aboutsummaryrefslogtreecommitdiff
path: root/src/share/vm/gc_interface/collectedHeap.cpp
blob: 4c6c026e74bb3e4bc9578c56b6d8f4597240ea7f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
/*
 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "classfile/systemDictionary.hpp"
#include "gc_implementation/shared/gcHeapSummary.hpp"
#include "gc_implementation/shared/gcTrace.hpp"
#include "gc_implementation/shared/gcTraceTime.hpp"
#include "gc_implementation/shared/gcWhen.hpp"
#include "gc_implementation/shared/vmGCOperations.hpp"
#include "gc_interface/allocTracer.hpp"
#include "gc_interface/collectedHeap.hpp"
#include "gc_interface/collectedHeap.inline.hpp"
#include "memory/metaspace.hpp"
#include "oops/oop.inline.hpp"
#include "oops/instanceMirrorKlass.hpp"
#include "runtime/init.hpp"
#include "runtime/thread.inline.hpp"
#include "services/heapDumper.hpp"


#ifdef ASSERT
int CollectedHeap::_fire_out_of_memory_count = 0;
#endif

size_t CollectedHeap::_filler_array_max_size = 0;

template <>
void EventLogBase<GCMessage>::print(outputStream* st, GCMessage& m) {
  st->print_cr("GC heap %s", m.is_before ? "before" : "after");
  st->print_raw(m);
}

void GCHeapLog::log_heap(bool before) {
  if (!should_log()) {
    return;
  }

  double timestamp = fetch_timestamp();
  MutexLockerEx ml(&_mutex, Mutex::_no_safepoint_check_flag);
  int index = compute_log_index();
  _records[index].thread = NULL; // Its the GC thread so it's not that interesting.
  _records[index].timestamp = timestamp;
  _records[index].data.is_before = before;
  stringStream st(_records[index].data.buffer(), _records[index].data.size());
  if (before) {
    Universe::print_heap_before_gc(&st, true);
  } else {
    Universe::print_heap_after_gc(&st, true);
  }
}

VirtualSpaceSummary CollectedHeap::create_heap_space_summary() {
  size_t capacity_in_words = capacity() / HeapWordSize;

  return VirtualSpaceSummary(
    reserved_region().start(), reserved_region().start() + capacity_in_words, reserved_region().end());
}

GCHeapSummary CollectedHeap::create_heap_summary() {
  VirtualSpaceSummary heap_space = create_heap_space_summary();
  return GCHeapSummary(heap_space, used());
}

MetaspaceSummary CollectedHeap::create_metaspace_summary() {
  const MetaspaceSizes meta_space(
      0, /*MetaspaceAux::capacity_in_bytes(),*/
      0, /*MetaspaceAux::used_in_bytes(),*/
      MetaspaceAux::reserved_in_bytes());
  const MetaspaceSizes data_space(
      0, /*MetaspaceAux::capacity_in_bytes(Metaspace::NonClassType),*/
      0, /*MetaspaceAux::used_in_bytes(Metaspace::NonClassType),*/
      MetaspaceAux::reserved_in_bytes(Metaspace::NonClassType));
  const MetaspaceSizes class_space(
      0, /*MetaspaceAux::capacity_in_bytes(Metaspace::ClassType),*/
      0, /*MetaspaceAux::used_in_bytes(Metaspace::ClassType),*/
      MetaspaceAux::reserved_in_bytes(Metaspace::ClassType));

  return MetaspaceSummary(meta_space, data_space, class_space);
}

void CollectedHeap::print_heap_before_gc() {
  if (PrintHeapAtGC) {
    Universe::print_heap_before_gc();
  }
  if (_gc_heap_log != NULL) {
    _gc_heap_log->log_heap_before();
  }
}

void CollectedHeap::print_heap_after_gc() {
  if (PrintHeapAtGC) {
    Universe::print_heap_after_gc();
  }
  if (_gc_heap_log != NULL) {
    _gc_heap_log->log_heap_after();
  }
}

void CollectedHeap::trace_heap(GCWhen::Type when, GCTracer* gc_tracer) {
  const GCHeapSummary& heap_summary = create_heap_summary();
  const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
  gc_tracer->report_gc_heap_summary(when, heap_summary, metaspace_summary);
}

void CollectedHeap::trace_heap_before_gc(GCTracer* gc_tracer) {
  trace_heap(GCWhen::BeforeGC, gc_tracer);
}

void CollectedHeap::trace_heap_after_gc(GCTracer* gc_tracer) {
  trace_heap(GCWhen::AfterGC, gc_tracer);
}

// Memory state functions.


