aboutsummaryrefslogtreecommitdiff
path: root/src/share/vm/gc_implementation/parallelScavenge/cardTableExtension.cpp
blob: 9857b4e6c6aee9772efbd667905007ad5c17b659 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
/*
 * Copyright 2001-2006 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

# include "incls/_precompiled.incl"
# include "incls/_cardTableExtension.cpp.incl"

// Checks an individual oop for missing precise marks. Mark
// may be either dirty or newgen.
class CheckForUnmarkedOops : public OopClosure {
  PSYoungGen* _young_gen;
  CardTableExtension* _card_table;
  HeapWord* _unmarked_addr;
  jbyte* _unmarked_card;

 public:
  CheckForUnmarkedOops( PSYoungGen* young_gen, CardTableExtension* card_table ) :
    _young_gen(young_gen), _card_table(card_table), _unmarked_addr(NULL) { }

  virtual void do_oop(oop* p) {
    if (_young_gen->is_in_reserved(*p) &&
        !_card_table->addr_is_marked_imprecise(p)) {
      // Don't overwrite the first missing card mark
      if (_unmarked_addr == NULL) {
        _unmarked_addr = (HeapWord*)p;
        _unmarked_card = _card_table->byte_for(p);
      }
    }
  }

  bool has_unmarked_oop() {
    return _unmarked_addr != NULL;
  }
};

// Checks all objects for the existance of some type of mark,
// precise or imprecise, dirty or newgen.
class CheckForUnmarkedObjects : public ObjectClosure {
  PSYoungGen* _young_gen;
  CardTableExtension* _card_table;

 public:
  CheckForUnmarkedObjects() {
    ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

    _young_gen = heap->young_gen();
    _card_table = (CardTableExtension*)heap->barrier_set();
    // No point in asserting barrier set type here. Need to make CardTableExtension
    // a unique barrier set type.
  }

  // Card marks are not precise. The current system can leave us with
  // a mismash of precise marks and begining of object marks. This means
  // we test for missing precise marks first. If any are found, we don't
  // fail unless the object head is also unmarked.
  virtual void do_object(oop obj) {
    CheckForUnmarkedOops object_check( _young_gen, _card_table );
    obj->oop_iterate(&object_check);
    if (object_check.has_unmarked_oop()) {
      assert(_card_table->addr_is_marked_imprecise(obj), "Found unmarked young_gen object");
    }
  }
};

// Checks for precise marking of oops as newgen.
class CheckForPreciseMarks : public OopClosure {
  PSYoungGen* _young_gen;
  CardTableExtension* _card_table;

 public:
  CheckForPreciseMarks( PSYoungGen* young_gen, CardTableExtension* card_table ) :
    _young_gen(young_gen), _card_table(card_table) { }

  virtual void do_oop(oop* p) {
    if (_young_gen->is_in_reserved(*p)) {
      assert(_card_table->addr_is_marked_precise(p), "Found unmarked precise oop");
      _card_table->set_card_newgen(p);
    }
  }
};

// We get passed the space_top value to prevent us from traversing into
// the old_gen promotion labs, which cannot be safely parsed.
void CardTableExtension::scavenge_contents(ObjectStartArray* start_array,
                                           MutableSpace* sp,
                                           HeapWord* space_top,
                                           PSPromotionManager* pm)
{
  assert(start_array != NULL && sp != NULL && pm != NULL, "Sanity");
  assert(start_array->covered_region().contains(sp->used_region()),
         "ObjectStartArray does not cover space");
  bool depth_first = pm->depth_first();

