aboutsummaryrefslogtreecommitdiff
path: root/src/share/vm/services/memSnapshot.cpp
blob: 30288e546d47a1227c097f4656a3bc06d613d60f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
/*
 * Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "runtime/mutexLocker.hpp"
#include "utilities/decoder.hpp"
#include "services/memBaseline.hpp"
#include "services/memPtr.hpp"
#include "services/memPtrArray.hpp"
#include "services/memSnapshot.hpp"
#include "services/memTracker.hpp"


// stagging data groups the data of a VM memory range, so we can consolidate
// them into one record during the walk
bool StagingWalker::consolidate_vm_records(VMMemRegionEx* vm_rec) {
  MemPointerRecord* cur = (MemPointerRecord*)_itr.current();
  assert(cur != NULL && cur->is_vm_pointer(), "not a virtual memory pointer");

  jint cur_seq;
  jint next_seq;

  bool trackCallsite = MemTracker::track_callsite();

  if (trackCallsite) {
    vm_rec->init((MemPointerRecordEx*)cur);
    cur_seq = ((SeqMemPointerRecordEx*)cur)->seq();
  } else {
    vm_rec->init((MemPointerRecord*)cur);
    cur_seq = ((SeqMemPointerRecord*)cur)->seq();
  }

  // only can consolidate when we have allocation record,
  // which contains virtual memory range
  if (!cur->is_allocation_record()) {
    _itr.next();
    return true;
  }

  // allocation range
  address base = cur->addr();
  address end = base + cur->size();

  MemPointerRecord* next = (MemPointerRecord*)_itr.peek_next();
  // if the memory range is alive
  bool live_vm_rec = true;
  while (next != NULL && next->is_vm_pointer()) {
    if (next->is_allocation_record()) {
      assert(next->addr() >= base, "sorting order or overlapping");
      break;
    }

    if (trackCallsite) {
      next_seq = ((SeqMemPointerRecordEx*)next)->seq();
    } else {
      next_seq = ((SeqMemPointerRecord*)next)->seq();
    }

    if (next_seq < cur_seq) {
      _itr.next();
      next = (MemPointerRecord*)_itr.peek_next();
      continue;
    }

    if (next->is_deallocation_record()) {
      if (next->addr() == base && next->size() == cur->size()) {
        // the virtual memory range has been released
        _itr.next();
        live_vm_rec = false;
        break;
      } else if (next->addr() < end) { // partial release
        vm_rec->partial_release(next->addr(), next->size());
        _itr.next();
      } else {
        break;
      }
    } else if (next->is_commit_record()) {
      if (next->addr() >= base && next->addr() + next->size() <= end) {
        vm_rec->commit(next->size());
        _itr.next();
      } else {
        assert(next->addr() >= base, "sorting order or overlapping");
        break;
      }
    } else if (next->is_uncommit_record()) {
      if (next->addr() >= base && next->addr() + next->size() <= end) {
        vm_rec->uncommit(next->size());
        _itr.next();
      } else {
        assert(next->addr() >= end, "sorting order or overlapping");
        break;
      }
    } else if (next->is_type_tagging_record()) {
      if (next->addr() >= base && next->addr() < end ) {
        vm_rec->tag(next->flags());
        _itr.next();
      } else {
          break;
      }
    } else {
      assert(false, "unknown record type");
    }
    next = (MemPointerRecord*)_itr.peek_next();
  }
  _itr.next();
  return live_vm_rec;
}

MemPointer* StagingWalker::next() {
  MemPointerRecord* cur_p = (MemPointerRecord*)_itr.current();
  if (cur_p == NULL) {
    _end_of_array = true;
    return NULL;
  }

  MemPointerRecord* next_p;
  if (cur_p->is_vm_pointer()) {
    _is_vm_record = true;
    if (!consolidate_vm_records(&_vm_record)) {
      return next();
    }
  } else { // malloc-ed pointer
    _is_vm_record = false;
    next_p = (MemPointerRecord*)_itr.peek_next();
    if (next_p != NULL && next_p->addr() == cur_p->addr()) {
      assert(cur_p->is_allocation_record(), "sorting order");
      assert(!next_p->is_allocation_record(), "sorting order");
      _itr.next();
      if (cur_p->seq() < next_p->seq()) {
        cur_p = next_p;
      }
    }
    if (MemTracker::track_callsite()) {
      _malloc_record.init((MemPointerRecordEx*)cur_p);
    } else {
      _malloc_record.init((MemPointerRecord*)cur_p);
    }