CollectedHeap::CollectedHeap() : _n_par_threads(0)
{
  const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
  const size_t elements_per_word = HeapWordSize / sizeof(jint);
  _filler_array_max_size = align_object_size(filler_array_hdr_size() +
                                             max_len / elements_per_word);

  _barrier_set = NULL;
  _is_gc_active = false;
  _total_collections = _total_full_collections = 0;
  _gc_cause = _gc_lastcause = GCCause::_no_gc;
  NOT_PRODUCT(_promotion_failure_alot_count = 0;)
  NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)

  if (UsePerfData) {
    EXCEPTION_MARK;

    // create the gc cause jvmstat counters
    _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
                             80, GCCause::to_string(_gc_cause), CHECK);

    _perf_gc_lastcause =
                PerfDataManager::create_string_variable(SUN_GC, "lastCause",
                             80, GCCause::to_string(_gc_lastcause), CHECK);
  }
  _defer_initial_card_mark = false; // strengthened by subclass in pre_initialize() below.
  // Create the ring log
  if (LogEvents) {
    _gc_heap_log = new GCHeapLog();
  } else {
    _gc_heap_log = NULL;
  }
}

// This interface assumes that it's being called by the
// vm thread. It collects the heap assuming that the
// heap lock is already held and that we are executing in
// the context of the vm thread.
void CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
  assert(Thread::current()->is_VM_thread(), "Precondition#1");
  assert(Heap_lock->is_locked(), "Precondition#2");
  GCCauseSetter gcs(this, cause);
  switch (cause) {
    case GCCause::_heap_inspection:
    case GCCause::_heap_dump:
    case GCCause::_metadata_GC_threshold : {
      HandleMark hm;
      do_full_collection(false);        // don't clear all soft refs
      break;
    }
    case GCCause::_last_ditch_collection: {
      HandleMark hm;
      do_full_collection(true);         // do clear all soft refs
      break;
    }
    default:
      ShouldNotReachHere(); // Unexpected use of this function
  }
}
MetaWord* CollectedHeap::satisfy_failed_metadata_allocation(
                                              ClassLoaderData* loader_data,
                                              size_t size, Metaspace::MetadataType mdtype) {
  return collector_policy()->satisfy_failed_metadata_allocation(loader_data, size, mdtype);
}


void CollectedHeap::pre_initialize() {
  // Used for ReduceInitialCardMarks (when COMPILER2 is used);
  // otherwise remains unused.
#ifdef COMPILER2
  _defer_initial_card_mark =    ReduceInitialCardMarks && can_elide_tlab_store_barriers()
                             && (DeferInitialCardMark || card_mark_must_follow_store());
#else
  assert(_defer_initial_card_mark == false, "Who would set it?");
#endif
}

#ifndef PRODUCT
void CollectedHeap::check_for_bad_heap_word_value(HeapWord* addr, size_t size) {
  if (CheckMemoryInitialization && ZapUnusedHeapArea) {
    for (size_t slot = 0; slot < size; slot += 1) {
      assert((*(intptr_t*) (addr + slot)) != ((intptr_t) badHeapWordVal),
             "Found badHeapWordValue in post-allocation check");
    }
  }
}

void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) {
  if (CheckMemoryInitialization && ZapUnusedHeapArea) {
    for (size_t slot = 0; slot < size; slot += 1) {
      assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal),
             "Found non badHeapWordValue in pre-allocation check");
    }
  }
}
#endif // PRODUCT

#ifdef ASSERT
void CollectedHeap::check_for_valid_allocation_state() {
  Thread *thread = Thread::current();
  // How to choose between a pending exception and a potential
  // OutOfMemoryError?  Don't allow pending exceptions.
  // This is a VM policy failure, so how do we exhaustively test it?
  assert(!thread->has_pending_exception(),
         "shouldn't be allocating with pending exception");
  if (StrictSafepointChecks) {
    assert(thread->allow_allocation(),
           "Allocation done by thread for which allocation is blocked "
           "by No_Allocation_Verifier!");
    // Allocation of an oop can always invoke a safepoint,
    // hence, the true argument
    thread->check_for_valid_safepoint_state(true);
  }
}
#endif

HeapWord* CollectedHeap::allocate_from_tlab_slow(KlassHandle klass, Thread* thread, size_t size) {

  // Retain tlab and allocate object in shared space if
  // the amount free in the tlab is too large to discard.
  if (thread->tlab().free() > thread->tlab().refill_waste_limit()) {
    thread->tlab().record_slow_allocation(size);
    return NULL;
  }