  if (sp->not_empty()) {
    oop* sp_top = (oop*)space_top;
    oop* prev_top = NULL;
    jbyte* current_card = byte_for(sp->bottom());
    jbyte* end_card     = byte_for(sp_top - 1);    // sp_top is exclusive
    // scan card marking array
    while (current_card <= end_card) {
      jbyte value = *current_card;
      // skip clean cards
      if (card_is_clean(value)) {
        current_card++;
      } else {
        // we found a non-clean card
        jbyte* first_nonclean_card = current_card++;
        oop* bottom = (oop*)addr_for(first_nonclean_card);
        // find object starting on card
        oop* bottom_obj = (oop*)start_array->object_start((HeapWord*)bottom);
        // bottom_obj = (oop*)start_array->object_start((HeapWord*)bottom);
        assert(bottom_obj <= bottom, "just checking");
        // make sure we don't scan oops we already looked at
        if (bottom < prev_top) bottom = prev_top;
        // figure out when to stop scanning
        jbyte* first_clean_card;
        oop* top;
        bool restart_scanning;
        do {
          restart_scanning = false;
          // find a clean card
          while (current_card <= end_card) {
            value = *current_card;
            if (card_is_clean(value)) break;
            current_card++;
          }
          // check if we reached the end, if so we are done
          if (current_card >= end_card) {
            first_clean_card = end_card + 1;
            current_card++;
            top = sp_top;
          } else {
            // we have a clean card, find object starting on that card
            first_clean_card = current_card++;
            top = (oop*)addr_for(first_clean_card);
            oop* top_obj = (oop*)start_array->object_start((HeapWord*)top);
            // top_obj = (oop*)start_array->object_start((HeapWord*)top);
            assert(top_obj <= top, "just checking");
            if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
              // an arrayOop is starting on the clean card - since we do exact store
              // checks for objArrays we are done
            } else {
              // otherwise, it is possible that the object starting on the clean card
              // spans the entire card, and that the store happened on a later card.
              // figure out where the object ends
              top = top_obj + oop(top_obj)->size();
              jbyte* top_card = CardTableModRefBS::byte_for(top - 1);   // top is exclusive
              if (top_card > first_clean_card) {
                // object ends a different card
                current_card = top_card + 1;
                if (card_is_clean(*top_card)) {
                  // the ending card is clean, we are done
                  first_clean_card = top_card;
                } else {
                  // the ending card is not clean, continue scanning at start of do-while
                  restart_scanning = true;
                }
              } else {
                // object ends on the clean card, we are done.
                assert(first_clean_card == top_card, "just checking");
              }
            }
          }
        } while (restart_scanning);
        // we know which cards to scan, now clear them
        while (first_nonclean_card < first_clean_card) {
          *first_nonclean_card++ = clean_card;
        }
        // scan oops in objects
        // hoisted the if (depth_first) check out of the loop
        if (depth_first){
          do {
            oop(bottom_obj)->push_contents(pm);
            bottom_obj += oop(bottom_obj)->size();
            assert(bottom_obj <= sp_top, "just checking");
          } while (bottom_obj < top);
          pm->drain_stacks_cond_depth();
        } else {
          do {
            oop(bottom_obj)->copy_contents(pm);
            bottom_obj += oop(bottom_obj)->size();
            assert(bottom_obj <= sp_top, "just checking");
          } while (bottom_obj < top);
        }
        // remember top oop* scanned
        prev_top = top;
      }
    }
  }
}

void CardTableExtension::scavenge_contents_parallel(ObjectStartArray* start_array,
                                                    MutableSpace* sp,
                                                    HeapWord* space_top,
                                                    PSPromotionManager* pm,
                                                    uint stripe_number) {
  int ssize = 128; // Naked constant!  Work unit = 64k.
  int dirty_card_count = 0;
  bool depth_first = pm->depth_first();

  oop* sp_top = (oop*)space_top;
  jbyte* start_card = byte_for(sp->bottom());
  jbyte* end_card   = byte_for(sp_top - 1) + 1;
  oop* last_scanned = NULL; // Prevent scanning objects more than once
  for (jbyte* slice = start_card; slice < end_card; slice += ssize*ParallelGCThreads) {
    jbyte* worker_start_card = slice + stripe_number * ssize;
    if (worker_start_card >= end_card)
      return; // We're done.

