aboutsummaryrefslogtreecommitdiff
path: root/src/share/vm/c1/c1_ValueStack.hpp
blob: 3aaca56b4a89c2c2bc3197f06fb3fe06c8758f75 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
/*
 * Copyright (c) 1999, 2006, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

class ValueStack: public CompilationResourceObj {
 private:
  IRScope* _scope;                               // the enclosing scope
  bool     _lock_stack;                          // indicates that this ValueStack is for an exception site
  Values   _locals;                              // the locals
  Values   _stack;                               // the expression stack
  Values   _locks;                               // the monitor stack (holding the locked values)

  Value check(ValueTag tag, Value t) {
    assert(tag == t->type()->tag() || tag == objectTag && t->type()->tag() == addressTag, "types must correspond");
    return t;
  }

  Value check(ValueTag tag, Value t, Value h) {
    assert(h->as_HiWord()->lo_word() == t, "incorrect stack pair");
    return check(tag, t);
  }

  // helper routine
  static void apply(Values list, void f(Value*));

 public:
  // creation
  ValueStack(IRScope* scope, int locals_size, int max_stack_size);

  // merging
  ValueStack* copy();                            // returns a copy of this w/ cleared locals
  ValueStack* copy_locks();                      // returns a copy of this w/ cleared locals and stack
                                                 // Note that when inlining of methods with exception
                                                 // handlers is enabled, this stack may have a
                                                 // non-empty expression stack (size defined by
                                                 // scope()->lock_stack_size())
  bool is_same(ValueStack* s);                   // returns true if this & s's types match (w/o checking locals)
  bool is_same_across_scopes(ValueStack* s);     // same as is_same but returns true even if stacks are in different scopes (used for block merging w/inlining)

  // accessors
  IRScope* scope() const                         { return _scope; }
  bool is_lock_stack() const                     { return _lock_stack; }
  int locals_size() const                        { return _locals.length(); }
  int stack_size() const                         { return _stack.length(); }
  int locks_size() const                         { return _locks.length(); }
  int max_stack_size() const                     { return _stack.capacity(); }
  bool stack_is_empty() const                    { return _stack.is_empty(); }
  bool no_active_locks() const                   { return _locks.is_empty(); }
  ValueStack* caller_state() const;

  // locals access
  void clear_locals();                           // sets all locals to NULL;

  // Kill local i.  Also kill local i+1 if i was a long or double.
  void invalidate_local(int i) {
    Value x = _locals.at(i);
    if (x != NULL && x->type()->is_double_word()) {
      assert(_locals.at(i + 1)->as_HiWord()->lo_word() == x, "locals inconsistent");
      _locals.at_put(i + 1, NULL);
    }
    _locals.at_put(i, NULL);
  }


  Value load_local(int i) const {
    Value x = _locals.at(i);
    if (x != NULL && x->type()->is_illegal()) return NULL;
    assert(x == NULL || x->as_HiWord() == NULL, "index points to hi word");
    assert(x == NULL || x->type()->is_illegal() || x->type()->is_single_word() || x == _locals.at(i+1)->as_HiWord()->lo_word(), "locals inconsistent");
    return x;
  }

  Value local_at(int i) const { return _locals.at(i); }

  // Store x into local i.
  void store_local(int i, Value x) {
    // Kill the old value
    invalidate_local(i);
    _locals.at_put(i, x);

    // Writing a double word can kill other locals
    if (x != NULL && x->type()->is_double_word()) {
      // If x + i was the start of a double word local then kill i + 2.
      Value x2 = _locals.at(i + 1);
      if (x2 != NULL && x2->type()->is_double_word()) {
        _locals.at_put(i + 2, NULL);
      }

      // If x is a double word local, also update i + 1.
#ifdef ASSERT
      _locals.at_put(i + 1, x->hi_word());
#else
      _locals.at_put(i + 1, NULL);
#endif
    }
    // If x - 1 was the start of a double word local then kill i - 1.
    if (i > 0) {
      Value prev = _locals.at(i - 1);
      if (prev != NULL && prev->type()->is_double_word()) {
        _locals.at_put(i - 1, NULL);
      }
    }
  }

  void replace_locals(ValueStack* with);

