/* * Copyright (c) 2016, Wind River Systems, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * @file * * @brief Public kernel APIs. */ #ifndef _kernel__h_ #define _kernel__h_ #include #include #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif #ifdef CONFIG_KERNEL_V2_DEBUG #define K_DEBUG(fmt, ...) printk("[%s] " fmt, __func__, ##__VA_ARGS__) #else #define K_DEBUG(fmt, ...) #endif #define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x))) #define K_PRIO_PREEMPT(x) (x) #define K_FOREVER (-1) #define K_NO_WAIT 0 #define K_ANY NULL #define K_END NULL #if CONFIG_NUM_COOP_PRIORITIES > 0 #define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES) #else #define K_HIGHEST_THREAD_PRIO 0 #endif #if CONFIG_NUM_PREEMPT_PRIORITIES > 0 #define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES #else #define K_LOWEST_THREAD_PRIO -1 #endif #define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO) #define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1) typedef sys_dlist_t _wait_q_t; #ifdef CONFIG_DEBUG_TRACING_KERNEL_OBJECTS #define _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(type) struct type *__next #define _DEBUG_TRACING_KERNEL_OBJECTS_INIT .__next = NULL, #else #define _DEBUG_TRACING_KERNEL_OBJECTS_INIT #define _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(type) #endif #define k_thread tcs struct tcs; struct k_mutex; struct k_sem; struct k_event; struct k_msgq; struct k_mbox; struct k_pipe; struct k_fifo; struct k_lifo; struct k_stack; struct k_mem_map; struct k_mem_pool; struct k_timer; typedef struct k_thread *k_tid_t; /* threads/scheduler/execution contexts */ enum execution_context_types { K_ISR = 0, K_COOP_THREAD, K_PREEMPT_THREAD, }; typedef void (*k_thread_entry_t)(void *p1, void *p2, void *p3); extern k_tid_t k_thread_spawn(char *stack, unsigned stack_size, void (*entry)(void *, void *, void*), void *p1, void *p2, void *p3, int32_t prio, uint32_t options, int32_t delay); extern void k_sleep(int32_t duration); extern void k_busy_wait(uint32_t usec_to_wait); extern void k_yield(void); extern void k_wakeup(k_tid_t thread); extern k_tid_t k_current_get(void); extern int k_thread_cancel(k_tid_t thread); extern void k_thread_abort(k_tid_t thread); #define K_THREAD_GROUP_EXE 0x1 #define K_THREAD_GROUP_SYS 0x2 #define K_THREAD_GROUP_FPU 0x4 /* XXX - doesn't work because CONFIG_ARCH is a string */ #if 0 /* arch-specific groups */ #if CONFIG_ARCH == "x86" #define K_THREAD_GROUP_SSE 0x4 #endif #endif #ifdef CONFIG_SYS_CLOCK_EXISTS #define _THREAD_TIMEOUT_INIT(obj) \ (obj).nano_timeout = { \ .node = { {0}, {0} }, \ .thread = NULL, \ .wait_q = NULL, \ .delta_ticks_from_prev = -1, \ }, #else #define _THREAD_TIMEOUT_INIT(obj) #endif #ifdef CONFIG_ERRNO #define _THREAD_ERRNO_INIT(obj) (obj).errno_var = 0, #else #define _THREAD_ERRNO_INIT(obj) #endif struct _static_thread_data { union { char *init_stack; struct k_thread *thread; }; unsigned int init_stack_size; void (*init_entry)(void *, void *, void *); void *init_p1; void *init_p2; void *init_p3; int init_prio; uint32_t init_options; int32_t init_delay; void (*init_abort)(void); uint32_t init_groups; }; #define _THREAD_INITIALIZER(stack, stack_size, \ entry, p1, p2, p3, \ prio, options, delay, abort, groups) \ { \ .init_stack = (stack), \ .init_stack_size = (stack_size), \ .init_entry = (void (*)(void *, void *, void *))entry, \ .init_p1 = (void *)p1, \ .init_p2 = (void *)p2, \ .init_p3 = (void *)p3, \ .init_prio = (prio), \ .init_options = (options), \ .init_delay = (delay), \ .init_abort = (abort), \ .init_groups = (groups), \ } /** * @brief Define a static thread. * * @internal It has been observed that the x86 compiler by default aligns * these _static_thread_data structures to 32-byte boundaries, thereby * wasting space. To work around this, force a 4-byte alignment. */ #define K_THREAD_DEFINE(name, stack_size, \ entry, p1, p2, p3, \ prio, options, delay) \ char __noinit __stack _k_thread_obj_##name[stack_size]; \ struct _static_thread_data _k_thread_data_##name __aligned(4) \ __in_section(_k_task_list, private, task) = \ _THREAD_INITIALIZER(_k_thread_obj_##name, stack_size, \ entry, p1, p2, p3, prio, options, delay, \ NULL, 0); \ const k_tid_t name = (k_tid_t)_k_thread_obj_##name extern int k_thread_priority_get(k_tid_t thread); extern void k_thread_priority_set(k_tid_t thread, int prio); extern void k_thread_suspend(k_tid_t thread); extern void k_thread_resume(k_tid_t thread); extern void k_sched_time_slice_set(int32_t slice, int prio); extern int k_am_in_isr(void); extern void k_thread_custom_data_set(void *value); extern void *k_thread_custom_data_get(void); /** * kernel timing */ #include /* private internal time manipulation (users should never play with ticks) */ /* added tick needed to account for tick in progress */ #define _TICK_ALIGN 1 static int64_t __ticks_to_ms(int64_t ticks) { #if CONFIG_SYS_CLOCK_EXISTS return (MSEC_PER_SEC * (uint64_t)ticks) / sys_clock_ticks_per_sec; #else __ASSERT(ticks == 0, ""); return 0; #endif } /* timeouts */ struct _timeout; typedef void (*_timeout_func_t)(struct _timeout *t); struct _timeout { sys_dlist_t node; struct k_thread *thread; sys_dlist_t *wait_q; int32_t delta_ticks_from_prev; _timeout_func_t func; }; /* timers */ struct k_timer { /* * _timeout structure must be first here if we want to use * dynamic timer allocation. timeout.node is used in the double-linked * list of free timers */ struct _timeout timeout; /* wait queue for the (single) thread waiting on this timer */ _wait_q_t wait_q; /* runs in ISR context */ void (*expiry_fn)(struct k_timer *); /* runs in the context of the thread that calls k_timer_stop() */ void (*stop_fn)(struct k_timer *); /* timer period */ int32_t period; /* timer status */ uint32_t status; /* used to support legacy timer APIs */ void *_legacy_data; _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_timer); }; #define K_TIMER_INITIALIZER(obj) \ { \ .