    jbyte* worker_end_card = worker_start_card + ssize;
    if (worker_end_card > end_card)
      worker_end_card = end_card;

    // We do not want to scan objects more than once. In order to accomplish
    // this, we assert that any object with an object head inside our 'slice'
    // belongs to us. We may need to extend the range of scanned cards if the
    // last object continues into the next 'slice'.
    //
    // Note! ending cards are exclusive!
    HeapWord* slice_start = addr_for(worker_start_card);
    HeapWord* slice_end = MIN2((HeapWord*) sp_top, addr_for(worker_end_card));

    // If there are not objects starting within the chunk, skip it.
    if (!start_array->object_starts_in_range(slice_start, slice_end)) {
      continue;
    }
    // Update our begining addr
    HeapWord* first_object = start_array->object_start(slice_start);
    debug_only(oop* first_object_within_slice = (oop*) first_object;)
    if (first_object < slice_start) {
      last_scanned = (oop*)(first_object + oop(first_object)->size());
      debug_only(first_object_within_slice = last_scanned;)
      worker_start_card = byte_for(last_scanned);
    }

    // Update the ending addr
    if (slice_end < (HeapWord*)sp_top) {
      // The subtraction is important! An object may start precisely at slice_end.
      HeapWord* last_object = start_array->object_start(slice_end - 1);
      slice_end = last_object + oop(last_object)->size();
      // worker_end_card is exclusive, so bump it one past the end of last_object's
      // covered span.
      worker_end_card = byte_for(slice_end) + 1;

      if (worker_end_card > end_card)
        worker_end_card = end_card;
    }

    assert(slice_end <= (HeapWord*)sp_top, "Last object in slice crosses space boundary");
    assert(is_valid_card_address(worker_start_card), "Invalid worker start card");
    assert(is_valid_card_address(worker_end_card), "Invalid worker end card");
    // Note that worker_start_card >= worker_end_card is legal, and happens when
    // an object spans an entire slice.
    assert(worker_start_card <= end_card, "worker start card beyond end card");
    assert(worker_end_card <= end_card, "worker end card beyond end card");

    jbyte* current_card = worker_start_card;
    while (current_card < worker_end_card) {
      // Find an unclean card.
      while (current_card < worker_end_card && card_is_clean(*current_card)) {
        current_card++;
      }
      jbyte* first_unclean_card = current_card;

      // Find the end of a run of contiguous unclean cards
      while (current_card < worker_end_card && !card_is_clean(*current_card)) {
        while (current_card < worker_end_card && !card_is_clean(*current_card)) {
          current_card++;
        }

        if (current_card < worker_end_card) {
          // Some objects may be large enough to span several cards. If such
          // an object has more than one dirty card, separated by a clean card,
          // we will attempt to scan it twice. The test against "last_scanned"
          // prevents the redundant object scan, but it does not prevent newly
          // marked cards from being cleaned.
          HeapWord* last_object_in_dirty_region = start_array->object_start(addr_for(current_card)-1);
          size_t size_of_last_object = oop(last_object_in_dirty_region)->size();
          HeapWord* end_of_last_object = last_object_in_dirty_region + size_of_last_object;
          jbyte* ending_card_of_last_object = byte_for(end_of_last_object);
          assert(ending_card_of_last_object <= worker_end_card, "ending_card_of_last_object is greater than worker_end_card");
          if (ending_card_of_last_object > current_card) {
            // This means the object spans the next complete card.
            // We need to bump the current_card to ending_card_of_last_object
            current_card = ending_card_of_last_object;
          }
        }
      }
      jbyte* following_clean_card = current_card;

