aboutsummaryrefslogtreecommitdiff
path: root/jerry-libm/exp.c
blob: 68190f4ef53648f8b901506f6b828e8402ed8177 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
/* Copyright 2016 Samsung Electronics Co., Ltd.
 * Copyright 2016 University of Szeged
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * This file is based on work under the following copyright and permission
 * notice:
 *
 *     Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
 *
 *     Permission to use, copy, modify, and distribute this
 *     software is freely granted, provided that this notice
 *     is preserved.
 *
 *     @(#)e_exp.c 1.6 04/04/22
 */

#include "jerry-libm-internal.h"

/* exp(x)
 * Returns the exponential of x.
 *
 * Method:
 *   1. Argument reduction:
 *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
 *      Given x, find r and integer k such that
 *
 *               x = k*ln2 + r,  |r| <= 0.5*ln2.
 *
 *      Here r will be represented as r = hi-lo for better
 *      accuracy.
 *
 *   2. Approximation of exp(r) by a special rational function on
 *      the interval [0,0.34658]:
 *      Write
 *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
 *      We use a special Remes algorithm on [0,0.34658] to generate
 *      a polynomial of degree 5 to approximate R. The maximum error
 *      of this polynomial approximation is bounded by 2**-59. In
 *      other words,
 *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
 *      (where z=r*r, and the values of P1 to P5 are listed below)
 *      and
 *          |                  5          |     -59
 *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
 *          |                             |
 *      The computation of exp(r) thus becomes
 *                             2*r
 *              exp(r) = 1 + -------
 *                            R - r
 *                                 r*R1(r)
 *                     = 1 + r + ----------- (for better accuracy)
 *                                2 - R1(r)
 *      where
 *                               2       4             10
 *              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
 *
 *   3. Scale back to obtain exp(x):
 *      From step 1, we have
 *         exp(x) = 2^k * exp(r)
 *
 * Special cases:
 *      exp(INF) is INF, exp(NaN) is NaN;
 *      exp(-INF) is 0, and
 *      for finite argument, only exp(0)=1 is exact.
 *
 * Accuracy:
 *      according to an error analysis, the error is always less than
 *      1 ulp (unit in the last place).
 *
 * Misc. info:
 *      For IEEE double
 *          if x >  7.09782712893383973096e+02 then exp(x) overflow
 *          if x < -7.45133219101941108420e+02 then exp(x) underflow
 *
 * Constants:
 * The hexadecimal values are the intended ones for the following
 * constants. The decimal values may be used, provided that the
 * compiler will convert from decimal to binary accurately enough
 * to produce the hexadecimal values shown.
 */

static const double halF[2] =
{
  0.5,
  -0.5,
};
static const double ln2HI[2] =
{
  6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
  -6.93147180369123816490e-01, /* 0xbfe62e42, 0xfee00000 */
};
static const double ln2LO[2] =
{
  1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
  -1.90821492927058770002e-10, /* 0xbdea39ef, 0x35793c76 */
};

#define one          1.0
#define huge         1.0e+300
#define twom1000     9.33263618503218878990e-302 /* 2**-1000=0x01700000,0 */
#define o_threshold  7.09782712893383973096e+02 /* 0x40862E42, 0xFEFA39EF */
#define u_threshold -7.45133219101941108420e+02 /* 0xc0874910, 0xD52D3051 */
#define invln2       1.44269504088896338700e+00 /* 0x3ff71547, 0x652b82fe */
#define P1           1.66666666666666019037e-01 /* 0x3FC55555, 0x5555553E */
#define P2          -2.77777777770155933842e-03 /* 0xBF66C16C, 0x16BEBD93 */
#define P3           6.61375632143793436117e-05 /* 0x3F11566A, 0xAF25DE2C */
#define P4          -1.65339022054652515390e-06 /* 0xBEBBBD41, 0xC5D26BF1 */
#define P5           4.13813679705723846039e-08 /* 0x3E663769, 0x72BEA4D0 */

double
exp (double x) /* default IEEE double exp */
{
  double y, hi, lo, c, t;
  int k = 0, xsb;
  unsigned hx;

  hx = __HI (x); /* high word of x */
  xsb = (hx >> 31) & 1; /* sign bit of x */
  hx &= 0x7fffffff; /* high word of |x| */

  /* filter out non-finite argument */
  if (hx >= 0x40862E42) /* if |x| >= 709.78... */
  {
    if (hx >= 0x7ff00000)
    {
      if (((hx & 0xfffff) | __LO (x)) != 0) /* NaN */
      {
        return x + x;
      }
      else /* exp(+-inf) = {inf,0} */
      {
        return (xsb == 0) ? x : 0.0;
      }
    }
    if (x > o_threshold) /* overflow */
    {
      return huge * huge;
    }
    if (x < u_threshold) /* underflow */
    {
      return twom1000 * twom1000;
    }
  }

  /* argument reduction */
  if (hx > 0x3fd62e42) /* if  |x| > 0.5 ln2 */
  {
    if (hx < 0x3FF0A2B2) /* and |x| < 1.5 ln2 */
    {
      hi = x - ln2HI[xsb];
      lo = ln2LO[xsb];
      k = 1 - xsb - xsb;
    }
    else
    {
      k = (int) (invln2 * x + halF[xsb]);
      t = k;
      hi = x - t * ln2HI[0]; /* t * ln2HI is exact here */
      lo = t * ln2LO[0];
    }
    x = hi - lo;
  }
  else if (hx < 0x3e300000) /* when |x| < 2**-28 */
  {
    if (huge + x > one) /* trigger inexact */
    {
      return one + x;
    }
  }
  else
  {
    k = 0;
  }

  /* x is now in primary range */
  t = x * x;
  c = x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
  if (k == 0)
  {
    return one - ((x * c) / (c - 2.0) - x);
  }
  else
  {
    y = one - ((lo - (x * c) / (2.0 - c)) - hi);
  }
  if (k >= -1021)
  {
    __HI (y) += (k << 20); /* add k to y's exponent */
    return y;
  }
  else
  {
    __HI (y) += ((k + 1000) << 20); /* add k to y's exponent */
    return y * twom1000;
  }
} /* exp */