/** @file SMM Core Main Entry Point Copyright (c) 2009 - 2014, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "PiSmmCore.h" // // Physical pointer to private structure shared between SMM IPL and the SMM Core // SMM_CORE_PRIVATE_DATA *gSmmCorePrivate; // // SMM Core global variable for SMM System Table. Only accessed as a physical structure in SMRAM. // EFI_SMM_SYSTEM_TABLE2 gSmmCoreSmst = { { SMM_SMST_SIGNATURE, EFI_SMM_SYSTEM_TABLE2_REVISION, sizeof (gSmmCoreSmst.Hdr) }, NULL, // SmmFirmwareVendor 0, // SmmFirmwareRevision SmmInstallConfigurationTable, { { (EFI_SMM_CPU_IO2) SmmEfiNotAvailableYetArg5, // SmmMemRead (EFI_SMM_CPU_IO2) SmmEfiNotAvailableYetArg5 // SmmMemWrite }, { (EFI_SMM_CPU_IO2) SmmEfiNotAvailableYetArg5, // SmmIoRead (EFI_SMM_CPU_IO2) SmmEfiNotAvailableYetArg5 // SmmIoWrite } }, SmmAllocatePool, SmmFreePool, SmmAllocatePages, SmmFreePages, NULL, // SmmStartupThisAp 0, // CurrentlyExecutingCpu 0, // NumberOfCpus NULL, // CpuSaveStateSize NULL, // CpuSaveState 0, // NumberOfTableEntries NULL, // SmmConfigurationTable SmmInstallProtocolInterface, SmmUninstallProtocolInterface, SmmHandleProtocol, SmmRegisterProtocolNotify, SmmLocateHandle, SmmLocateProtocol, SmiManage, SmiHandlerRegister, SmiHandlerUnRegister }; // // Flag to determine if the platform has performed a legacy boot. // If this flag is TRUE, then the runtime code and runtime data associated with the // SMM IPL are converted to free memory, so the SMM COre must guarantee that is // does not touch of the code/data associated with the SMM IPL if this flag is TRUE. // BOOLEAN mInLegacyBoot = FALSE; // // Table of SMI Handlers that are registered by the SMM Core when it is initialized // SMM_CORE_SMI_HANDLERS mSmmCoreSmiHandlers[] = { { SmmDriverDispatchHandler, &gEfiEventDxeDispatchGuid, NULL, TRUE }, { SmmReadyToLockHandler, &gEfiDxeSmmReadyToLockProtocolGuid, NULL, TRUE }, { SmmLegacyBootHandler, &gEfiEventLegacyBootGuid, NULL, FALSE }, { SmmEndOfDxeHandler, &gEfiEndOfDxeEventGroupGuid, NULL, FALSE }, { NULL, NULL, NULL, FALSE } }; UINTN mFullSmramRangeCount; EFI_SMRAM_DESCRIPTOR *mFullSmramRanges; // // Maximum support address used to check input CommunicationBuffer // UINTN mMaximumSupportAddress = 0; /** Place holder function until all the SMM System Table Service are available. Note: This function is only used by SMRAM invocation. It is never used by DXE invocation. @param Arg1 Undefined @param Arg2 Undefined @param Arg3 Undefined @param Arg4 Undefined @param Arg5 Undefined @return EFI_NOT_AVAILABLE_YET **/ EFI_STATUS EFIAPI SmmEfiNotAvailableYetArg5 ( UINTN Arg1, UINTN Arg2, UINTN Arg3, UINTN Arg4, UINTN Arg5 ) { // // This function should never be executed. If it does, then the architectural protocols // have not been designed correctly. // return EFI_NOT_AVAILABLE_YET; } /** Software SMI handler that is called when a Legacy Boot event is signalled. The SMM Core uses this signal to know that a Legacy Boot has been performed and that gSmmCorePrivate that is shared between the UEFI and SMM execution environments can not be accessed from SMM anymore since that structure is considered free memory by a legacy OS. @param DispatchHandle The unique handle assigned to this handler by SmiHandlerRegister(). @param Context