aboutsummaryrefslogtreecommitdiff
path: root/ports/minimal/main.c
blob: adc1dad0c6f95e827e7df077d620ee2469ec3eb9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#include <stdint.h>
#include <stdio.h>
#include <string.h>

#include "py/compile.h"
#include "py/runtime.h"
#include "py/repl.h"
#include "py/gc.h"
#include "py/mperrno.h"
#include "lib/utils/pyexec.h"

#if MICROPY_ENABLE_COMPILER
void do_str(const char *src, mp_parse_input_kind_t input_kind) {
    nlr_buf_t nlr;
    if (nlr_push(&nlr) == 0) {
        mp_lexer_t *lex = mp_lexer_new_from_str_len(MP_QSTR__lt_stdin_gt_, src, strlen(src), 0);
        qstr source_name = lex->source_name;
        mp_parse_tree_t parse_tree = mp_parse(lex, input_kind);
        mp_obj_t module_fun = mp_compile(&parse_tree, source_name, true);
        mp_call_function_0(module_fun);
        nlr_pop();
    } else {
        // uncaught exception
        mp_obj_print_exception(&mp_plat_print, (mp_obj_t)nlr.ret_val);
    }
}
#endif

static char *stack_top;
#if MICROPY_ENABLE_GC
static char heap[2048];
#endif

int main(int argc, char **argv) {
    int stack_dummy;
    stack_top = (char*)&stack_dummy;

    #if MICROPY_ENABLE_GC
    gc_init(heap, heap + sizeof(heap));
    #endif
    mp_init();
    #if MICROPY_ENABLE_COMPILER
    #if MICROPY_REPL_EVENT_DRIVEN
    pyexec_event_repl_init();
    for (;;) {
        int c = mp_hal_stdin_rx_chr();
        if (pyexec_event_repl_process_char(c)) {
            break;
        }
    }
    #else
    pyexec_friendly_repl();
    #endif
    //do_str("print('hello world!', list(x+1 for x in range(10)), end='eol\\n')", MP_PARSE_SINGLE_INPUT);
    //do_str("for i in range(10):\r\n  print(i)", MP_PARSE_FILE_INPUT);
    #else
    pyexec_frozen_module("frozentest.py");
    #endif
    mp_deinit();
    return 0;
}

void gc_collect(void) {
    // WARNING: This gc_collect implementation doesn't try to get root
    // pointers from CPU registers, and thus may function incorrectly.
    void *dummy;
    gc_collect_start();
    gc_collect_root(&dummy, ((mp_uint_t)stack_top - (mp_uint_t)&dummy) / sizeof(mp_uint_t));
    gc_collect_end();
    gc_dump_info();
}

mp_lexer_t *mp_lexer_new_from_file(const char *filename) {
    mp_raise_OSError(MP_ENOENT);
}

mp_import_stat_t mp_import_stat(const char *path) {
    return MP_IMPORT_STAT_NO_EXIST;
}

mp_obj_t mp_builtin_open(size_t n_args, const mp_obj_t *args, mp_map_t *kwargs) {
    return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(mp_builtin_open_obj, 1, mp_builtin_open);

void nlr_jump_fail(void *val) {
    while (1);
}

void NORETURN __fatal_error(const char *msg) {
    while (1);
}

#ifndef NDEBUG
void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) {
    printf("Assertion '%s' failed, at file %s:%d\n", expr, file, line);
    __fatal_error("Assertion failed");
}
#endif

#if MICROPY_MIN_USE_CORTEX_CPU

// this is a minimal IRQ and reset framework for any Cortex-M CPU

extern uint32_t _estack, _sidata, _sdata, _edata, _sbss, _ebss;

void Reset_Handler(void) __attribute__((naked));
void Reset_Handler(void) {
    // set stack pointer
    __asm volatile ("ldr sp, =_estack");
    // copy .data section from flash to RAM
    for (uint32_t *src = &_sidata, *dest = &_sdata; dest < &_edata;) {
        *dest++ = *src++;
    }
    // zero out .bss section
    for (uint32_t *dest = &_sbss; dest < &_ebss;) {
        *dest++ = 0;
    }
    // jump to board initialisation
    void _start(void);
    _start();
}

void Default_Handler(void) {
    for (;;) {
    }
}

const uint32_t isr_vector[] __attribute__((section(".isr_vector"))) = {
    (uint32_t)&_estack,
    (uint32_t)&Reset_Handler,
    (uint32_t)&Default_Handler, // NMI_Handler
    (uint32_t)&Default_Handler, // HardFault_Handler
    (uint32_t)&Default_Handler, // MemManage_Handler
    (uint32_t)&Default_Handler, // BusFault_Handler
    (uint32_t)&Default_Handler, // UsageFault_Handler
    0,
    0,
    0,
    0,
    (uint32_t)&Default_Handler, // SVC_Handler
    (uint32_t)&Default_Handler, // DebugMon_Handler
    0,
    (uint32_t)&Default_Handler, // PendSV_Handler
    (uint32_t)&Default_Handler, // SysTick_Handler
};

void _start(void) {
    // when we get here: stack is initialised, bss is clear, data is copied