    _itr.next();
  }
  return current();
}

MemSnapshot::MemSnapshot() {
  if (MemTracker::track_callsite()) {
    _alloc_ptrs = new (std::nothrow) MemPointerArrayImpl<MemPointerRecordEx>();
    _vm_ptrs = new (std::nothrow)MemPointerArrayImpl<VMMemRegionEx>(64, true);
    _staging_area = new (std::nothrow)MemPointerArrayImpl<SeqMemPointerRecordEx>();
  } else {
    _alloc_ptrs = new (std::nothrow) MemPointerArrayImpl<MemPointerRecord>();
    _vm_ptrs = new (std::nothrow)MemPointerArrayImpl<VMMemRegion>(64, true);
    _staging_area = new (std::nothrow)MemPointerArrayImpl<SeqMemPointerRecord>();
  }

  _lock = new (std::nothrow) Mutex(Monitor::max_nonleaf - 1, "memSnapshotLock");
  NOT_PRODUCT(_untracked_count = 0;)
}

MemSnapshot::~MemSnapshot() {
  assert(MemTracker::shutdown_in_progress(), "native memory tracking still on");
  {
    MutexLockerEx locker(_lock);
    if (_staging_area != NULL) {
      delete _staging_area;
      _staging_area = NULL;
    }

    if (_alloc_ptrs != NULL) {
      delete _alloc_ptrs;
      _alloc_ptrs = NULL;
    }

    if (_vm_ptrs != NULL) {
      delete _vm_ptrs;
      _vm_ptrs = NULL;
    }
  }

  if (_lock != NULL) {
    delete _lock;
    _lock = NULL;
  }
}

void MemSnapshot::copy_pointer(MemPointerRecord* dest, const MemPointerRecord* src) {
  assert(dest != NULL && src != NULL, "Just check");
  assert(dest->addr() == src->addr(), "Just check");

  MEMFLAGS flags = dest->flags();

  if (MemTracker::track_callsite()) {
    *(MemPointerRecordEx*)dest = *(MemPointerRecordEx*)src;
  } else {
    *dest = *src;
  }
}


// merge a per-thread memory recorder to the staging area
bool MemSnapshot::merge(MemRecorder* rec) {
  assert(rec != NULL && !rec->out_of_memory(), "Just check");

  // out of memory
  if (_staging_area == NULL || _staging_area->out_of_memory()) {
    return false;
  }

  SequencedRecordIterator itr(rec->pointer_itr());

  MutexLockerEx lock(_lock, true);
  MemPointerIterator staging_itr(_staging_area);
  MemPointerRecord *p1, *p2;
  p1 = (MemPointerRecord*) itr.current();
  while (p1 != NULL) {
    p2 = (MemPointerRecord*)staging_itr.locate(p1->addr());
    // we have not seen this memory block, so just add to staging area
    if (p2 == NULL) {
      if (!staging_itr.insert(p1)) {
        return false;
      }
    } else if (p1->addr() == p2->addr()) {
      MemPointerRecord* staging_next = (MemPointerRecord*)staging_itr.peek_next();
      // a memory block can have many tagging records, find right one to replace or
      // right position to insert
      while (staging_next != NULL && staging_next->addr() == p1->addr()) {
        if ((staging_next->flags() & MemPointerRecord::tag_masks) <=
          (p1->flags() & MemPointerRecord::tag_masks)) {
          p2 = (MemPointerRecord*)staging_itr.next();
          staging_next = (MemPointerRecord*)staging_itr.peek_next();
        } else {
          break;
        }
      }
      int df = (p1->flags() & MemPointerRecord::tag_masks) -
        (p2->flags() & MemPointerRecord::tag_masks);
      if (df == 0) {
        assert(p1->seq() > 0, "not sequenced");
        assert(p2->seq() > 0, "not sequenced");
        if (p1->seq() > p2->seq()) {
          copy_pointer(p2, p1);
        }
      } else if (df < 0) {
        if (!staging_itr.insert(p1)) {
          return false;
        }
      } else {
        if (!staging_itr.insert_after(p1)) {
          return false;
        }
      }
    } else if (p1->addr() < p2->addr()) {
      if (!staging_itr.insert(p1)) {
        return false;
      }
    } else {
      if (!staging_itr.insert_after(p1)) {
        return false;
      }
    }
    p1 = (MemPointerRecord*)itr.next();
  }
  NOT_PRODUCT(void check_staging_data();)
  return true;
}



