # above 400MHz currently unsupported
    range_m=range(1, 63 + 1),
    range_n=range(4, 512 + 1),
    range_p=range(2, 128 + 1, 2),
    range_q=range(1, 128 + 1),
    range_vco_in=range(1, 16 + 1),
    range_vco_out=range(150, 960 + 1),  # 150-420=medium, 192-960=wide
)


def close_int(x):
    return abs(x - round(x)) < 0.01


# original version that requires N/M to be an integer (for simplicity)
def compute_pll(hse, sys):
    for P in (2, 4, 6, 8):  # allowed values of P
        Q = sys * P / 48
        NbyM = sys * P / hse
        # N/M and Q must be integers
        if not (close_int(NbyM) and close_int(Q)):
            continue
        # VCO_OUT must be between 192MHz and 432MHz
        if not (192 <= hse * NbyM <= 432):
            continue
        # compute M
        M = int(192 // NbyM)
        while hse > 2 * M or NbyM * M < 192:
            M += 1
        # VCO_IN must be between 1MHz and 2MHz (2MHz recommended)
        if not (M <= hse):
            continue
        # compute N
        N = NbyM * M
        # N and Q are restricted
        if not (192 <= N <= 432 and 2 <= Q <= 15):
            continue
        # found valid values
        assert NbyM == N // M
        return (M, N, P, Q)
    # no valid values found
    return None


# improved version that doesn't require N/M to be an integer
def compute_pll2(hse, sys, relax_pll48):
    # Loop over the allowed values of P, looking for a valid PLL configuration
    # that gives the desired "sys" frequency.
    fallback = None
    for P in mcu.range_p:
        # VCO_OUT must be between 192MHz and 432MHz
        if not sys * P in mcu.range_vco_out:
            continue
        NbyM = float(sys * P) / hse  # float for Python 2
        # scan M
        M_min = mcu.range_n[0] // int(round(NbyM))  # starting value
        while mcu.range_vco_in[-1] * M_min < hse:
            M_min += 1
        # VCO_IN must be >=1MHz, but higher is better for stability so start high (low M)
        for M in range(M_min, hse + 1):
            # compute N
            N = NbyM * M
            # N must be an integer
            if not close_int(N):
                continue
            N = round(N)
            # N is restricted
            if N not in mcu.range_n:
                continue
            Q = float(sys * P) / 48  # float for Python 2
            # Q must be an integer in a set range
            if close_int(Q) and round(Q) in mcu.range_q:
                # found valid values
                return (M, N, P, Q)
            # Re-try Q to get at most 48MHz
            Q = (sys * P + 47) // 48
            if Q not in mcu.range_q:
                continue
            if fallback is None:
                # the values don't give 48MHz on PLL48 but are otherwise OK
                fallback = M, N, P, Q
    if relax_pll48:
        # might have found values which don't give 48MHz on PLL48
        return fallback
    else:
        # no valid values found which give 48MHz on PLL48
        return None


def compute_derived(hse, pll):
    hse = float(hse)  # float for Python 2
    M, N, P, Q = pll
    vco_in = hse / M
    vco_out = hse * N / M
    pllck = hse / M * N / P
    pll48ck = hse / M * N / Q
    return (vco_in, vco_out, pllck, pll48ck)


def verify_pll(hse, pll):
    M, N, P, Q = pll
    vco_in, vco_out, pllck, pll48ck = compute_derived(hse, pll)

    # verify ints
    assert close_int(M)
    assert close_int(N)
    assert close_int(P)
    assert close_int(Q)

    # verify range
    assert M in mcu.range_m
    assert N in mcu.range_n
    assert P in mcu.range_p
    assert Q in mcu.range_q
    assert mcu.range_vco_in[0] <= vco_in <= mcu.range_vco_in[-1]
    assert mcu.range_vco_out[0] <= vco_out <= mcu.range_vco_out[-1]


def compute_pll_table(source_clk, relax_pll48):
    valid_plls = []
    for sysclk in mcu.range_sysclk:
        pll = compute_pll2(source_clk, sysclk, relax_pll48)
        if pll is not None:
            verify_pll(source_clk, pll)
            valid_plls.append((sysclk, pll))
    return valid_plls