      if (first_unclean_card < worker_end_card) {
        oop* p = (oop*) start_array->object_start(addr_for(first_unclean_card));
        assert((HeapWord*)p <= addr_for(first_unclean_card), "checking");
        // "p" should always be >= "last_scanned" because newly GC dirtied
        // cards are no longer scanned again (see comment at end
        // of loop on the increment of "current_card").  Test that
        // hypothesis before removing this code.
        // If this code is removed, deal with the first time through
        // the loop when the last_scanned is the object starting in
        // the previous slice.
        assert((p >= last_scanned) ||
               (last_scanned == first_object_within_slice),
               "Should no longer be possible");
        if (p < last_scanned) {
          // Avoid scanning more than once; this can happen because
          // newgen cards set by GC may a different set than the
          // originally dirty set
          p = last_scanned;
        }
        oop* to = (oop*)addr_for(following_clean_card);

        // Test slice_end first!
        if ((HeapWord*)to > slice_end) {
          to = (oop*)slice_end;
        } else if (to > sp_top) {
          to = sp_top;
        }

        // we know which cards to scan, now clear them
        if (first_unclean_card <= worker_start_card+1)
          first_unclean_card = worker_start_card+1;
        if (following_clean_card >= worker_end_card-1)
          following_clean_card = worker_end_card-1;

        while (first_unclean_card < following_clean_card) {
          *first_unclean_card++ = clean_card;
        }

        const int interval = PrefetchScanIntervalInBytes;
        // scan all objects in the range
        if (interval != 0) {
          // hoisted the if (depth_first) check out of the loop
          if (depth_first) {
            while (p < to) {
              Prefetch::write(p, interval);
              oop m = oop(p);
              assert(m->is_oop_or_null(), "check for header");
              m->push_contents(pm);
              p += m->size();
            }
            pm->drain_stacks_cond_depth();
          } else {
            while (p < to) {
              Prefetch::write(p, interval);
              oop m = oop(p);
              assert(m->is_oop_or_null(), "check for header");
              m->copy_contents(pm);
              p += m->size();
            }
          }
        } else {
          // hoisted the if (depth_first) check out of the loop
          if (depth_first) {
            while (p < to) {
              oop m = oop(p);
              assert(m->is_oop_or_null(), "check for header");
              m->push_contents(pm);
              p += m->size();
            }
            pm->drain_stacks_cond_depth();
          } else {
            while (p < to) {
              oop m = oop(p);
              assert(m->is_oop_or_null(), "check for header");
              m->copy_contents(pm);
              p += m->size();
            }
          }
        }
        last_scanned = p;
      }
      // "current_card" is still the "following_clean_card" or
      // the current_card is >= the worker_end_card so the
      // loop will not execute again.
      assert((current_card == following_clean_card) ||
             (current_card >= worker_end_card),
        "current_card should only be incremented if it still equals "
        "following_clean_card");
      // Increment current_card so that it is not processed again.
      // It may now be dirty because a old-to-young pointer was
      // found on it an updated.  If it is now dirty, it cannot be
      // be safely cleaned in the next iteration.
      current_card++;
    }
  }
}

// This should be called before a scavenge.
void CardTableExtension::verify_all_young_refs_imprecise() {
  CheckForUnmarkedObjects check;

  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

  PSOldGen* old_gen = heap->old_gen();
  PSPermGen* perm_gen = heap->perm_gen();

  old_gen->object_iterate(&check);
  perm_gen->object_iterate(&check);
}

// This should be called immediately after a scavenge, before mutators resume.
void CardTableExtension::verify_all_young_refs_precise() {
  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");

  PSOldGen* old_gen = heap->old_gen();
  PSPermGen* perm_gen = heap->perm_gen();