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \ _DEBUG_TRACING_KERNEL_OBJECTS_INIT \ } #define K_TIMER_DEFINE(name) \ struct k_timer name = K_TIMER_INITIALIZER(name) /** * @brief Initialize a timer. * * This routine must be called before the timer is used. * * @param timer Address of timer. * @param expiry_fn Function to invoke each time timer expires. * @param stop_fn Function to invoke if timer is stopped while running. * * @return N/A */ extern void k_timer_init(struct k_timer *timer, void (*expiry_fn)(struct k_timer *), void (*stop_fn)(struct k_timer *)); /** * @brief Start a timer. * * This routine starts a timer, and resets its status to zero. The timer * begins counting down using the specified duration and period values. * * Attempting to start a timer that is already running is permitted. * The timer's status is reset to zero and the timer begins counting down * using the new duration and period values. * * @param timer Address of timer. * @param duration Initial timer duration (in milliseconds). * @param period Timer period (in milliseconds). * * @return N/A */ extern void k_timer_start(struct k_timer *timer, int32_t duration, int32_t period); /** * @brief Stop a timer. * * This routine stops a running timer prematurely. The timer's stop function, * if one exists, is invoked by the caller. * * Attempting to stop a timer that is not running is permitted, but has no * effect on the timer since it is already stopped. * * @param timer Address of timer. * * @return N/A */ extern void k_timer_stop(struct k_timer *timer); /** * @brief Read timer status. * * This routine reads the timer's status, which indicates the number of times * it has expired since its status was last read. * * Calling this routine resets the timer's status to zero. * * @param timer Address of timer. * * @return Timer status. */ extern uint32_t k_timer_status_get(struct k_timer *timer); /** * @brief Synchronize thread to timer expiration. * * This routine blocks the calling thread until the timer's status is non-zero * (indicating that it has expired at least once since it was last examined) * or the timer is stopped. If the timer status is already non-zero, * or the timer is already stopped, the caller continues without waiting. * * Calling this routine resets the timer's status to zero. * * This routine must not be used by interrupt handlers, since they are not * allowed to block. * * @param timer Address of timer. * * @return Timer status. */ extern uint32_t k_timer_status_sync(struct k_timer *timer); /** * @brief Get timer remaining before next timer expiration. * * This routine computes the (approximate) time remaining before a running * timer next expires. If the timer is not running, it returns zero. * * @param timer Address of timer. * * @return Remaining time (in milliseconds). */ extern int32_t k_timer_remaining_get(struct k_timer *timer); /* kernel clocks */ /** * @brief Get the time elapsed since the system booted (uptime) * * @return The current uptime of the system in ms */ extern int64_t k_uptime_get(void); /** * @brief Get the lower 32-bit of time elapsed since the system booted (uptime) * * This function is potentially less onerous in both the time it takes to * execute, the interrupt latency it introduces and the amount of 64-bit math * it requires than k_uptime_get(), but it only provides an uptime value of * 32-bits. The user must handle possible rollovers/spillovers. * * At a rate of increment of 1000 per second, it rolls over approximately every * 50 days. * * @return The current uptime of the system in ms */ extern uint32_t k_uptime_get_32(void); /** * @brief Get the difference between a reference time and the current uptime * * @param reftime A pointer to a reference time. It is updated with the current * uptime upon return. * * @return The delta between the reference time and the current uptime. */ extern int64_t k_uptime_delta(int64_t *reftime); /** * @brief Get the difference between a reference time and the current uptime * * The 32-bit version of k_uptime_delta(). It has the same perks and issues as * k_uptime_get_32(). * * @param reftime A pointer to a reference time. It is updated with the current * uptime upon return. * * @return The delta between the reference time and the current uptime. */ extern uint32_t k_uptime_delta_32(int64_t *reftime); extern uint32_t k_cycle_get_32(void); /** * data transfers (basic) */ /* fifos */ struct k_fifo { _wait_q_t wait_q; sys_slist_t data_q; _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_fifo); }; extern void k_fifo_init(struct k_fifo *fifo); extern void k_fifo_put(struct k_fifo *fifo, void *data); extern void k_fifo_put_list(struct k_fifo *fifo, void *head, void *tail); extern void k_fifo_put_slist(struct k_fifo *fifo, sys_slist_t *list); extern void *k_fifo_get(struct k_fifo *fifo, int32_t timeout); #define K_FIFO_INITIALIZER(obj) \ { \ .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \ .data_q = SYS_SLIST_STATIC_INIT(&obj.data_q), \ _DEBUG_TRACING_KERNEL_OBJECTS_INIT \ } #define K_FIFO_DEFINE(name) \ struct k_fifo name = K_FIFO_INITIALIZER(name) /* lifos */ struct k_lifo { _wait_q_t wait_q; void *list; _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_lifo); }; extern void k_lifo_init(struct k_lifo *lifo); extern void k_lifo_put(struct k_lifo *lifo, void *data); extern void *k_lifo_get(struct k_lifo *lifo, int32_t timeout); #define K_LIFO_INITIALIZER(obj) \ { \ .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \ .list = NULL, \ _DEBUG_TRACING_KERNEL_OBJECTS_INIT \ } #define K_LIFO_DEFINE(name) \ struct k_lifo name = K_LIFO_INITIALIZER(name) /* stacks */ struct k_stack { _wait_q_t wait_q; uint32_t *base, *next, *top; _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_stack); }; extern void k_stack_init(struct k_stack *stack, uint32_t *buffer, int num_entries); extern void k_stack_push(struct k_stack *stack, uint32_t data); extern int k_stack_pop(struct k_stack *stack, uint32_t *data, int32_t timeout); #define K_STACK_INITIALIZER(obj, stack_buffer, stack_num_entries) \ { \ .