  // stack access
  Value stack_at(int i) const {
    Value x = _stack.at(i);
    assert(x->as_HiWord() == NULL, "index points to hi word");
    assert(x->type()->is_single_word() ||
           x->subst() == _stack.at(i+1)->as_HiWord()->lo_word(), "stack inconsistent");
    return x;
  }

  Value stack_at_inc(int& i) const {
    Value x = stack_at(i);
    i += x->type()->size();
    return x;
  }

  // pinning support
  void pin_stack_for_linear_scan();

  // iteration
  void values_do(void f(Value*));

  // untyped manipulation (for dup_x1, etc.)
  void clear_stack()                             { _stack.clear(); }
  void truncate_stack(int size)                  { _stack.trunc_to(size); }
  void raw_push(Value t)                         { _stack.push(t); }
  Value raw_pop()                                { return _stack.pop(); }

  // typed manipulation
  void ipush(Value t)                            { _stack.push(check(intTag    , t)); }
  void fpush(Value t)                            { _stack.push(check(floatTag  , t)); }
  void apush(Value t)                            { _stack.push(check(objectTag , t)); }
  void rpush(Value t)                            { _stack.push(check(addressTag, t)); }
#ifdef ASSERT
  // in debug mode, use HiWord for 2-word values
  void lpush(Value t)                            { _stack.push(check(longTag   , t)); _stack.push(new HiWord(t)); }
  void dpush(Value t)                            { _stack.push(check(doubleTag , t)); _stack.push(new HiWord(t)); }
#else
  // in optimized mode, use NULL for 2-word values
  void lpush(Value t)                            { _stack.push(check(longTag   , t)); _stack.push(NULL); }
  void dpush(Value t)                            { _stack.push(check(doubleTag , t)); _stack.push(NULL); }
#endif // ASSERT

  void push(ValueType* type, Value t) {
    switch (type->tag()) {
      case intTag    : ipush(t); return;
      case longTag   : lpush(t); return;
      case floatTag  : fpush(t); return;
      case doubleTag : dpush(t); return;
      case objectTag : apush(t); return;
      case addressTag: rpush(t); return;
    }
    ShouldNotReachHere();
  }

  Value ipop()                                   { return check(intTag    , _stack.pop()); }
  Value fpop()                                   { return check(floatTag  , _stack.pop()); }
  Value apop()                                   { return check(objectTag , _stack.pop()); }
  Value rpop()                                   { return check(addressTag, _stack.pop()); }
#ifdef ASSERT
  // in debug mode, check for HiWord consistency
  Value lpop()                                   { Value h = _stack.pop(); return check(longTag  , _stack.pop(), h); }
  Value dpop()                                   { Value h = _stack.pop(); return check(doubleTag, _stack.pop(), h); }
#else
  // in optimized mode, ignore HiWord since it is NULL
  Value lpop()                                   { _stack.pop(); return check(longTag  , _stack.pop()); }
  Value dpop()                                   { _stack.pop(); return check(doubleTag, _stack.pop()); }
#endif // ASSERT

  Value pop(ValueType* type) {
    switch (type->tag()) {
      case intTag    : return ipop();
      case longTag   : return lpop();
      case floatTag  : return fpop();
      case doubleTag : return dpop();
      case objectTag : return apop();
      case addressTag: return rpop();
    }
    ShouldNotReachHere();
    return NULL;
  }

  Values* pop_arguments(int argument_size);

  // locks access
  int lock  (IRScope* scope, Value obj);
  int unlock();
  Value lock_at(int i) const                     { return _locks.at(i); }

  // Inlining support
  ValueStack* push_scope(IRScope* scope);         // "Push" new scope, returning new resulting stack
                                                  // Preserves stack and locks, destroys locals
  ValueStack* pop_scope();                        // "Pop" topmost scope, returning new resulting stack
                                                  // Preserves stack and locks, destroys locals

  // SSA form IR support
  void setup_phi_for_stack(BlockBegin* b, int index);
  void setup_phi_for_local(BlockBegin* b, int index);