  CheckForPreciseMarks check(heap->young_gen(), (CardTableExtension*)heap->barrier_set());

  old_gen->oop_iterate(&check);
  perm_gen->oop_iterate(&check);

  verify_all_young_refs_precise_helper(old_gen->object_space()->used_region());
  verify_all_young_refs_precise_helper(perm_gen->object_space()->used_region());
}

void CardTableExtension::verify_all_young_refs_precise_helper(MemRegion mr) {
  CardTableExtension* card_table = (CardTableExtension*)Universe::heap()->barrier_set();
  // FIX ME ASSERT HERE

  jbyte* bot = card_table->byte_for(mr.start());
  jbyte* top = card_table->byte_for(mr.end());
  while(bot <= top) {
    assert(*bot == clean_card || *bot == verify_card, "Found unwanted or unknown card mark");
    if (*bot == verify_card)
      *bot = youngergen_card;
    bot++;
  }
}

bool CardTableExtension::addr_is_marked_imprecise(void *addr) {
  jbyte* p = byte_for(addr);
  jbyte val = *p;

  if (card_is_dirty(val))
    return true;

  if (card_is_newgen(val))
    return true;

  if (card_is_clean(val))
    return false;

  assert(false, "Found unhandled card mark type");

  return false;
}

// Also includes verify_card
bool CardTableExtension::addr_is_marked_precise(void *addr) {
  jbyte* p = byte_for(addr);
  jbyte val = *p;

  if (card_is_newgen(val))
    return true;

  if (card_is_verify(val))
    return true;

  if (card_is_clean(val))
    return false;

  if (card_is_dirty(val))
    return false;

  assert(false, "Found unhandled card mark type");

  return false;
}

// Assumes that only the base or the end changes.  This allows indentification
// of the region that is being resized.  The
// CardTableModRefBS::resize_covered_region() is used for the normal case
// where the covered regions are growing or shrinking at the high end.
// The method resize_covered_region_by_end() is analogous to
// CardTableModRefBS::resize_covered_region() but
// for regions that grow or shrink at the low end.
void CardTableExtension::resize_covered_region(MemRegion new_region) {

  for (int i = 0; i < _cur_covered_regions; i++) {
    if (_covered[i].start() == new_region.start()) {
      // Found a covered region with the same start as the
      // new region.  The region is growing or shrinking
      // from the start of the region.
      resize_covered_region_by_start(new_region);
      return;
    }
    if (_covered[i].start() > new_region.start()) {
      break;
    }
  }

  int changed_region = -1;
  for (int j = 0; j < _cur_covered_regions; j++) {
    if (_covered[j].end() == new_region.end()) {
      changed_region = j;
      // This is a case where the covered region is growing or shrinking
      // at the start of the region.
      assert(changed_region != -1, "Don't expect to add a covered region");
      assert(_covered[changed_region].byte_size() != new_region.byte_size(),
        "The sizes should be different here");
      resize_covered_region_by_end(changed_region, new_region);
      return;
    }
  }
  // This should only be a new covered region (where no existing
  // covered region matches at the start or the end).
  assert(_cur_covered_regions < _max_covered_regions,
    "An existing region should have been found");
  resize_covered_region_by_start(new_region);
}

void CardTableExtension::resize_covered_region_by_start(MemRegion new_region) {
  CardTableModRefBS::resize_covered_region(new_region);
  debug_only(verify_guard();)
}

void CardTableExtension::resize_covered_region_by_end(int changed_region,
                                                      MemRegion new_region) {
  assert(SafepointSynchronize::is_at_safepoint(),
    "Only expect an expansion at the low end at a GC");
  debug_only(verify_guard();)
#ifdef ASSERT
  for (int k = 0; k < _cur_covered_regions; k++) {
    if (_covered[k].end() == new_region.end()) {
      assert(changed_region == k, "Changed region is incorrect");
      break;
    }
  }
#endif

  // Commit new or uncommit old pages, if necessary.
  resize_commit_uncommit(changed_region, new_region);

  // Update card table entries
  resize_update_card_table_entries(changed_region, new_region);

  // Set the new start of the committed region
  resize_update_committed_table(changed_region, new_region);