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \ .base = stack_buffer, \ .next = stack_buffer, \ .top = stack_buffer + stack_num_entries, \ _DEBUG_TRACING_KERNEL_OBJECTS_INIT \ } #define K_STACK_DEFINE(name, stack_num_entries) \ uint32_t __noinit \ _k_stack_buf_##name[stack_num_entries]; \ struct k_stack name = \ K_STACK_INITIALIZER(name, _k_stack_buf_##name, \ stack_num_entries) /** * workqueues */ struct k_work; typedef void (*k_work_handler_t)(struct k_work *); /** * A workqueue is a fiber that executes @ref k_work items that are * queued to it. This is useful for drivers which need to schedule * execution of code which might sleep from ISR context. The actual * fiber identifier is not stored in the structure in order to save * space. */ struct k_work_q { struct k_fifo fifo; }; /** * @brief Work flags. */ enum { K_WORK_STATE_PENDING, /* Work item pending state */ }; /** * @brief An item which can be scheduled on a @ref k_work_q. */ struct k_work { void *_reserved; /* Used by k_fifo implementation. */ k_work_handler_t handler; atomic_t flags[1]; }; /** * @brief Statically initialize work item */ #define K_WORK_INITIALIZER(work_handler) \ { \ ._reserved = NULL, \ .handler = work_handler, \ .flags = { 0 } \ } /** * @brief Dynamically initialize work item */ static inline void k_work_init(struct k_work *work, k_work_handler_t handler) { atomic_clear_bit(work->flags, K_WORK_STATE_PENDING); work->handler = handler; } /** * @brief Submit a work item to a workqueue. * * This procedure schedules a work item to be processed. * In the case where the work item has already been submitted and is pending * execution, calling this function will result in a no-op. In this case, the * work item must not be modified externally (e.g. by the caller of this * function), since that could cause the work item to be processed in a * corrupted state. * * @param work_q to schedule the work item * @param work work item * * @return N/A */ static inline void k_work_submit_to_queue(struct k_work_q *work_q, struct k_work *work) { if (!atomic_test_and_set_bit(work->flags, K_WORK_STATE_PENDING)) { k_fifo_put(&work_q->fifo, work); } } /** * @brief Check if work item is pending. */ static inline int k_work_pending(struct k_work *work) { return atomic_test_bit(work->flags, K_WORK_STATE_PENDING); } /** * @brief Start a new workqueue. This routine can be called from either * fiber or task context. */ extern void k_work_q_start(struct k_work_q *work_q, char *stack, unsigned stack_size, unsigned prio); #if defined(CONFIG_SYS_CLOCK_EXISTS) /* * @brief An item which can be scheduled on a @ref k_work_q with a * delay. */ struct k_delayed_work { struct k_work work; struct _timeout timeout; struct k_work_q *work_q; }; /** * @brief Initialize delayed work */ extern void k_delayed_work_init(struct k_delayed_work *work, k_work_handler_t handler); /** * @brief Submit a delayed work item to a workqueue. * * This procedure schedules a work item to be processed after a delay. * Once the delay has passed, the work item is submitted to the work queue: * at this point, it is no longer possible to cancel it. Once the work item's * handler is about to be executed, the work is considered complete and can be * resubmitted. * * Care must be taken if the handler blocks or yield as there is no implicit * mutual exclusion mechanism. Such usage is not recommended and if necessary, * it should be explicitly done between the submitter and the handler. * * @param work_q Workqueue to schedule the work item * @param work Delayed work item * @param delay Delay before scheduling the work item (in milliseconds) * * @return 0 in case of success or negative value in case of error. */ extern int k_delayed_work_submit_to_queue(struct k_work_q *work_q, struct k_delayed_work *work, int32_t delay); /** * @brief Cancel a delayed work item * * This procedure cancels a scheduled work item. If the work has been completed * or is idle, this will do nothing. The only case where this can fail is when * the work has been submitted to the work queue, but the handler has not run * yet. * * @param work Delayed work item to be canceled * * @return 0 in case of success or negative value in case of error. */ extern int k_delayed_work_cancel(struct k_delayed_work *work); #endif /* CONFIG_SYS_CLOCK_EXISTS */ #if defined(CONFIG_SYSTEM_WORKQUEUE) extern struct k_work_q k_sys_work_q; /* * @brief Submit a work item to the system workqueue. * * @ref k_work_submit_to_queue * * When using the system workqueue it is not recommended to block or yield * on the handler since its fiber is shared system wide it may cause * unexpected behavior. */ static inline void k_work_submit(struct k_work *work) { k_work_submit_to_queue(&k_sys_work_q, work); } #if defined(CONFIG_SYS_CLOCK_EXISTS) /* * @brief Submit a delayed work item to the system workqueue. * * @ref k_delayed_work_submit_to_queue * * When using the system workqueue it is not recommended to block or yield * on the handler since its fiber is shared system wide it may cause * unexpected behavior. */ static inline int k_delayed_work_submit(struct k_delayed_work *work, int32_t delay) { return k_delayed_work_submit_to_queue(&k_sys_work_q, work, delay); } #endif /* CONFIG_SYS_CLOCK_EXISTS */ #endif /* CONFIG_SYSTEM_WORKQUEUE */ /** * synchronization */ /* mutexes */ struct k_mutex { _wait_q_t wait_q; struct k_thread *owner; uint32_t lock_count; int owner_orig_prio; #ifdef CONFIG_OBJECT_MONITOR int num_lock_state_changes; int num_conflicts; #endif _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_mutex); }; #ifdef CONFIG_OBJECT_MONITOR #define _MUTEX_INIT_OBJECT_MONITOR \ .num_lock_state_changes = 0, .num_conflicts = 0, #else #define _MUTEX_INIT_OBJECT_MONITOR #endif #define K_MUTEX_INITIALIZER(obj) \ { \ .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \ .owner = NULL, \ .lock_count = 0, \ .owner_orig_prio = K_LOWEST_THREAD_PRIO, \ _MUTEX_INIT_OBJECT_MONITOR \ _DEBUG_TRACING_KERNEL_OBJECTS_INIT \ } #define K_MUTEX_DEFINE(name) \ struct k_mutex name = K_MUTEX_INITIALIZER(name) extern void k_mutex_init(struct k_mutex *mutex); extern int k_mutex_lock(struct k_mutex *mutex, int32_t timeout); extern void k_mutex_unlock(struct k_mutex *mutex); /* semaphores */ struct k_sem { _wait_q_t wait_q; unsigned int count; unsigned int limit; _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_sem); }; /** * @brief Initialize a semaphore object. * * An initial count and a count limit can be specified. The count will never go * over the count limit if the semaphore is given multiple times without being * taken. * * Cannot be called from ISR. * * @param sem Pointer to a semaphore object. * @param initial_count Initial count. * @param limit Highest value the count can take during operation. * * @return N/A */ extern void k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit); /** * @brief Take a semaphore, possibly pending if not available. * * The current execution context tries to obtain the semaphore. If the * semaphore is unavailable and a timeout other than K_NO_WAIT is specified, * the context will pend. * * @param sem Pointer to a semaphore object. * @param timeout Number of milliseconds to wait if semaphore is unavailable, * or one of the special values K_NO_WAIT and K_FOREVER. * * @warning If it is called from the context of an ISR, then the only legal * value for @a timeout is K_NO_WAIT. * * @retval 