  // Discard tlab and allocate a new one.
  // To minimize fragmentation, the last TLAB may be smaller than the rest.
  size_t new_tlab_size = thread->tlab().compute_size(size);

  thread->tlab().clear_before_allocation();

  if (new_tlab_size == 0) {
    return NULL;
  }

  // Allocate a new TLAB...
  HeapWord* obj = Universe::heap()->allocate_new_tlab(new_tlab_size);
  if (obj == NULL) {
    return NULL;
  }

  AllocTracer::send_allocation_in_new_tlab_event(klass, new_tlab_size * HeapWordSize, size * HeapWordSize);

  if (ZeroTLAB) {
    // ..and clear it.
    Copy::zero_to_words(obj, new_tlab_size);
  } else {
    // ...and zap just allocated object.
#ifdef ASSERT
    // Skip mangling the space corresponding to the object header to
    // ensure that the returned space is not considered parsable by
    // any concurrent GC thread.
    size_t hdr_size = oopDesc::header_size();
    Copy::fill_to_words(obj + hdr_size, new_tlab_size - hdr_size, badHeapWordVal);
#endif // ASSERT
  }
  thread->tlab().fill(obj, obj + size, new_tlab_size);
  return obj;
}

void CollectedHeap::flush_deferred_store_barrier(JavaThread* thread) {
  MemRegion deferred = thread->deferred_card_mark();
  if (!deferred.is_empty()) {
    assert(_defer_initial_card_mark, "Otherwise should be empty");
    {
      // Verify that the storage points to a parsable object in heap
      DEBUG_ONLY(oop old_obj = oop(deferred.start());)
      assert(is_in(old_obj), "Not in allocated heap");
      assert(!can_elide_initializing_store_barrier(old_obj),
             "Else should have been filtered in new_store_pre_barrier()");
      assert(old_obj->is_oop(true), "Not an oop");
      assert(deferred.word_size() == (size_t)(old_obj->size()),
             "Mismatch: multiple objects?");
    }
    BarrierSet* bs = barrier_set();
    assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
    bs->write_region(deferred);
    // "Clear" the deferred_card_mark field
    thread->set_deferred_card_mark(MemRegion());
  }
  assert(thread->deferred_card_mark().is_empty(), "invariant");
}

// Helper for ReduceInitialCardMarks. For performance,
// compiled code may elide card-marks for initializing stores
// to a newly allocated object along the fast-path. We
// compensate for such elided card-marks as follows:
// (a) Generational, non-concurrent collectors, such as
//     GenCollectedHeap(ParNew,DefNew,Tenured) and
//     ParallelScavengeHeap(ParallelGC, ParallelOldGC)
//     need the card-mark if and only if the region is
//     in the old gen, and do not care if the card-mark
//     succeeds or precedes the initializing stores themselves,
//     so long as the card-mark is completed before the next
//     scavenge. For all these cases, we can do a card mark
//     at the point at which we do a slow path allocation
//     in the old gen, i.e. in this call.
// (b) GenCollectedHeap(ConcurrentMarkSweepGeneration) requires
//     in addition that the card-mark for an old gen allocated
//     object strictly follow any associated initializing stores.
//     In these cases, the memRegion remembered below is
//     used to card-mark the entire region either just before the next
//     slow-path allocation by this thread or just before the next scavenge or
//     CMS-associated safepoint, whichever of these events happens first.
//     (The implicit assumption is that the object has been fully
//     initialized by this point, a fact that we assert when doing the
//     card-mark.)
// (c) G1CollectedHeap(G1) uses two kinds of write barriers. When a
//     G1 concurrent marking is in progress an SATB (pre-write-)barrier is
//     is used to remember the pre-value of any store. Initializing
//     stores will not need this barrier, so we need not worry about
//     compensating for the missing pre-barrier here. Turning now
//     to the post-barrier, we note that G1 needs a RS update barrier
//     which simply enqueues a (sequence of) dirty cards which may
//     optionally be refined by the concurrent update threads. Note
//     that this barrier need only be applied to a non-young write,
//     but, like in CMS, because of the presence of concurrent refinement
//     (much like CMS' precleaning), must strictly follow the oop-store.
//     Thus, using the same protocol for maintaining the intended
//     invariants turns out, serendepitously, to be the same for both
//     G1 and CMS.
//
// For any future collector, this code should be reexamined with
// that specific collector in mind, and the documentation above suitably
// extended and updated.
oop CollectedHeap::new_store_pre_barrier(JavaThread* thread, oop new_obj) {
  // If a previous card-mark was deferred, flush it now.
  flush_deferred_store_barrier(thread);
  if (can_elide_initializing_store_barrier(new_obj)) {
    // The deferred_card_mark region should be empty
    // following the flush above.
    assert(thread->deferred_card_mark().is_empty(), "Error");
  } else {
    MemRegion mr((HeapWord*)new_obj, new_obj->size());
    assert(!mr.is_empty(), "Error");
    if (_defer_initial_card_mark) {
      // Defer the card mark
      thread->set_deferred_card_mark(mr);
    } else {
      // Do the card mark
      BarrierSet* bs = barrier_set();
      assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
      bs->write_region(mr);
    }
  }
  return new_obj;
}