def generate_c_table(hse, valid_plls):
    valid_plls.sort()
    if (
        mcu.range_sysclk[-1] <= 0xFF
        and mcu.range_m[-1] <= 0x3F
        and mcu.range_p[-1] // 2 - 1 <= 0x3
    ):
        typedef = "uint16_t"
        sys_mask = 0xFF
        m_shift = 10
        m_mask = 0x3F
        p_shift = 8
        p_mask = 0x3
    else:
        typedef = "uint32_t"
        sys_mask = 0xFFFF
        m_shift = 24
        m_mask = 0xFF
        p_shift = 16
        p_mask = 0xFF
    print("#define PLL_FREQ_TABLE_SYS(pll) ((pll) & %d)" % (sys_mask,))
    print("#define PLL_FREQ_TABLE_M(pll) (((pll) >> %d) & %d)" % (m_shift, m_mask))
    print("#define PLL_FREQ_TABLE_P(pll) (((((pll) >> %d) & %d) + 1) * 2)" % (p_shift, p_mask))
    print("typedef %s pll_freq_table_t;" % (typedef,))
    print("// (M, P/2-1, SYS) values for %u MHz source" % hse)
    print("static const pll_freq_table_t pll_freq_table[%u] = {" % (len(valid_plls),))
    for sys, (M, N, P, Q) in valid_plls:
        print("    (%u << %u) | (%u << %u) | %u," % (M, m_shift, P // 2 - 1, p_shift, sys), end="")
        if M >= 2:
            vco_in, vco_out, pllck, pll48ck = compute_derived(hse, (M, N, P, Q))
            print(
                " // M=%u N=%u P=%u Q=%u vco_in=%.2f vco_out=%.2f pll48=%.2f"
                % (M, N, P, Q, vco_in, vco_out, pll48ck),
                end="",
            )
        print()
    print("};")


def print_table(hse, valid_plls):
    print("HSE =", hse, "MHz")
    print("sys :  M      N     P     Q : VCO_IN VCO_OUT   PLLCK PLL48CK")
    out_format = "%3u : %2u  %.1f  %.2f  %.2f :  %5.2f  %6.2f  %6.2f  %6.2f"
    for sys, pll in valid_plls:
        print(out_format % ((sys,) + pll + compute_derived(hse, pll)))
    print("found %u valid configurations" % len(valid_plls))


def search_header_for_hsx_values(filename, vals):
    regex_inc = re.compile(r'#include "(boards/[A-Za-z0-9_./]+)"')
    regex_def = re.compile(r"#define +(HSE_VALUE|HSI_VALUE) +\((\(uint32_t\))?([0-9]+)\)")
    with open(filename) as f:
        for line in f:
            line = line.strip()
            m = regex_inc.match(line)
            if m:
                # Search included file
                search_header_for_hsx_values(m.group(1), vals)
                continue
            m = regex_def.match(line)
            if m:
                # Found HSE_VALUE or HSI_VALUE
                val = int(m.group(3)) // 1000000
                if m.group(1) == "HSE_VALUE":
                    vals[0] = val
                else:
                    vals[1] = val
    return vals


def main():
    global mcu
    global out_format

    # parse input args
    import sys

    argv = sys.argv[1:]

    c_table = False
    mcu_series = "f4"
    hse = None
    hsi = None

    while True:
        if argv[0] == "-c":
            c_table = True
            argv.pop(0)
        elif argv[0] == "-m":
            argv.pop(0)
            mcu_series = argv.pop(0).lower()
        else:
            break

    if len(argv) != 1:
        print("usage: pllvalues.py [-c] [-m <mcu_series>] <hse in MHz>")
        sys.exit(1)

    if argv[0].startswith("file:"):
        # extract HSE_VALUE, and optionally HSI_VALUE, from header file
        hse, hsi = search_header_for_hsx_values(argv[0][5:], [None, None])
        if hse is None:
            raise ValueError("%s does not contain a definition of HSE_VALUE" % argv[0])
        if hsi is not None and hsi > 16:
            # Currently, a HSI value greater than 16MHz is not supported
            hsi = None
    else:
        # HSE given directly as an integer
        hse = int(argv[0])

    # Select MCU parameters
    if mcu_series == "h7":
        mcu = mcu_h7
    else:
        mcu = mcu_default

    # Relax constraight on PLLQ being 48MHz on F7 and H7 MCUs, which have separate PLLs for 48MHz
    relax_pll48 = mcu_series in ("f7", "h7")

    hse_valid_plls = compute_pll_table(hse, relax_pll48)
    if hsi is not None:
        hsi_valid_plls = compute_pll_table(hsi, relax_pll48)

    if c_table:
        print("#if MICROPY_HW_CLK_USE_HSI")
        if hsi is not None:
            hsi_valid_plls.append((hsi, (0, 0, 2, 0)))
            generate_c_table(hsi, hsi_valid_plls)
        print("#else")
        if hsi is not None:
            hse_valid_plls.append((hsi, (0, 0, 2, 0)))
        hse_valid_plls.append((hse, (1, 0, 2, 0)))
        generate_c_table(hse, hse_valid_plls)
        print("#endif")
    else:
        print_table(hse, hse_valid_plls)


if __name__ == "__main__":
    main()