// promote data to next generation
void MemSnapshot::promote() {
  assert(_alloc_ptrs != NULL && _staging_area != NULL && _vm_ptrs != NULL,
    "Just check");
  MutexLockerEx lock(_lock, true);
  StagingWalker walker(_staging_area);
  MemPointerIterator malloc_itr(_alloc_ptrs);
  VMMemPointerIterator vm_itr(_vm_ptrs);
  MemPointer* cur = walker.current();
  while (cur != NULL) {
    if (walker.is_vm_record()) {
      VMMemRegion* cur_vm = (VMMemRegion*)cur;
      VMMemRegion* p = (VMMemRegion*)vm_itr.locate(cur_vm->addr());
      cur_vm = (VMMemRegion*)cur;
      if (p != NULL && (p->contains(cur_vm) || p->base() == cur_vm->base())) {
        assert(p->is_reserve_record() ||
          p->is_commit_record(), "wrong vm record type");
        // resize existing reserved range
        if (cur_vm->is_reserve_record() && p->base() == cur_vm->base()) {
          assert(cur_vm->size() >= p->committed_size(), "incorrect resizing");
          p->set_reserved_size(cur_vm->size());
        } else if (cur_vm->is_commit_record()) {
          p->commit(cur_vm->committed_size());
        } else if (cur_vm->is_uncommit_record()) {
          p->uncommit(cur_vm->committed_size());
          if (!p->is_reserve_record() && p->committed_size() == 0) {
            vm_itr.remove();
          }
        } else if (cur_vm->is_type_tagging_record()) {
          p->tag(cur_vm->flags());
        } else if (cur_vm->is_release_record()) {
          if (cur_vm->base() == p->base() && cur_vm->size() == p->size()) {
            // release the whole range
            vm_itr.remove();
          } else {
            // partial release
            p->partial_release(cur_vm->base(), cur_vm->size());
          }
        } else {
          // we do see multiple reserver on the same vm range
          assert((cur_vm->is_commit_record() || cur_vm->is_reserve_record()) &&
             cur_vm->base() == p->base() && cur_vm->size() == p->size(), "bad record");
          p->tag(cur_vm->flags());
        }
      } else {
        if(cur_vm->is_reserve_record()) {
          if (p == NULL || p->base() > cur_vm->base()) {
            vm_itr.insert(cur_vm);
          } else {
            vm_itr.insert_after(cur_vm);
          }
        } else {
#ifdef ASSERT
          // In theory, we should assert without conditions. However, in case of native
          // thread stack, NMT explicitly releases the thread stack in Thread's destructor,
          // due to platform dependent behaviors. On some platforms, we see uncommit/release
          // native thread stack, but some, we don't.
          if (!cur_vm->is_uncommit_record() && !cur_vm->is_deallocation_record()) {
            ShouldNotReachHere();
          }
#endif
        }
      }
    } else {
      MemPointerRecord* cur_p = (MemPointerRecord*)cur;
      MemPointerRecord* p = (MemPointerRecord*)malloc_itr.locate(cur->addr());
      if (p != NULL && cur_p->addr() == p->addr()) {
        assert(p->is_allocation_record() || p->is_arena_size_record(), "untracked");
        if (cur_p->is_allocation_record() || cur_p->is_arena_size_record()) {
          copy_pointer(p, cur_p);
        } else {   // deallocation record
          assert(cur_p->is_deallocation_record(), "wrong record type");