size_t CollectedHeap::filler_array_hdr_size() {
  return size_t(align_object_offset(arrayOopDesc::header_size(T_INT))); // align to Long
}

size_t CollectedHeap::filler_array_min_size() {
  return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
}

#ifdef ASSERT
void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
{
  assert(words >= min_fill_size(), "too small to fill");
  assert(words % MinObjAlignment == 0, "unaligned size");
  assert(Universe::heap()->is_in_reserved(start), "not in heap");
  assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap");
}

void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
{
  if (ZapFillerObjects && zap) {
    Copy::fill_to_words(start + filler_array_hdr_size(),
                        words - filler_array_hdr_size(), 0XDEAFBABE);
  }
}
#endif // ASSERT

void
CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
{
  assert(words >= filler_array_min_size(), "too small for an array");
  assert(words <= filler_array_max_size(), "too big for a single object");

  const size_t payload_size = words - filler_array_hdr_size();
  const size_t len = payload_size * HeapWordSize / sizeof(jint);
  assert((int)len >= 0, err_msg("size too large " SIZE_FORMAT " becomes %d", words, (int)len));

  // Set the length first for concurrent GC.
  ((arrayOop)start)->set_length((int)len);
  post_allocation_setup_common(Universe::intArrayKlassObj(), start);
  DEBUG_ONLY(zap_filler_array(start, words, zap);)
}

void
CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
{
  assert(words <= filler_array_max_size(), "too big for a single object");

  if (words >= filler_array_min_size()) {
    fill_with_array(start, words, zap);
  } else if (words > 0) {
    assert(words == min_fill_size(), "unaligned size");
    post_allocation_setup_common(SystemDictionary::Object_klass(), start);
  }
}

void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
{
  DEBUG_ONLY(fill_args_check(start, words);)
  HandleMark hm;  // Free handles before leaving.
  fill_with_object_impl(start, words, zap);
}

void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
{
  DEBUG_ONLY(fill_args_check(start, words);)
  HandleMark hm;  // Free handles before leaving.

#ifdef _LP64
  // A single array can fill ~8G, so multiple objects are needed only in 64-bit.
  // First fill with arrays, ensuring that any remaining space is big enough to
  // fill.  The remainder is filled with a single object.
  const size_t min = min_fill_size();
  const size_t max = filler_array_max_size();
  while (words > max) {
    const size_t cur = words - max >= min ? max : max - min;
    fill_with_array(start, cur, zap);
    start += cur;
    words -= cur;
  }
#endif

  fill_with_object_impl(start, words, zap);
}

HeapWord* CollectedHeap::allocate_new_tlab(size_t size) {
  guarantee(false, "thread-local allocation buffers not supported");
  return NULL;
}

void CollectedHeap::ensure_parsability(bool retire_tlabs) {
  // The second disjunct in the assertion below makes a concession
  // for the start-up verification done while the VM is being
  // created. Callers be careful that you know that mutators
  // aren't going to interfere -- for instance, this is permissible
  // if we are still single-threaded and have either not yet
  // started allocating (nothing much to verify) or we have
  // started allocating but are now a full-fledged JavaThread
  // (and have thus made our TLAB's) available for filling.
  assert(SafepointSynchronize::is_at_safepoint() ||
         !is_init_completed(),
         "Should only be called at a safepoint or at start-up"
         " otherwise concurrent mutator activity may make heap "
         " unparsable again");
  const bool use_tlab = UseTLAB;
  const bool deferred = _defer_initial_card_mark;
  // The main thread starts allocating via a TLAB even before it
  // has added itself to the threads list at vm boot-up.
  assert(!use_tlab || Threads::first() != NULL,
         "Attempt to fill tlabs before main thread has been added"
         " to threads list is doomed to failure!");
  for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
     if (use_tlab) thread->tlab().make_parsable(retire_tlabs);
#ifdef COMPILER2
     // The deferred store barriers must all have been flushed to the
     // card-table (or other remembered set structure) before GC starts
     // processing the card-table (or other remembered set).
     if (deferred) flush_deferred_store_barrier(thread);
#else
     assert(!deferred, "Should be false");
     assert(thread->deferred_card_mark().is_empty(), "Should be empty");
#endif
  }
}

void CollectedHeap::accumulate_statistics_all_tlabs() {
  if (UseTLAB) {
    assert(SafepointSynchronize::is_at_safepoint() ||
         !is_init_completed(),
         "should only accumulate statistics on tlabs at safepoint");