0 When semaphore is obtained successfully. * @retval -EAGAIN When timeout expires. * @retval -EBUSY When unavailable and the timeout is K_NO_WAIT. * * @sa K_NO_WAIT, K_FOREVER */ extern int k_sem_take(struct k_sem *sem, int32_t timeout); /** * @brief Give a semaphore. * * Increase the semaphore's internal count by 1, up to its limit, if no thread * is waiting on the semaphore; otherwise, wake up the first thread in the * semaphore's waiting queue. * * If the latter case, and if the current context is preemptible, the thread * that is taken off the wait queue will be scheduled in and will preempt the * current thread. * * @param sem Pointer to a semaphore object. * * @return N/A */ extern void k_sem_give(struct k_sem *sem); /** * @brief Reset a semaphore's count to zero. * * The only effect is that the count is set to zero. There is no other * side-effect to calling this function. * * @param sem Pointer to a semaphore object. * * @return N/A */ static inline void k_sem_reset(struct k_sem *sem) { sem->count = 0; } /** * @brief Get a semaphore's count. * * Note there is no guarantee the count has not changed by the time this * function returns. * * @param sem Pointer to a semaphore object. * * @return The current semaphore count. */ static inline unsigned int k_sem_count_get(struct k_sem *sem) { return sem->count; } #ifdef CONFIG_SEMAPHORE_GROUPS /** * @brief Take the first available semaphore * * Given a list of semaphore pointers, this routine will attempt to take one * of them, waiting up to a maximum of @a timeout ms to do so. The taken * semaphore is identified by @a sem (set to NULL on error). * * Be aware that the more semaphores specified in the group, the more stack * space is required by the waiting thread. * * @param sem_array Array of semaphore pointers terminated by a K_END entry * @param sem Identifies the semaphore that was taken * @param timeout Number of milliseconds to wait if semaphores are unavailable, * or one of the special values K_NO_WAIT and K_FOREVER. * * @retval 0 A semaphore was successfully taken * @retval -EBUSY No semaphore was available (@a timeout = K_NO_WAIT) * @retval -EAGAIN Time out occurred while waiting for semaphore * * @sa K_NO_WAIT, K_FOREVER */ extern int k_sem_group_take(struct k_sem *sem_array[], struct k_sem **sem, int32_t timeout); /** * @brief Give all the semaphores in the group * * This routine will give each semaphore in the array of semaphore pointers. * * @param sem_array Array of semaphore pointers terminated by a K_END entry * * @return N/A */ extern void k_sem_group_give(struct k_sem *sem_array[]); /** * @brief Reset the count to zero on each semaphore in the array * * This routine resets the count of each semaphore in the group to zero. * Note that it does NOT have any impact on any thread that might have * been previously pending on any of the semaphores. * * @param sem_array Array of semaphore pointers terminated by a K_END entry * * @return N/A */ extern void k_sem_group_reset(struct k_sem *sem_array[]); #endif #define K_SEM_INITIALIZER(obj, initial_count, count_limit) \ { \ .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \ .count = initial_count, \ .limit = count_limit, \ _DEBUG_TRACING_KERNEL_OBJECTS_INIT \ } /** * @def K_SEM_DEFINE * * @brief Statically define and initialize a global semaphore. * * Create a global semaphore named @name. It is initialized as if k_sem_init() * was called on it. If the semaphore is to be accessed outside the module * where it is defined, it can be declared via * * extern struct k_sem @name; * * @param name Name of the semaphore variable. * @param initial_count Initial count. * @param count_limit Highest value the count can take during operation. */ #define K_SEM_DEFINE(name, initial_count, count_limit) \ struct k_sem name = \ K_SEM_INITIALIZER(name, initial_count, count_limit) /* events */ #define K_EVT_DEFAULT NULL #define K_EVT_IGNORE ((void *)(-1)) typedef int (*k_event_handler_t)(struct k_event *); struct k_event { k_event_handler_t handler; atomic_t send_count; struct k_work work_item; struct k_sem sem; _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_event); }; extern void _k_event_deliver(struct k_work *work); #define K_EVENT_INITIALIZER(obj, event_handler) \ { \ .handler = (k_event_handler_t)event_handler, \ .send_count = ATOMIC_INIT(0), \ .work_item = K_WORK_INITIALIZER(_k_event_deliver), \ .sem = K_SEM_INITIALIZER(obj.sem, 0, 1), \ _DEBUG_TRACING_KERNEL_OBJECTS_INIT \ } #define K_EVENT_DEFINE(name, event_handler) \ struct k_event name \ __in_section(_k_event_list, event, name) = \ K_EVENT_INITIALIZER(name, event_handler) extern void k_event_init(struct k_event *event, k_event_handler_t handler); extern int k_event_recv(struct k_event *event, int32_t timeout); extern void k_event_send(struct k_event *event); /** * data transfers (complex) */ /* message queues */ struct k_msgq { _wait_q_t wait_q; size_t msg_size; uint32_t max_msgs; char *buffer_start; char *buffer_end; char *read_ptr; char *write_ptr; uint32_t used_msgs; _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_msgq); }; #define K_MSGQ_INITIALIZER(obj, q_buffer, q_msg_size, q_max_msgs) \ { \ .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \ .max_msgs = q_max_msgs, \ .msg_size = q_msg_size, \ .buffer_start = q_buffer, \ .buffer_end = q_buffer + (q_max_msgs * q_msg_size), \ .read_ptr = q_buffer, \ .write_ptr = q_buffer, \ .used_msgs = 0, \ _DEBUG_TRACING_KERNEL_OBJECTS_INIT \ } /** * @brief Define a message queue * * This declares and initializes a message queue whose buffer is aligned to * a @a q_align -byte boundary. The new message queue can be passed to the * kernel's message queue functions. * * Note that for each of the mesages in the message queue to be aligned to * @a q_align bytes, then @a q_msg_size must be a multiple of @a q_align. * * @param q_name Name of the message queue * @param q_msg_size The size in bytes of each message * @param q_max_msgs Maximum number of messages the queue can hold * @param q_align Alignment of the message queue's buffer (power of 2) */ #define K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align) \ static char __noinit __aligned(q_align) \ _k_fifo_buf_##q_name[(q_max_msgs) * (q_msg_size)]; \ struct k_msgq q_name = \ K_MSGQ_INITIALIZER(q_name, _k_fifo_buf_##q_name, \ q_msg_size, q_max_msgs) /** * @brief Initialize a message queue. * * @param q Pointer to the message queue object. * @param buffer Pointer to memory