  // Update the covered region
  resize_update_covered_table(changed_region, new_region);

  if (TraceCardTableModRefBS) {
    int ind = changed_region;
    gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
    gclog_or_tty->print_cr("  "
                  "  _covered[%d].start(): " INTPTR_FORMAT
                  "  _covered[%d].last(): " INTPTR_FORMAT,
                  ind, _covered[ind].start(),
                  ind, _covered[ind].last());
    gclog_or_tty->print_cr("  "
                  "  _committed[%d].start(): " INTPTR_FORMAT
                  "  _committed[%d].last(): " INTPTR_FORMAT,
                  ind, _committed[ind].start(),
                  ind, _committed[ind].last());
    gclog_or_tty->print_cr("  "
                  "  byte_for(start): " INTPTR_FORMAT
                  "  byte_for(last): " INTPTR_FORMAT,
                  byte_for(_covered[ind].start()),
                  byte_for(_covered[ind].last()));
    gclog_or_tty->print_cr("  "
                  "  addr_for(start): " INTPTR_FORMAT
                  "  addr_for(last): " INTPTR_FORMAT,
                  addr_for((jbyte*) _committed[ind].start()),
                  addr_for((jbyte*) _committed[ind].last()));
  }
  debug_only(verify_guard();)
}

void CardTableExtension::resize_commit_uncommit(int changed_region,
                                                MemRegion new_region) {
  // Commit new or uncommit old pages, if necessary.
  MemRegion cur_committed = _committed[changed_region];
  assert(_covered[changed_region].end() == new_region.end(),
    "The ends of the regions are expected to match");
  // Extend the start of this _committed region to
  // to cover the start of any previous _committed region.
  // This forms overlapping regions, but never interior regions.
  HeapWord* min_prev_start = lowest_prev_committed_start(changed_region);
  if (min_prev_start < cur_committed.start()) {
    // Only really need to set start of "cur_committed" to
    // the new start (min_prev_start) but assertion checking code
    // below use cur_committed.end() so make it correct.
    MemRegion new_committed =
        MemRegion(min_prev_start, cur_committed.end());
    cur_committed = new_committed;
  }
#ifdef ASSERT
  ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  assert(cur_committed.start() ==
    (HeapWord*) align_size_up((uintptr_t) cur_committed.start(),
                              os::vm_page_size()),
    "Starts should have proper alignment");
#endif

  jbyte* new_start = byte_for(new_region.start());
  // Round down because this is for the start address
  HeapWord* new_start_aligned =
    (HeapWord*)align_size_down((uintptr_t)new_start, os::vm_page_size());
  // The guard page is always committed and should not be committed over.
  // This method is used in cases where the generation is growing toward
  // lower addresses but the guard region is still at the end of the
  // card table.  That still makes sense when looking for writes
  // off the end of the card table.
  if (new_start_aligned < cur_committed.start()) {
    // Expand the committed region
    //
    // Case A
    //                                          |+ guard +|
    //                          |+ cur committed +++++++++|
    //                  |+ new committed +++++++++++++++++|
    //
    // Case B
    //                                          |+ guard +|
    //                        |+ cur committed +|
    //                  |+ new committed +++++++|
    //
    // These are not expected because the calculation of the
    // cur committed region and the new committed region
    // share the same end for the covered region.
    // Case C
    //                                          |+ guard +|
    //                        |+ cur committed +|
    //                  |+ new committed +++++++++++++++++|
    // Case D
    //                                          |+ guard +|
    //                        |+ cur committed +++++++++++|
    //                  |+ new committed +++++++|