          // we are removing an arena record, we also need to remove its 'size'
          // record behind it
          if (p->is_arena_record()) {
            MemPointerRecord* next_p = (MemPointerRecord*)malloc_itr.peek_next();
            if (next_p->is_arena_size_record()) {
              assert(next_p->is_size_record_of_arena(p), "arena records dont match");
              malloc_itr.remove();
            }
          }
          malloc_itr.remove();
        }
      } else {
        if (cur_p->is_arena_size_record()) {
          MemPointerRecord* prev_p = (MemPointerRecord*)malloc_itr.peek_prev();
          if (prev_p != NULL &&
             (!prev_p->is_arena_record() || !cur_p->is_size_record_of_arena(prev_p))) {
            // arena already deallocated
            cur_p = NULL;
          }
        }
        if (cur_p != NULL) {
          if (cur_p->is_allocation_record() || cur_p->is_arena_size_record()) {
            if (p != NULL && cur_p->addr() > p->addr()) {
              malloc_itr.insert_after(cur);
            } else {
              malloc_itr.insert(cur);
            }
          }
#ifndef PRODUCT
          else if (!has_allocation_record(cur_p->addr())){
            // NMT can not track some startup memory, which allocated before NMT
            // is enabled
            _untracked_count ++;
          }
#endif
        }
      }
    }

    cur = walker.next();
  }
  NOT_PRODUCT(check_malloc_pointers();)
  _staging_area->shrink();
  _staging_area->clear();
}


#ifdef ASSERT
void MemSnapshot::print_snapshot_stats(outputStream* st) {
  st->print_cr("Snapshot:");
  st->print_cr("\tMalloced: %d/%d [%5.2f%%]  %dKB", _alloc_ptrs->length(), _alloc_ptrs->capacity(),
    (100.0 * (float)_alloc_ptrs->length()) / (float)_alloc_ptrs->capacity(), _alloc_ptrs->instance_size()/K);

  st->print_cr("\tVM: %d/%d [%5.2f%%] %dKB", _vm_ptrs->length(), _vm_ptrs->capacity(),
    (100.0 * (float)_vm_ptrs->length()) / (float)_vm_ptrs->capacity(), _vm_ptrs->instance_size()/K);

  st->print_cr("\tStaging:     %d/%d [%5.2f%%] %dKB", _staging_area->length(), _staging_area->capacity(),
    (100.0 * (float)_staging_area->length()) / (float)_staging_area->capacity(), _staging_area->instance_size()/K);

  st->print_cr("\tUntracked allocation: %d", _untracked_count);
}

void MemSnapshot::check_malloc_pointers() {
  MemPointerArrayIteratorImpl mItr(_alloc_ptrs);
  MemPointerRecord* p = (MemPointerRecord*)mItr.current();
  MemPointerRecord* prev = NULL;
  while (p != NULL) {
    if (prev != NULL) {
      assert(p->addr() >= prev->addr(), "sorting order");
    }
    prev = p;
    p = (MemPointerRecord*)mItr.next();
  }
}

void MemSnapshot::check_staging_data() {
  MemPointerArrayIteratorImpl itr(_staging_area);
  MemPointerRecord* cur = (MemPointerRecord*)itr.current();
  MemPointerRecord* next = (MemPointerRecord*)itr.next();
  while (next != NULL) {
    assert((next->addr() > cur->addr()) ||
      ((next->flags() & MemPointerRecord::tag_masks) >
       (cur->flags() & MemPointerRecord::tag_masks)),
       "sorting order");
    cur = next;
    next = (MemPointerRecord*)itr.next();
  }
}

bool MemSnapshot::has_allocation_record(address addr) {
  MemPointerArrayIteratorImpl itr(_staging_area);
  MemPointerRecord* cur = (MemPointerRecord*)itr.current();
  while (cur != NULL) {
    if (cur->addr() == addr && cur->is_allocation_record()) {
      return true;
    }
    cur = (MemPointerRecord*)itr.next();
  }
  return false;
}

#endif