area that holds queued messages. * @param msg_size Message size, in bytes. * @param max_msgs Maximum number of messages that can be queued. * * @return N/A */ extern void k_msgq_init(struct k_msgq *q, char *buffer, size_t msg_size, uint32_t max_msgs); /** * @brief Add a message to a message queue. * * This routine adds an item to the message queue. When the message queue is * full, the routine will wait either for space to become available, or until * the specified time limit is reached. * * @param q Pointer to the message queue object. * @param data Pointer to message data area. * @param timeout Number of milliseconds to wait until space becomes available * to add the message into the message queue, or one of the * special values K_NO_WAIT and K_FOREVER. * * @return 0 if successful, -ENOMSG if failed immediately or after queue purge, * -EAGAIN if timed out * * @sa K_NO_WAIT, K_FOREVER */ extern int k_msgq_put(struct k_msgq *q, void *data, int32_t timeout); /** * @brief Obtain a message from a message queue. * * This routine fetches the oldest item from the message queue. When the message * queue is found empty, the routine will wait either until an item is added to * the message queue or until the specified time limit is reached. * * @param q Pointer to the message queue object. * @param data Pointer to message data area. * @param timeout Number of milliseconds to wait to obtain message, or one of * the special values K_NO_WAIT and K_FOREVER. * * @return 0 if successful, -ENOMSG if failed immediately, -EAGAIN if timed out * * @sa K_NO_WAIT, K_FOREVER */ extern int k_msgq_get(struct k_msgq *q, void *data, int32_t timeout); /** * @brief Purge contents of a message queue. * * Discards all messages currently in the message queue, and cancels * any "add message" operations initiated by waiting threads. * * @param q Pointer to the message queue object. * * @return N/A */ extern void k_msgq_purge(struct k_msgq *q); /** * @brief Get the number of unused messages * * @param q Message queue to query * * @return Number of unused messages */ static inline uint32_t k_msgq_num_free_get(struct k_msgq *q) { return q->max_msgs - q->used_msgs; } /** * @brief Get the number of used messages * * @param q Message queue to query * * @return Number of used messages */ static inline uint32_t k_msgq_num_used_get(struct k_msgq *q) { return q->used_msgs; } struct k_mem_block { struct k_mem_pool *pool_id; void *addr_in_pool; void *data; size_t req_size; }; /* mailboxes */ struct k_mbox_msg { /** internal use only - needed for legacy API support */ uint32_t _mailbox; /** size of message (in bytes) */ size_t size; /** application-defined information value */ uint32_t info; /** sender's message data buffer */ void *tx_data; /** internal use only - needed for legacy API support */ void *_rx_data; /** message data block descriptor */ struct k_mem_block tx_block; /** source thread id */ k_tid_t rx_source_thread; /** target thread id */ k_tid_t tx_target_thread; /** internal use only - thread waiting on send (may be a dummy) */ k_tid_t _syncing_thread; #if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0) /** internal use only - semaphore used during asynchronous send */ struct k_sem *_async_sem; #endif }; struct k_mbox { _wait_q_t tx_msg_queue; _wait_q_t rx_msg_queue; _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_mbox); }; #define K_MBOX_INITIALIZER(obj) \ { \ .tx_msg_queue = SYS_DLIST_STATIC_INIT(&obj.tx_msg_queue), \ .rx_msg_queue = SYS_DLIST_STATIC_INIT(&obj.rx_msg_queue), \ _DEBUG_TRACING_KERNEL_OBJECTS_INIT \ } /** * @brief Define a mailbox * * This declares and initializes a mailbox. The new mailbox can be passed to * the kernel's mailbox functions. * * @param name Name of the mailbox */ #define K_MBOX_DEFINE(name) \ struct k_mbox name = \ K_MBOX_INITIALIZER(name) \ /** * @brief Initialize a mailbox. * * @param mbox Pointer to the mailbox object * * @return N/A */ extern void k_mbox_init(struct k_mbox *mbox); /** * @brief Send a mailbox message in a synchronous manner. * * Sends a message to a mailbox and waits for a receiver to process it. * The message data may be in a buffer, in a memory pool block, or non-existent * (i.e. empty message). * * @param mbox Pointer to the mailbox object. * @param tx_msg Pointer to transmit message descriptor. * @param timeout Maximum time (milliseconds) to wait for the message to be * received (although not necessarily completely processed). * Use K_NO_WAIT to return immediately, or K_FOREVER to wait as long * as necessary. * * @return 0 if successful, -ENOMSG if failed immediately, -EAGAIN if timed out */ extern int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, int32_t timeout); #if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0) /** * @brief Send a mailbox message in an asynchronous manner. * * Sends a message to a mailbox without waiting for a receiver to process it. * The message data may be in a buffer, in a memory pool block, or non-existent * (i.e. an empty message). Optionally, the specified semaphore will be given * by the mailbox when the message has been both received and disposed of * by the receiver. * * @param mbox Pointer to the mailbox object. * @param tx_msg Pointer to transmit message descriptor. * @param sem Semaphore identifier, or NULL if none specified. * * @return N/A */ extern void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, struct k_sem *sem); #endif /** * @brief Receive a mailbox message. * * Receives a message from a mailbox, then optionally retrieves its data * and disposes of the message. * * @param mbox Pointer to the mailbox object. * @param rx_msg Pointer to receive message descriptor. * @param buffer Pointer to buffer to receive data. * (Use NULL to defer data retrieval and message disposal until later.) * @param timeout Maximum time (milliseconds) to wait for a message. * Use K_NO_WAIT to return immediately, or K_FOREVER to wait as long as * necessary. * * @return 0 if successful, -ENOMSG if failed immediately, -EAGAIN if timed out */ extern int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg, void *buffer, int32_t timeout); /** * @brief Retrieve mailbox message data into a buffer. * * Completes the processing of a received message by retrieving its data * into a buffer, then disposing of the message. * * Alternatively, this routine can be used to dispose of a received message * without retrieving its data. * * @param rx_msg Pointer to receive message