Points to an optional handler context which was specified when the handler was registered. @param CommBuffer A pointer to a collection of data in memory that will be conveyed from a non-SMM environment into an SMM environment. @param CommBufferSize The size of the CommBuffer. @return Status Code **/ EFI_STATUS EFIAPI SmmLegacyBootHandler ( IN EFI_HANDLE DispatchHandle, IN CONST VOID *Context, OPTIONAL IN OUT VOID *CommBuffer, OPTIONAL IN OUT UINTN *CommBufferSize OPTIONAL ) { mInLegacyBoot = TRUE; return EFI_SUCCESS; } /** Software SMI handler that is called when the DxeSmmReadyToLock protocol is added or if gEfiEventReadyToBootGuid is signalled. This function unregisters the Software SMIs that are nor required after SMRAM is locked and installs the SMM Ready To Lock Protocol so SMM Drivers are informed that SMRAM is about to be locked. It also verifies the the SMM CPU I/O 2 Protocol has been installed and NULLs gBS and gST because they can not longer be used after SMRAM is locked. @param DispatchHandle The unique handle assigned to this handler by SmiHandlerRegister(). @param Context Points to an optional handler context which was specified when the handler was registered. @param CommBuffer A pointer to a collection of data in memory that will be conveyed from a non-SMM environment into an SMM environment. @param CommBufferSize The size of the CommBuffer. @return Status Code **/ EFI_STATUS EFIAPI SmmReadyToLockHandler ( IN EFI_HANDLE DispatchHandle, IN CONST VOID *Context, OPTIONAL IN OUT VOID *CommBuffer, OPTIONAL IN OUT UINTN *CommBufferSize OPTIONAL ) { EFI_STATUS Status; UINTN Index; EFI_HANDLE SmmHandle; VOID *Interface; // // Unregister SMI Handlers that are no required after the SMM driver dispatch is stopped // for (Index = 0; mSmmCoreSmiHandlers[Index].HandlerType != NULL; Index++) { if (mSmmCoreSmiHandlers[Index].UnRegister) { SmiHandlerUnRegister (mSmmCoreSmiHandlers[Index].DispatchHandle); } } // // Install SMM Ready to lock protocol // SmmHandle = NULL; Status = SmmInstallProtocolInterface ( &SmmHandle, &gEfiSmmReadyToLockProtocolGuid, EFI_NATIVE_INTERFACE, NULL ); // // Make sure SMM CPU I/O 2 Procol has been installed into the handle database // Status = SmmLocateProtocol (&gEfiSmmCpuIo2ProtocolGuid, NULL, &Interface); // // Print a message on a debug build if the SMM CPU I/O 2 Protocol is not installed // DEBUG_CODE_BEGIN (); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_ERROR, "\nSMM: SmmCpuIo Arch Protocol not present!!\n")); } DEBUG_CODE_END (); // // Assert if the CPU I/O 2 Protocol is not installed // ASSERT_EFI_ERROR (Status); // // Display any drivers that were not dispatched because dependency expression // evaluated to false if this is a debug build // DEBUG_CODE_BEGIN (); SmmDisplayDiscoveredNotDispatched (); DEBUG_CODE_END (); // // Not allowed to use gST or gBS after lock // gST = NULL; gBS = NULL; SmramProfileReadyToLock (); return Status; } /** Software SMI handler that is called when the EndOfDxe event is signalled. This function installs the SMM EndOfDxe Protocol so SMM Drivers are informed that platform code will invoke 3rd part code. @param DispatchHandle The unique handle assigned to this handler by SmiHandlerRegister(). @param Context Points to an optional