    // SCB->CCR: enable 8-byte stack alignment for IRQ handlers, in accord with EABI
    *((volatile uint32_t*)0xe000ed14) |= 1 << 9;

    // initialise the cpu and peripherals
    #if MICROPY_MIN_USE_STM32_MCU
    void stm32_init(void);
    stm32_init();
    #endif

    // now that we have a basic system up and running we can call main
    main(0, NULL);

    // we must not return
    for (;;) {
    }
}

#endif

#if MICROPY_MIN_USE_STM32_MCU

// this is minimal set-up code for an STM32 MCU

typedef struct {
    volatile uint32_t CR;
    volatile uint32_t PLLCFGR;
    volatile uint32_t CFGR;
    volatile uint32_t CIR;
    uint32_t _1[8];
    volatile uint32_t AHB1ENR;
    volatile uint32_t AHB2ENR;
    volatile uint32_t AHB3ENR;
    uint32_t _2;
    volatile uint32_t APB1ENR;
    volatile uint32_t APB2ENR;
} periph_rcc_t;

typedef struct {
    volatile uint32_t MODER;
    volatile uint32_t OTYPER;
    volatile uint32_t OSPEEDR;
    volatile uint32_t PUPDR;
    volatile uint32_t IDR;
    volatile uint32_t ODR;
    volatile uint16_t BSRRL;
    volatile uint16_t BSRRH;
    volatile uint32_t LCKR;
    volatile uint32_t AFR[2];
} periph_gpio_t;

typedef struct {
    volatile uint32_t SR;
    volatile uint32_t DR;
    volatile uint32_t BRR;
    volatile uint32_t CR1;
} periph_uart_t;

#define USART1 ((periph_uart_t*) 0x40011000)
#define GPIOA  ((periph_gpio_t*) 0x40020000)
#define GPIOB  ((periph_gpio_t*) 0x40020400)
#define RCC    ((periph_rcc_t*)  0x40023800)

// simple GPIO interface
#define GPIO_MODE_IN (0)
#define GPIO_MODE_OUT (1)
#define GPIO_MODE_ALT (2)
#define GPIO_PULL_NONE (0)
#define GPIO_PULL_UP (0)
#define GPIO_PULL_DOWN (1)
void gpio_init(periph_gpio_t *gpio, int pin, int mode, int pull, int alt) {
    gpio->MODER = (gpio->MODER & ~(3 << (2 * pin))) | (mode << (2 * pin));
    // OTYPER is left as default push-pull
    // OSPEEDR is left as default low speed
    gpio->PUPDR = (gpio->PUPDR & ~(3 << (2 * pin))) | (pull << (2 * pin));
    gpio->AFR[pin >> 3] = (gpio->AFR[pin >> 3] & ~(15 << (4 * (pin & 7)))) | (alt << (4 * (pin & 7)));
}
#define gpio_get(gpio, pin) ((gpio->IDR >> (pin)) & 1)
#define gpio_set(gpio, pin, value) do { gpio->ODR = (gpio->ODR & ~(1 << (pin))) | (value << pin); } while (0)
#define gpio_low(gpio, pin) do { gpio->BSRRH = (1 << (pin)); } while (0)
#define gpio_high(gpio, pin) do { gpio->BSRRL = (1 << (pin)); } while (0)

void stm32_init(void) {
    // basic MCU config
    RCC->CR |= (uint32_t)0x00000001; // set HSION
    RCC->CFGR = 0x00000000; // reset all
    RCC->CR &= (uint32_t)0xfef6ffff; // reset HSEON, CSSON, PLLON
    RCC->PLLCFGR = 0x24003010; // reset PLLCFGR
    RCC->CR &= (uint32_t)0xfffbffff; // reset HSEBYP
    RCC->CIR = 0x00000000; // disable IRQs

    // leave the clock as-is (internal 16MHz)

    // enable GPIO clocks
    RCC->AHB1ENR |= 0x00000003; // GPIOAEN, GPIOBEN

    // turn on an LED! (on pyboard it's the red one)
    gpio_init(GPIOA, 13, GPIO_MODE_OUT, GPIO_PULL_NONE, 0);
    gpio_high(GPIOA, 13);

    // enable UART1 at 9600 baud (TX=B6, RX=B7)
    gpio_init(GPIOB, 6, GPIO_MODE_ALT, GPIO_PULL_NONE, 7);
    gpio_init(GPIOB, 7, GPIO_MODE_ALT, GPIO_PULL_NONE, 7);
    RCC->APB2ENR |= 0x00000010; // USART1EN
    USART1->BRR = (104 << 4) | 3; // 16MHz/(16*104.1875) = 9598 baud
    USART1->CR1 = 0x0000200c; // USART enable, tx enable, rx enable
}

#endif