aboutsummaryrefslogtreecommitdiff
path: root/ports/esp8266/machine_hspi.c
blob: 07770c8c89dc8dcef43f8b4ebbc6a2b17eaacf6c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/*
 * This file is part of the MicroPython project, http://micropython.org/
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2016 Damien P. George
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <stdio.h>
#include <stdint.h>
#include <string.h>

#include "ets_sys.h"
#include "etshal.h"
#include "ets_alt_task.h"

#include "py/runtime.h"
#include "py/stream.h"
#include "py/mphal.h"
#include "extmod/machine_spi.h"
#include "modmachine.h"
#include "hspi.h"

#if MICROPY_PY_MACHINE_SPI

typedef struct _machine_hspi_obj_t {
    mp_obj_base_t base;
    uint32_t baudrate;
    uint8_t polarity;
    uint8_t phase;
} machine_hspi_obj_t;

STATIC void machine_hspi_transfer(mp_obj_base_t *self_in, size_t len, const uint8_t *src, uint8_t *dest) {
    (void)self_in;

    if (dest == NULL) {
        // fast case when we only need to write data
        size_t chunk_size = 1024;
        size_t count = len / chunk_size;
        size_t i = 0;
        for (size_t j = 0; j < count; ++j) {
            for (size_t k = 0; k < chunk_size; ++k) {
                spi_tx8fast(HSPI, src[i]);
                ++i;
            }
            ets_loop_iter();
        }
        while (i < len) {
            spi_tx8fast(HSPI, src[i]);
            ++i;
        }
        // wait for SPI transaction to complete
        while (spi_busy(HSPI)) {
        }
    } else {
        // we need to read and write data

        // Process data in chunks, let the pending tasks run in between
        size_t chunk_size = 1024; // TODO this should depend on baudrate
        size_t count = len / chunk_size;
        size_t i = 0;
        for (size_t j = 0; j < count; ++j) {
            for (size_t k = 0; k < chunk_size; ++k) {
                dest[i] = spi_transaction(HSPI, 0, 0, 0, 0, 8, src[i], 8, 0);
                ++i;
            }
            ets_loop_iter();
        }
        while (i < len) {
            dest[i] = spi_transaction(HSPI, 0, 0, 0, 0, 8, src[i], 8, 0);
            ++i;
        }
    }
}

/******************************************************************************/
// MicroPython bindings for HSPI

STATIC void machine_hspi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
    machine_hspi_obj_t *self = MP_OBJ_TO_PTR(self_in);
    mp_printf(print, "HSPI(id=1, baudrate=%u, polarity=%u, phase=%u)",
        self->baudrate, self->polarity, self->phase);
}

STATIC void machine_hspi_init(mp_obj_base_t *self_in, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
    machine_hspi_obj_t *self = (machine_hspi_obj_t*)self_in;

    enum { ARG_baudrate, ARG_polarity, ARG_phase };
    static const mp_arg_t allowed_args[] = {
        { MP_QSTR_baudrate, MP_ARG_INT, {.u_int = -1} },
        { MP_QSTR_polarity, MP_ARG_INT, {.u_int = -1} },
        { MP_QSTR_phase, MP_ARG_INT, {.u_int = -1} },
    };
    mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
    mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args),
                     allowed_args, args);

    if (args[ARG_baudrate].u_int != -1) {
        self->baudrate = args[ARG_baudrate].u_int;
    }
    if (args[ARG_polarity].u_int != -1) {
        self->polarity = args[ARG_polarity].u_int;
    }
    if (args[ARG_phase].u_int != -1) {
        self->phase = args[ARG_phase].u_int;
    }
    if (self->baudrate == 80000000L) {
        // Special case for full speed.
        spi_init_gpio(HSPI, SPI_CLK_80MHZ_NODIV);
        spi_clock(HSPI, 0, 0);
    } else if (self->baudrate > 40000000L) {
        mp_raise_ValueError("impossible baudrate");
    } else {
        uint32_t divider = 40000000L / self->baudrate;
        uint16_t prediv = MIN(divider, SPI_CLKDIV_PRE + 1);
        uint16_t cntdiv = (divider / prediv) * 2; // cntdiv has to be even
        if (cntdiv > SPI_CLKCNT_N + 1 || cntdiv == 0 || prediv == 0) {
            mp_raise_ValueError("impossible baudrate");
        }
        self->baudrate = 80000000L / (prediv * cntdiv);
        spi_init_gpio(HSPI, SPI_CLK_USE_DIV);
        spi_clock(HSPI, prediv, cntdiv);
    }
    // TODO: Make the byte order configurable too (discuss param names)
    spi_tx_byte_order(HSPI, SPI_BYTE_ORDER_HIGH_TO_LOW);
    spi_rx_byte_order(HSPI, SPI_BYTE_ORDER_HIGH_TO_LOW);
    CLEAR_PERI_REG_MASK(SPI_USER(HSPI), SPI_FLASH_MODE | SPI_USR_MISO |
                        SPI_USR_ADDR | SPI_USR_COMMAND | SPI_USR_DUMMY);
    // Clear Dual or Quad lines transmission mode
    CLEAR_PERI_REG_MASK(SPI_CTRL(HSPI), SPI_QIO_MODE | SPI_DIO_MODE |
                        SPI_DOUT_MODE | SPI_QOUT_MODE);
    spi_mode(HSPI, self->phase, self->polarity);
}

mp_obj_t machine_hspi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
    // args[0] holds the id of the peripheral
    if (args[0] != MP_OBJ_NEW_SMALL_INT(1)) {
        // FlashROM is on SPI0, so far we don't support its usage
        mp_raise_ValueError(NULL);
    }

    machine_hspi_obj_t *self = m_new_obj(machine_hspi_obj_t);
    self->base.type = &machine_hspi_type;
    // set defaults
    self->baudrate = 80000000L;
    self->polarity = 0;
    self->phase = 0;
    mp_map_t kw_args;
    mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
    machine_hspi_init((mp_obj_base_t*)self, n_args - 1, args + 1, &kw_args);
    return MP_OBJ_FROM_PTR(self);
}

STATIC const mp_machine_spi_p_t machine_hspi_p = {
    .init = machine_hspi_init,
    .transfer = machine_hspi_transfer,
};

const mp_obj_type_t machine_hspi_type = {
    { &mp_type_type },
    .name = MP_QSTR_HSPI,
    .print = machine_hspi_print,
    .make_new = mp_machine_spi_make_new, // delegate to master constructor
    .protocol = &machine_hspi_p,
    .locals_dict = (mp_obj_dict_t*)&mp_machine_spi_locals_dict,
};

#endif // MICROPY_PY_MACHINE_SPI