  // debugging
  void print()  PRODUCT_RETURN;
  void verify() PRODUCT_RETURN;
};



// Macro definitions for simple iteration of stack and local values of a ValueStack
// The macros can be used like a for-loop. All variables (state, index and value)
// must be defined before the loop.
// When states are nested because of inlining, the stack of the innermost state
// cumulates also the stack of the nested states. In contrast, the locals of all
// states must be iterated each.
// Use the following code pattern to iterate all stack values and all nested local values:
//
// ValueStack* state = ...   // state that is iterated
// int index;                // current loop index (overwritten in loop)
// Value value;              // value at current loop index (overwritten in loop)
//
// for_each_stack_value(state, index, value {
//   do something with value and index
// }
//
// for_each_state(state) {
//   for_each_local_value(state, index, value) {
//     do something with value and index
//   }
// }
// as an invariant, state is NULL now


// construct a unique variable name with the line number where the macro is used
#define temp_var3(x) temp__ ## x
#define temp_var2(x) temp_var3(x)
#define temp_var     temp_var2(__LINE__)

#define for_each_state(state)  \
  for (; state != NULL; state = state->caller_state())

#define for_each_local_value(state, index, value)                                              \
  int temp_var = state->locals_size();                                                         \
  for (index = 0;                                                                              \
       index < temp_var && (value = state->local_at(index), true);                             \
       index += (value == NULL || value->type()->is_illegal() ? 1 : value->type()->size()))    \
    if (value != NULL)


#define for_each_stack_value(state, index, value)                                              \
  int temp_var = state->stack_size();                                                          \
  for (index = 0;                                                                              \
       index < temp_var && (value = state->stack_at(index), true);                             \
       index += value->type()->size())


#define for_each_lock_value(state, index, value)                                               \
  int temp_var = state->locks_size();                                                          \
  for (index = 0;                                                                              \
       index < temp_var && (value = state->lock_at(index), true);                              \
       index++)                                                                                \
    if (value != NULL)


// Macro definition for simple iteration of all state values of a ValueStack
// Because the code cannot be executed in a single loop, the code must be passed
// as a macro parameter.
// Use the following code pattern to iterate all stack values and all nested local values:
//
// ValueStack* state = ...   // state that is iterated
// for_each_state_value(state, value,
//   do something with value (note that this is a macro parameter)
// );

#define for_each_state_value(v_state, v_value, v_code)                                         \
{                                                                                              \
  int cur_index;                                                                               \
  ValueStack* cur_state = v_state;                                                             \
  Value v_value;                                                                                 \
  {                                                                                            \
    for_each_stack_value(cur_state, cur_index, v_value) {                                      \
      v_code;                                                                                  \
    }                                                                                          \
  }                                                                                            \
  for_each_state(cur_state) {                                                                  \
    for_each_local_value(cur_state, cur_index, v_value) {                                      \
      v_code;                                                                                  \
    }                                                                                          \
  }                                                                                            \
}


// Macro definition for simple iteration of all phif functions of a block, i.e all
// phi functions of the ValueStack where the block matches.
// Use the following code pattern to iterate all phi functions of a block:
//
// BlockBegin* block = ...   // block that is iterated
// for_each_phi_function(block, phi,
//   do something with the phi function phi (note that this is a macro parameter)
// );

#define for_each_phi_fun(v_block, v_phi, v_code)                                               \
{                                                                                              \
  int cur_index;                                                                               \
  ValueStack* cur_state = v_block->state();                                                    \
  Value value;                                                                                 \
  {                                                                                            \
    for_each_stack_value(cur_state, cur_index, value) {                                        \
      Phi* v_phi = value->as_Phi();                                                      \
      if (v_phi != NULL && v_phi->block() == v_block) {                                        \
        v_code;                                                                                \
      }                                                                                        \
    }                                                                                          \
  }                                                                                            \
  {                                                                                            \
    for_each_local_value(cur_state, cur_index, value) {                                        \
      Phi* v_phi = value->as_Phi();                                                      \
      if (v_phi != NULL && v_phi->block() == v_block) {                                        \
        v_code;                                                                                \
      }                                                                                        \
    }                                                                                          \
  }                                                                                            \
}