descriptor. * @param buffer Pointer to buffer to receive data. (Use NULL to discard data.) * * @return N/A */ extern void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer); /** * @brief Retrieve mailbox message data into a memory pool block. * * Completes the processing of a received message by retrieving its data * into a memory pool block, then disposing of the message. The memory pool * block that results from successful retrieval must be returned to the pool * once the data has been processed, even in cases where zero bytes of data * are retrieved. * * Alternatively, this routine can be used to dispose of a received message * without retrieving its data. In this case there is no need to return a * memory pool block to the pool. * * This routine allocates a new memory pool block for the data only if the * data is not already in one. If a new block cannot be allocated, the routine * returns a failure code and the received message is left unchanged. This * permits the caller to reattempt data retrieval at a later time or to dispose * of the received message without retrieving its data. * * @param rx_msg Pointer to receive message descriptor. * @param pool Memory pool identifier. (Use NULL to discard data.) * @param block Pointer to area to hold memory pool block info. * @param timeout Maximum time (milliseconds) to wait for a memory pool block. * Use K_NO_WAIT to return immediately, or K_FOREVER to wait as long as * necessary. * * @return 0 if successful, -ENOMEM if failed immediately, -EAGAIN if timed out */ extern int k_mbox_data_block_get(struct k_mbox_msg *rx_msg, struct k_mem_pool *pool, struct k_mem_block *block, int32_t timeout); /* pipes */ struct k_pipe { unsigned char *buffer; /* Pipe buffer: may be NULL */ size_t size; /* Buffer size */ size_t bytes_used; /* # bytes used in buffer */ size_t read_index; /* Where in buffer to read from */ size_t write_index; /* Where in buffer to write */ struct { _wait_q_t readers; /* Reader wait queue */ _wait_q_t writers; /* Writer wait queue */ } wait_q; _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_pipe); }; #define K_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \ { \ .buffer = pipe_buffer, \ .size = pipe_buffer_size, \ .bytes_used = 0, \ .read_index = 0, \ .write_index = 0, \ .wait_q.writers = SYS_DLIST_STATIC_INIT(&obj.wait_q.writers), \ .wait_q.readers = SYS_DLIST_STATIC_INIT(&obj.wait_q.readers), \ _DEBUG_TRACING_KERNEL_OBJECTS_INIT \ } #define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \ static unsigned char __noinit __aligned(pipe_align) \ _k_pipe_buf_##name[pipe_buffer_size]; \ struct k_pipe name = \ K_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size) /** * @brief Runtime initialization of a pipe * * @param pipe Pointer to pipe to initialize * @param buffer Pointer to buffer to use for pipe's ring buffer * @param size Size of the pipe's ring buffer * * @return N/A */ extern void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size); /** * @brief Put a message into the specified pipe * * This routine synchronously adds a message into the pipe specified by * @a pipe. It will wait up to @a timeout for the pipe to accept * @a bytes_to_write bytes of data. If by @a timeout, the pipe could not * accept @a min_xfer bytes of data, it fails. Fewer than @a min_xfer will * only ever be written to the pipe if K_NO_WAIT < @a timeout < K_FOREVER. * * @param pipe Pointer to the pipe * @param data Data to put into the pipe * @param bytes_to_write Desired number of bytes to put into the pipe * @param bytes_written Number of bytes the pipe accepted * @param min_xfer Minimum number of bytes accepted for success * @param timeout Maximum number of milliseconds to wait * * @retval 0 At least @a min_xfer were sent * @retval -EIO Request can not be satisfied (@a timeout is K_NO_WAIT) * @retval -EAGAIN Fewer than @a min_xfer were sent */ extern int k_pipe_put(struct k_pipe *pipe, void *data, size_t bytes_to_write, size_t *bytes_written, size_t min_xfer, int32_t timeout); /** * @brief Get a message from the specified pipe * * This routine synchronously retrieves a message from the pipe specified by * @a pipe. It will wait up to @a timeout to retrieve @a bytes_to_read * bytes of data from the pipe. If by @a timeout, the pipe could not retrieve * @a min_xfer bytes of data, it fails. Fewer than @a min_xfer will * only ever be retrieved from the pipe if K_NO_WAIT < @a timeout < K_FOREVER. * * @param pipe Pointer to the pipe * @param data Location to place retrieved data * @param bytes_to_read Desired number of bytes to retrieve from the pipe * @param bytes_read Number of bytes retrieved from the pipe * @param min_xfer Minimum number of bytes retrieved for success * @param timeout Maximum number of milliseconds to wait * * @retval 0 At least @a min_xfer were transferred * @retval -EIO Request can not be satisfied (@a timeout is K_NO_WAIT) * @retval -EAGAIN Fewer than @a min_xfer were retrieved */ extern int k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read, size_t *bytes_read, size_t min_xfer, int32_t timeout); #if (CONFIG_NUM_PIPE_ASYNC_MSGS > 0) /** * @brief Send a message to the specified pipe * * This routine asynchronously sends a message from the pipe specified by * @a pipe. Once all @a size bytes have been accepted by the pipe, it will * free the memory block @a block and give the semaphore @a sem (if specified). * Up to CONFIG_NUM_PIPE_ASYNC_MSGS asynchronous pipe messages can be in-flight * at any given time. * * @param pipe Pointer to the pipe * @param block Memory block containing data to send * @param size Number of data bytes in memory block to send * @param sem Semaphore to signal upon completion (else NULL) * * @retval N/A */ extern void k_pipe_block_put(struct k_pipe *pipe, struct k_mem_block *block, size_t size, struct k_sem *sem); #endif /** * memory management */ /* memory maps */ struct k_mem_map { _wait_q_t wait_q; uint32_t num_blocks; size_t block_size; char *buffer; char *free_list; uint32_t num_used; _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_mem_map); }; #define K_MEM_MAP_INITIALIZER(obj, map_buffer, map_block_size, map_num_blocks) \ { \ .wait_q = SYS_DLIST_STATIC_INIT(&obj.wait_q), \ .num_blocks = map_num_blocks, \ .block_size = map_block_size, \ .buffer = map_buffer, \ .free_list = NULL, \ .num_used = 0, \ _DEBUG_TRACING_KERNEL_OBJECTS_INIT \ } /** * @brief Define a memory map * * This declares and initializes a memory map whose