    ThreadLocalAllocBuffer::accumulate_statistics_before_gc();
  }
}

void CollectedHeap::resize_all_tlabs() {
  if (UseTLAB) {
    assert(SafepointSynchronize::is_at_safepoint() ||
         !is_init_completed(),
         "should only resize tlabs at safepoint");

    ThreadLocalAllocBuffer::resize_all_tlabs();
  }
}

void CollectedHeap::pre_full_gc_dump(GCTimer* timer) {
  if (HeapDumpBeforeFullGC) {
    GCTraceTime tt("Heap Dump (before full gc): ", PrintGCDetails, false, timer);
    // We are doing a "major" collection and a heap dump before
    // major collection has been requested.
    HeapDumper::dump_heap();
  }
  if (PrintClassHistogramBeforeFullGC) {
    GCTraceTime tt("Class Histogram (before full gc): ", PrintGCDetails, true, timer);
    VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */);
    inspector.doit();
  }
}

void CollectedHeap::post_full_gc_dump(GCTimer* timer) {
  if (HeapDumpAfterFullGC) {
    GCTraceTime tt("Heap Dump (after full gc): ", PrintGCDetails, false, timer);
    HeapDumper::dump_heap();
  }
  if (PrintClassHistogramAfterFullGC) {
    GCTraceTime tt("Class Histogram (after full gc): ", PrintGCDetails, true, timer);
    VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */);
    inspector.doit();
  }
}

oop CollectedHeap::Class_obj_allocate(KlassHandle klass, int size, KlassHandle real_klass, TRAPS) {
  debug_only(check_for_valid_allocation_state());
  assert(!Universe::heap()->is_gc_active(), "Allocation during gc not allowed");
  assert(size >= 0, "int won't convert to size_t");
  HeapWord* obj;
    assert(ScavengeRootsInCode > 0, "must be");
    obj = common_mem_allocate_init(real_klass, size, CHECK_NULL);
  post_allocation_setup_common(klass, obj);
  assert(Universe::is_bootstrapping() ||
         !((oop)obj)->is_array(), "must not be an array");
  NOT_PRODUCT(Universe::heap()->check_for_bad_heap_word_value(obj, size));
  oop mirror = (oop)obj;

  java_lang_Class::set_oop_size(mirror, size);

  // Setup indirections
  if (!real_klass.is_null()) {
    java_lang_Class::set_klass(mirror, real_klass());
    real_klass->set_java_mirror(mirror);
  }

  InstanceMirrorKlass* mk = InstanceMirrorKlass::cast(mirror->klass());
  assert(size == mk->instance_size(real_klass), "should have been set");

  // notify jvmti and dtrace
  post_allocation_notify(klass, (oop)obj);

  return mirror;
}

/////////////// Unit tests ///////////////

#ifndef PRODUCT
void CollectedHeap::test_is_in() {
  CollectedHeap* heap = Universe::heap();

  uintptr_t epsilon    = (uintptr_t) MinObjAlignment;
  uintptr_t heap_start = (uintptr_t) heap->_reserved.start();
  uintptr_t heap_end   = (uintptr_t) heap->_reserved.end();

  // Test that NULL is not in the heap.
  assert(!heap->is_in(NULL), "NULL is unexpectedly in the heap");

  // Test that a pointer to before the heap start is reported as outside the heap.
  assert(heap_start >= ((uintptr_t)NULL + epsilon), "sanity");
  void* before_heap = (void*)(heap_start - epsilon);
  assert(!heap->is_in(before_heap),
      err_msg("before_heap: " PTR_FORMAT " is unexpectedly in the heap", before_heap));

  // Test that a pointer to after the heap end is reported as outside the heap.
  assert(heap_end <= ((uintptr_t)-1 - epsilon), "sanity");
  void* after_heap = (void*)(heap_end + epsilon);
  assert(!heap->is_in(after_heap),
      err_msg("after_heap: " PTR_FORMAT " is unexpectedly in the heap", after_heap));
}
#endif