handler context which was specified when the handler was registered. @param CommBuffer A pointer to a collection of data in memory that will be conveyed from a non-SMM environment into an SMM environment. @param CommBufferSize The size of the CommBuffer. @return Status Code **/ EFI_STATUS EFIAPI SmmEndOfDxeHandler ( IN EFI_HANDLE DispatchHandle, IN CONST VOID *Context, OPTIONAL IN OUT VOID *CommBuffer, OPTIONAL IN OUT UINTN *CommBufferSize OPTIONAL ) { EFI_STATUS Status; EFI_HANDLE SmmHandle; DEBUG ((EFI_D_INFO, "SmmEndOfDxeHandler\n")); // // Install SMM EndOfDxe protocol // SmmHandle = NULL; Status = SmmInstallProtocolInterface ( &SmmHandle, &gEfiSmmEndOfDxeProtocolGuid, EFI_NATIVE_INTERFACE, NULL ); return Status; } /** Caculate and save the maximum support address. **/ VOID CaculateMaximumSupportAddress ( VOID ) { VOID *Hob; UINT32 RegEax; UINT8 PhysicalAddressBits; // // Get physical address bits supported. // Hob = GetFirstHob (EFI_HOB_TYPE_CPU); if (Hob != NULL) { PhysicalAddressBits = ((EFI_HOB_CPU *) Hob)->SizeOfMemorySpace; } else { AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL); if (RegEax >= 0x80000008) { AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL); PhysicalAddressBits = (UINT8) RegEax; } else { PhysicalAddressBits = 36; } } // // IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses. // ASSERT (PhysicalAddressBits <= 52); if (PhysicalAddressBits > 48) { PhysicalAddressBits = 48; } // // Save the maximum support address in one global variable // mMaximumSupportAddress = (UINTN) (LShiftU64 (1, PhysicalAddressBits) - 1); DEBUG ((EFI_D_INFO, "mMaximumSupportAddress = 0x%lx\n", mMaximumSupportAddress)); } /** Check if input buffer is in valid address scope or not. @param[in] Pointer Pointer to the input buffer. @param[in] BufferSize Input buffer size in bytes. @retval TRUE The input buffer is in valid address scope. @retval FALSE The input buffer is not in valid address scope. **/ BOOLEAN IsValidPointer ( IN VOID *Pointer, IN UINTN BufferSize ) { if ((UINTN) Pointer > mMaximumSupportAddress) { return FALSE; } if (BufferSize > (mMaximumSupportAddress - (UINTN) Pointer)) { return FALSE; } return TRUE; } /** The main entry point to SMM Foundation. Note: This function is only used by SMRAM invocation. It is never used by DXE invocation. @param SmmEntryContext Processor information and functionality needed by SMM Foundation. **/ VOID EFIAPI SmmEntryPoint ( IN CONST EFI_SMM_ENTRY_CONTEXT *SmmEntryContext ) { EFI_STATUS Status; EFI_SMM_COMMUNICATE_HEADER *CommunicateHeader; BOOLEAN InLegacyBoot; PERF_START (NULL, "SMM", NULL, 0) ; // // Update SMST using the context // CopyMem (&gSmmCoreSmst.SmmStartupThisAp, SmmEntryContext, sizeof (EFI_SMM_ENTRY_CONTEXT)); // // Call platform hook before Smm Dispatch // PlatformHookBeforeSmmDispatch (); // // If a legacy boot has occured, then make sure gSmmCorePrivate is not accessed // InLegacyBoot = mInLegacyBoot; if (!InLegacyBoot) { // // Mark the InSmm flag as TRUE, it will be used by SmmBase2 protocol // gSmmCorePrivate->InSmm = TRUE; // // Check to see if this is a Synchronous SMI sent through the SMM Communication // Protocol or an Asynchronous SMI // if (gSmmCorePrivate->CommunicationBuffer != NULL) { // // Synchronous SMI for