    HeapWord* new_end_for_commit =
      MIN2(cur_committed.end(), _guard_region.start());
    MemRegion new_committed =
      MemRegion(new_start_aligned, new_end_for_commit);
    if(!new_committed.is_empty()) {
      if (!os::commit_memory((char*)new_committed.start(),
                             new_committed.byte_size())) {
        vm_exit_out_of_memory(new_committed.byte_size(),
                              "card table expansion");
      }
    }
  } else if (new_start_aligned > cur_committed.start()) {
    // Shrink the committed region
    MemRegion uncommit_region = committed_unique_to_self(changed_region,
      MemRegion(cur_committed.start(), new_start_aligned));
    if (!uncommit_region.is_empty()) {
      if (!os::uncommit_memory((char*)uncommit_region.start(),
                               uncommit_region.byte_size())) {
        vm_exit_out_of_memory(uncommit_region.byte_size(),
          "card table contraction");
      }
    }
  }
  assert(_committed[changed_region].end() == cur_committed.end(),
    "end should not change");
}

void CardTableExtension::resize_update_committed_table(int changed_region,
                                                       MemRegion new_region) {

  jbyte* new_start = byte_for(new_region.start());
  // Set the new start of the committed region
  HeapWord* new_start_aligned =
    (HeapWord*)align_size_down((uintptr_t)new_start,
                             os::vm_page_size());
  MemRegion new_committed = MemRegion(new_start_aligned,
    _committed[changed_region].end());
  _committed[changed_region] = new_committed;
  _committed[changed_region].set_start(new_start_aligned);
}

void CardTableExtension::resize_update_card_table_entries(int changed_region,
                                                          MemRegion new_region) {
  debug_only(verify_guard();)
  MemRegion original_covered = _covered[changed_region];
  // Initialize the card entries.  Only consider the
  // region covered by the card table (_whole_heap)
  jbyte* entry;
  if (new_region.start() < _whole_heap.start()) {
    entry = byte_for(_whole_heap.start());
  } else {
    entry = byte_for(new_region.start());
  }
  jbyte* end = byte_for(original_covered.start());
  // If _whole_heap starts at the original covered regions start,
  // this loop will not execute.
  while (entry < end) { *entry++ = clean_card; }
}

void CardTableExtension::resize_update_covered_table(int changed_region,
                                                     MemRegion new_region) {
  // Update the covered region
  _covered[changed_region].set_start(new_region.start());
  _covered[changed_region].set_word_size(new_region.word_size());

  // reorder regions.  There should only be at most 1 out
  // of order.
  for (int i = _cur_covered_regions-1 ; i > 0; i--) {
    if (_covered[i].start() < _covered[i-1].start()) {
        MemRegion covered_mr = _covered[i-1];
        _covered[i-1] = _covered[i];
        _covered[i] = covered_mr;
        MemRegion committed_mr = _committed[i-1];
      _committed[i-1] = _committed[i];
      _committed[i] = committed_mr;
      break;
    }
  }
#ifdef ASSERT
  for (int m = 0; m < _cur_covered_regions-1; m++) {
    assert(_covered[m].start() <= _covered[m+1].start(),
      "Covered regions out of order");
    assert(_committed[m].start() <= _committed[m+1].start(),
      "Committed regions out of order");
  }
#endif
}

// Returns the start of any committed region that is lower than
// the target committed region (index ind) and that intersects the
// target region.  If none, return start of target region.
//
//      -------------
//      |           |
//      -------------
//              ------------
//              | target   |
//              ------------
//                               -------------
//                               |           |
//                               -------------
//      ^ returns this
//
//      -------------
//      |           |
//      -------------
//                      ------------
//                      | target   |
//                      ------------
//                               -------------
//                               |           |
//                               -------------
//                      ^ returns this

HeapWord* CardTableExtension::lowest_prev_committed_start(int ind) const {
  assert(_cur_covered_regions >= 0, "Expecting at least on region");
  HeapWord* min_start = _committed[ind].start();
  for (int j = 0; j < ind; j++) {
    HeapWord* this_start = _committed[j].start();
    if ((this_start < min_start) &&
        !(_committed[j].intersection(_committed[ind])).is_empty()) {
       min_start = this_start;
    }
  }
  return min_start;
}