buffer is aligned to * a @a map_align -byte boundary. The new memory map can be passed to the * kernel's memory map functions. * * Note that for each of the blocks in the memory map to be aligned to * @a map_align bytes, then @a map_block_size must be a multiple of * @a map_align. * * @param name Name of the memory map * @param map_block_size Size of each block in the buffer (in bytes) * @param map_num_blocks Number blocks in the buffer * @param map_align Alignment of the memory map's buffer (power of 2) */ #define K_MEM_MAP_DEFINE(name, map_block_size, map_num_blocks, map_align) \ char __noinit __aligned(map_align) \ _k_mem_map_buf_##name[(map_num_blocks) * (map_block_size)]; \ struct k_mem_map name \ __in_section(_k_mem_map_ptr, private, mem_map) = \ K_MEM_MAP_INITIALIZER(name, _k_mem_map_buf_##name, \ map_block_size, map_num_blocks) /** * @brief Initialize a memory map. * * Initializes the memory map and creates its list of free blocks. * * @param map Pointer to the memory map object * @param buffer Pointer to buffer used for the blocks. * @param block_size Size of each block, in bytes. * @param num_blocks Number of blocks. * * @return N/A */ extern void k_mem_map_init(struct k_mem_map *map, void *buffer, size_t block_size, uint32_t num_blocks); /** * @brief Allocate a memory map block. * * Takes a block from the list of unused blocks. * * @param map Pointer to memory map object. * @param mem Pointer to area to receive block address. * @param timeout Maximum time (milliseconds) to wait for allocation to * complete. Use K_NO_WAIT to return immediately, or K_FOREVER to wait * as long as necessary. * * @return 0 if successful, -ENOMEM if failed immediately, -EAGAIN if timed out */ extern int k_mem_map_alloc(struct k_mem_map *map, void **mem, int32_t timeout); /** * @brief Free a memory map block. * * Gives block to a waiting thread if there is one, otherwise returns it to * the list of unused blocks. * * @param map Pointer to memory map object. * @param mem Pointer to area to containing block address. * * @return N/A */ extern void k_mem_map_free(struct k_mem_map *map, void **mem); /** * @brief Get the number of used memory blocks * * This routine gets the current number of used memory blocks in the * specified pool. It should be used for stats purposes only as that * value may potentially be out-of-date by the time it is used. * * @param map Memory map to query * * @return Number of used memory blocks */ static inline uint32_t k_mem_map_num_used_get(struct k_mem_map *map) { return map->num_used; } /** * @brief Get the number of unused memory blocks * * This routine gets the current number of unused memory blocks in the * specified pool. It should be used for stats purposes only as that value * may potentially be out-of-date by the time it is used. * * @param map Memory map to query * * @return Number of unused memory blocks */ static inline uint32_t k_mem_map_num_free_get(struct k_mem_map *map) { return map->num_blocks - map->num_used; } /* memory pools */ /* * Memory pool requires a buffer and two arrays of structures for the * memory block accounting: * A set of arrays of k_mem_pool_quad_block structures where each keeps a * status of four blocks of memory. */ struct k_mem_pool_quad_block { char *mem_blocks; /* pointer to the first of four memory blocks */ uint32_t mem_status; /* four bits. If bit is set, memory block is allocated */ }; /* * Memory pool mechanism uses one array of k_mem_pool_quad_block for accounting * blocks of one size. Block sizes go from maximal to minimal. Next memory * block size is 4 times less than the previous one and thus requires 4 times * bigger array of k_mem_pool_quad_block structures to keep track of the * memory blocks. */ /* * The array of k_mem_pool_block_set keeps the information of each array of * k_mem_pool_quad_block structures */ struct k_mem_pool_block_set { size_t block_size; /* memory block size */ uint32_t nr_of_entries; /* nr of quad block structures in the array */ struct k_mem_pool_quad_block *quad_block; int count; }; /* Memory pool descriptor */ struct k_mem_pool { size_t max_block_size; size_t min_block_size; uint32_t nr_of_maxblocks; uint32_t nr_of_block_sets; struct k_mem_pool_block_set *block_set; char *bufblock; _wait_q_t wait_q; _DEBUG_TRACING_KERNEL_OBJECTS_NEXT_PTR(k_mem_pool); }; #ifdef CONFIG_ARM #define _SECTION_TYPE_SIGN "%" #else #define _SECTION_TYPE_SIGN "@" #endif /* * Static memory pool initialization */ /* * Use .altmacro to be able to recalculate values and pass them as string * arguments when calling assembler macros resursively */ __asm__(".altmacro\n\t"); /* * Recursively calls a macro * The followig global symbols need to be initialized: * __memory_pool_max_block_size - maximal size of the memory block * __memory_pool_min_block_size - minimal size of the memory block * Notes: * Global symbols are used due the fact that assembler macro allows only * one argument be passed with the % conversion * Some assemblers do not get division operation ("/"). To avoid it >> 2 * is used instead of / 4. * n_max argument needs to go first in the invoked macro, as some * assemblers concatenate \name and %(\n_max * 4) arguments * if \name goes first */ __asm__(".macro __do_recurse macro_name, name, n_max\n\t" ".ifge __memory_pool_max_block_size >> 2 -" " __memory_pool_min_block_size\n\t\t" "__memory_pool_max_block_size = __memory_pool_max_block_size >> 2\n\t\t" "\\macro_name %(\\n_max * 4) \\name\n\t" ".endif\n\t" ".endm\n"); /* * Build quad blocks * Macro allocates space in memory for the array of k_mem_pool_quad_block * structures and recursively calls itself for the next array, 4 times * larger. * The followig global symbols need to be initialized: * __memory_pool_max_block_size - maximal size of the memory block * __memory_pool_min_block_size - minimal size of the memory block * __memory_pool_quad_block_size - sizeof(struct k_mem_pool_quad_block) */ __asm__(".macro _build_quad_blocks n_max, name\n\t" ".balign 4\n\t" "_mem_pool_quad_blocks_\\name\\()_\\n_max:\n\t" ".skip __memory_pool_quad_block_size * \\n_max >> 2\n\t" ".if \\n_max % 4\n\t\t" ".skip __memory_pool_quad_block_size\n\t" ".endif\n\t" "__do_recurse _build_quad_blocks \\name \\n_max\n\t" ".endm\n"); /* * Build block sets and initialize them * Macro initializes the k_mem_pool_block_set structure and * recursively calls itself for the next one. * The followig global symbols need to be initialized: * __memory_pool_max_block_size - maximal size of the memory block * __memory_pool_min_block_size - minimal size of the memory block * __memory_pool_block_set_count, the number of the elements in the * block set array must be set to 0. Macro calculates it's real * value. * Since the macro initializes pointers to an array of k_mem_pool_quad_block * structures, _build_quad_blocks must be called prior it. */ __asm__(".macro _build_block_set n_max, name\n\t" ".int __memory_pool_max_block_size\n\t" /* block_size */ ".if \\n_max % 4\n\t\t" ".int \\n_max >> 2 + 1\n\t" /* nr_of_entries */ ".else\n\t\t" ".int \\n_max >> 2\n\t" ".endif\n\t" ".int _mem_pool_quad_blocks_\\name\\()_\\n_max\n\t" /* quad_block */ ".int 0\n\t" /* count */ "__memory_pool_block_set_count = __memory_pool_block_set_count + 1\n\t" "__do_recurse _build_block_set \\name \\n_max\n\t" ".endm\n"); /* * Build a memory pool structure and initialize it * Macro uses __memory_pool_block_set_count global symbol, * block set addresses and buffer address, it may be called only after * _build_block_set */ __asm__(".macro _build_mem_pool name, min_size, max_size, n_max\n\t" ".pushsection ._k_memory_pool,\"aw\"," _SECTION_TYPE_SIGN "progbits\n\t" ".globl \\name\n\t" "\\name:\n\t" ".int \\max_size\n\t" /* max_block_size */ ".int \\min_size\n\t" /* min_block_size */ ".int \\n_max\n\t" /* nr_of_maxblocks */ ".int __memory_pool_block_set_count\n\t" /* nr_of_block_sets */ ".int _mem_pool_block_sets_\\name\n\t" /* block_set */ ".int _mem_pool_buffer_\\name\n\t" /* bufblock */ ".int 0\n\t" /* wait_q->head */ ".int 0\n\t" /* wait_q->next */ ".popsection\n\t" ".endm\n"); #define _MEMORY_POOL_QUAD_BLOCK_DEFINE(name, min_size, max_size, n_max) \ __asm__(".pushsection ._k_memory_pool.struct,\"aw\"," \ _SECTION_TYPE_SIGN "progbits\n\t"); \ __asm__("__memory_pool_min_block_size = " STRINGIFY(min_size) "\n\t"); \ __asm__("__memory_pool_max_block_size = " STRINGIFY(max_size) "\n\t"); \ __asm__("_build_quad_blocks " STRINGIFY(n_max) " " \ STRINGIFY(name) "\n\t"); \ __asm__(".popsection\n\t") #define _MEMORY_POOL_BLOCK_SETS_DEFINE(name, min_size, max_size, n_max) \ __asm__("__memory_pool_block_set_count = 0\n\t"); \ __asm__("__memory_pool_max_block_size = " STRINGIFY(max_size) "\n\t"); \ __asm__(".pushsection ._k_memory_pool.struct,\"aw\"," \ _SECTION_TYPE_SIGN "progbits\n\t"); \ __asm__(".balign 4\n\t"); \ __asm__("_mem_pool_block_sets_" STRINGIFY(name) ":\n\t"); \ __asm__("_build_block_set " STRINGIFY(n_max) " " \ STRINGIFY(name) "\n\t"); \ __asm__("_mem_pool_block_set_count_" STRINGIFY(name) ":\n\t"); \ __asm__(".int __memory_pool_block_set_count\n\t"); \ __asm__(".popsection\n\t"); \ extern uint32_t _mem_pool_block_set_count_##name; \ extern struct k_mem_pool_block_set _mem_pool_block_sets_##name[] #define _MEMORY_POOL_BUFFER_DEFINE(name, max_size, n_max, align) \ char __noinit __aligned(align) \ _mem_pool_buffer_##name[(max_size) * (n_max)] /** * @brief Define a memory pool * * This declares and initializes a memory pool whose buffer is aligned to * a @a align -byte boundary. The new memory pool can be passed to the * kernel's memory pool functions. * * Note that for each of the minimum sized blocks to be aligned to @a align * bytes, then @a min_size must be a multiple of @a align. * * @param name Name of the memory pool * @param min_size Minimum block size in the pool * @param max_size Maximum block size in the pool * @param n_max Number of maximum sized blocks in the pool * @param align Alignment of the memory pool's buffer */ #define K_MEM_POOL_DEFINE(name, min_size, max_size, n_max, align) \ _MEMORY_POOL_QUAD_BLOCK_DEFINE(name, min_size, max_size, n_max); \ _MEMORY_POOL_BLOCK_SETS_DEFINE(name, min_size, max_size, n_max); \ _MEMORY_POOL_BUFFER_DEFINE(name, max_size, n_max, align); \ __asm__("_build_mem_pool " STRINGIFY(name) " " STRINGIFY(min_size) " " \ STRINGIFY(max_size) " " STRINGIFY(n_max) "\n\t"); \ extern struct k_mem_pool name /* * Dummy function that assigns the value of sizeof(struct k_mem_pool_quad_block) * to __memory_pool_quad_block_size absolute symbol. * This function does not get called, but compiler calculates the value and * assigns it to the absolute symbol, that, in turn is used by assembler macros. */ static void __attribute__ ((used)) __k_mem_pool_quad_block_size_define(void) { __asm__(".globl __memory_pool_quad_block_size\n\t" #ifdef CONFIG_NIOS2 "__memory_pool_quad_block_size = %0\n\t" #else "__memory_pool_quad_block_size = %c0\n\t" #endif : : "n"(sizeof(struct k_mem_pool_quad_block))); } /** * @brief Allocate memory from a memory pool * * @param pool Pointer to the memory pool object * @param block Pointer to the allocated memory's block descriptor * @param size Minimum number of bytes to allocate * @param timeout Maximum time (milliseconds) to wait for operation to * complete. Use K_NO_WAIT to return immediately, or K_FOREVER * to wait as long as necessary. * * @return 0 on success, -ENOMEM on failure */ extern int k_mem_pool_alloc(struct k_mem_pool *pool, struct k_mem_block *block, size_t size, int32_t timeout); /** * @brief Return previously allocated memory to its memory pool * * @param block Pointer to allocated memory's block descriptor * * @return N/A */ extern void k_mem_pool_free(struct k_mem_block *block); /** * @brief Defragment the specified memory pool * * @param pool Pointer to the memory pool object * * @return N/A */ extern void k_mem_pool_defrag(struct k_mem_pool *pool); /** * @brief Allocate memory from heap * * This routine provides traditional malloc() semantics. The memory is * allocated from the heap memory pool. * * @param size Size of memory requested by the caller (in bytes) * * @return Address of the allocated memory on success; otherwise NULL */ extern void *k_malloc(size_t size); /** * @brief Free memory allocated from heap * * This routine provides traditional free() semantics. The memory being * returned must have been allocated from the heap memory pool. * * @param ptr Pointer to previously allocated memory * * @return N/A */ extern void k_free(void *ptr); /* * legacy.h must be before arch/cpu.h to allow the ioapic/loapic drivers to * hook into the device subsystem, which itself uses nanokernel semaphores, * and thus currently requires the definition of nano_sem. */ #include #include /* * private APIs that are utilized by one or more public APIs */ extern int _is_thread_essential(void); extern void _init_static_threads(void); #ifdef __cplusplus } #endif #endif /* _kernel__h_ */