SMM Core or request from Communicate protocol // if (!IsValidPointer (gSmmCorePrivate->CommunicationBuffer, gSmmCorePrivate->BufferSize)) { // // If CommunicationBuffer is not in valid address scope, return EFI_INVALID_PARAMETER // gSmmCorePrivate->CommunicationBuffer = NULL; gSmmCorePrivate->ReturnStatus = EFI_INVALID_PARAMETER; } else { CommunicateHeader = (EFI_SMM_COMMUNICATE_HEADER *)gSmmCorePrivate->CommunicationBuffer; gSmmCorePrivate->BufferSize -= OFFSET_OF (EFI_SMM_COMMUNICATE_HEADER, Data); Status = SmiManage ( &CommunicateHeader->HeaderGuid, NULL, CommunicateHeader->Data, &gSmmCorePrivate->BufferSize ); // // Update CommunicationBuffer, BufferSize and ReturnStatus // Communicate service finished, reset the pointer to CommBuffer to NULL // gSmmCorePrivate->BufferSize += OFFSET_OF (EFI_SMM_COMMUNICATE_HEADER, Data); gSmmCorePrivate->CommunicationBuffer = NULL; gSmmCorePrivate->ReturnStatus = (Status == EFI_SUCCESS) ? EFI_SUCCESS : EFI_NOT_FOUND; } } } // // Process Asynchronous SMI sources // SmiManage (NULL, NULL, NULL, NULL); // // Call platform hook after Smm Dispatch // PlatformHookAfterSmmDispatch (); // // If a legacy boot has occured, then make sure gSmmCorePrivate is not accessed // if (!InLegacyBoot) { // // Clear the InSmm flag as we are going to leave SMM // gSmmCorePrivate->InSmm = FALSE; } PERF_END (NULL, "SMM", NULL, 0) ; } /** The Entry Point for SMM Core Install DXE Protocols and reload SMM Core into SMRAM and register SMM Core EntryPoint on the SMI vector. Note: This function is called for both DXE invocation and SMRAM invocation. @param ImageHandle The firmware allocated handle for the EFI image. @param SystemTable A pointer to the EFI System Table. @retval EFI_SUCCESS The entry point is executed successfully. @retval Other Some error occurred when executing this entry point. **/ EFI_STATUS EFIAPI SmmMain ( IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable ) { EFI_STATUS Status; UINTN Index; // // Get SMM Core Private context passed in from SMM IPL in ImageHandle. // gSmmCorePrivate = (SMM_CORE_PRIVATE_DATA *)ImageHandle; // // Fill in SMRAM physical address for the SMM Services Table and the SMM Entry Point. // gSmmCorePrivate->Smst = &gSmmCoreSmst; gSmmCorePrivate->SmmEntryPoint = SmmEntryPoint; // // Initialize memory service using free SMRAM // SmmInitializeMemoryServices (gSmmCorePrivate->SmramRangeCount, gSmmCorePrivate->SmramRanges); SmramProfileInit (); // // Copy FullSmramRanges to SMRAM // mFullSmramRangeCount = gSmmCorePrivate->FullSmramRangeCount; mFullSmramRanges = AllocatePool (mFullSmramRangeCount * sizeof (EFI_SMRAM_DESCRIPTOR)); ASSERT (mFullSmramRanges != NULL); CopyMem (mFullSmramRanges, gSmmCorePrivate->FullSmramRanges, mFullSmramRangeCount * sizeof (EFI_SMRAM_DESCRIPTOR)); // // Register all SMI Handlers required by the SMM Core // for (Index = 0; mSmmCoreSmiHandlers[Index].HandlerType != NULL; Index++) { Status = SmiHandlerRegister ( mSmmCoreSmiHandlers[Index].Handler, mSmmCoreSmiHandlers[Index].HandlerType, &mSmmCoreSmiHandlers[Index].DispatchHandle ); ASSERT_EFI_ERROR (Status); } RegisterSmramProfileHandler (); // // Caculate and save maximum support address used in SmmEntryPoint(). // CaculateMaximumSupportAddress (); return EFI_SUCCESS; }