/* * z_Windows_NT_util.c -- platform specific routines. */ //===----------------------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.txt for details. // //===----------------------------------------------------------------------===// #include "kmp.h" #include "kmp_itt.h" #include "kmp_i18n.h" #include "kmp_io.h" #include "kmp_wait_release.h" /* This code is related to NtQuerySystemInformation() function. This function is used in the Load balance algorithm for OMP_DYNAMIC=true to find the number of running threads in the system. */ #include #include // UNICODE_STRING enum SYSTEM_INFORMATION_CLASS { SystemProcessInformation = 5 }; // SYSTEM_INFORMATION_CLASS struct CLIENT_ID { HANDLE UniqueProcess; HANDLE UniqueThread; }; // struct CLIENT_ID enum THREAD_STATE { StateInitialized, StateReady, StateRunning, StateStandby, StateTerminated, StateWait, StateTransition, StateUnknown }; // enum THREAD_STATE struct VM_COUNTERS { SIZE_T PeakVirtualSize; SIZE_T VirtualSize; ULONG PageFaultCount; SIZE_T PeakWorkingSetSize; SIZE_T WorkingSetSize; SIZE_T QuotaPeakPagedPoolUsage; SIZE_T QuotaPagedPoolUsage; SIZE_T QuotaPeakNonPagedPoolUsage; SIZE_T QuotaNonPagedPoolUsage; SIZE_T PagefileUsage; SIZE_T PeakPagefileUsage; SIZE_T PrivatePageCount; }; // struct VM_COUNTERS struct SYSTEM_THREAD { LARGE_INTEGER KernelTime; LARGE_INTEGER UserTime; LARGE_INTEGER CreateTime; ULONG WaitTime; LPVOID StartAddress; CLIENT_ID ClientId; DWORD Priority; LONG BasePriority; ULONG ContextSwitchCount; THREAD_STATE State; ULONG WaitReason; }; // SYSTEM_THREAD KMP_BUILD_ASSERT( offsetof( SYSTEM_THREAD, KernelTime ) == 0 ); #if KMP_ARCH_X86 KMP_BUILD_ASSERT( offsetof( SYSTEM_THREAD, StartAddress ) == 28 ); KMP_BUILD_ASSERT( offsetof( SYSTEM_THREAD, State ) == 52 ); #else KMP_BUILD_ASSERT( offsetof( SYSTEM_THREAD, StartAddress ) == 32 ); KMP_BUILD_ASSERT( offsetof( SYSTEM_THREAD, State ) == 68 ); #endif struct SYSTEM_PROCESS_INFORMATION { ULONG NextEntryOffset; ULONG NumberOfThreads; LARGE_INTEGER Reserved[ 3 ]; LARGE_INTEGER CreateTime; LARGE_INTEGER UserTime; LARGE_INTEGER KernelTime; UNICODE_STRING ImageName; DWORD BasePriority; HANDLE ProcessId; HANDLE ParentProcessId; ULONG HandleCount; ULONG Reserved2[ 2 ]; VM_COUNTERS VMCounters; IO_COUNTERS IOCounters; SYSTEM_THREAD Threads[ 1 ]; }; // SYSTEM_PROCESS_INFORMATION typedef SYSTEM_PROCESS_INFORMATION * PSYSTEM_PROCESS_INFORMATION; KMP_BUILD_ASSERT( offsetof( SYSTEM_PROCESS_INFORMATION, NextEntryOffset ) == 0 ); KMP_BUILD_ASSERT( offsetof( SYSTEM_PROCESS_INFORMATION, CreateTime ) == 32 ); KMP_BUILD_ASSERT( offsetof( SYSTEM_PROCESS_INFORMATION, ImageName ) == 56 ); #if KMP_ARCH_X86 KMP_BUILD_ASSERT( offsetof( SYSTEM_PROCESS_INFORMATION, ProcessId ) == 68 ); KMP_BUILD_ASSERT( offsetof( SYSTEM_PROCESS_INFORMATION, HandleCount ) == 76 ); KMP_BUILD_ASSERT( offsetof( SYSTEM_PROCESS_INFORMATION, VMCounters ) == 88 ); KMP_BUILD_ASSERT( offsetof( SYSTEM_PROCESS_INFORMATION, IOCounters ) == 136 ); KMP_BUILD_ASSERT( offsetof( SYSTEM_PROCESS_INFORMATION, Threads ) == 184 ); #else KMP_BUILD_ASSERT( offsetof( SYSTEM_PROCESS_INFORMATION, ProcessId ) == 80 ); KMP_BUILD_ASSERT( offsetof( SYSTEM_PROCESS_INFORMATION, HandleCount ) == 96 ); KMP_BUILD_ASSERT( offsetof( SYSTEM_PROCESS_INFORMATION, VMCounters ) == 112 ); KMP_BUILD_ASSERT( offsetof( SYSTEM_PROCESS_INFORMATION, IOCounters ) == 208 ); KMP_BUILD_ASSERT( offsetof( SYSTEM_PROCESS_INFORMATION, Threads ) == 256 ); #endif typedef NTSTATUS (NTAPI *NtQuerySystemInformation_t)( SYSTEM_INFORMATION_CLASS, PVOID, ULONG, PULONG ); NtQuerySystemInformation_t NtQuerySystemInformation = NULL; HMODULE ntdll = NULL; /* End of NtQuerySystemInformation()-related code */ #if KMP_GROUP_AFFINITY static HMODULE kernel32 = NULL; #endif /* KMP_GROUP_AFFINITY */ /* ----------------------------------------------------------------------------------- */ /* ----------------------------------------------------------------------------------- */ #if KMP_HANDLE_SIGNALS typedef void (* sig_func_t )( int ); static sig_func_t __kmp_sighldrs[ NSIG ]; static int __kmp_siginstalled[ NSIG ]; #endif static HANDLE __kmp_monitor_ev; static kmp_int64 __kmp_win32_time; double __kmp_win32_tick; int __kmp_init_runtime = FALSE; CRITICAL_SECTION __kmp_win32_section; void __kmp_win32_mutex_init( kmp_win32_mutex_t *mx ) { InitializeCriticalSection( & mx->cs ); #if USE_ITT_BUILD __kmp_itt_system_object_created( & mx->cs, "Critical Section" ); #endif /* USE_ITT_BUILD */ } void __kmp_win32_mutex_destroy( kmp_win32_mutex_t *mx ) { DeleteCriticalSection( & mx->cs ); } void __kmp_win32_mutex_lock( kmp_win32_mutex_t *mx ) { EnterCriticalSection( & mx->cs ); } void __kmp_win32_mutex_unlock( kmp_win32_mutex_t *mx ) { LeaveCriticalSection( & mx->cs ); } void __kmp_win32_cond_init( kmp_win32_cond_t *cv ) { cv->waiters_count_ = 0; cv->wait_generation_count_ = 0; cv->release_count_ = 0; /* Initialize the critical section */ __kmp_win32_mutex_init( & cv->waiters_count_lock_ ); /* Create a manual-reset event. */ cv->event_ = CreateEvent( NULL, // no security TRUE, // manual-reset FALSE, // non-signaled initially NULL ); // unnamed #if USE_ITT_BUILD __kmp_itt_system_object_created( cv->event_, "Event" ); #endif /* USE_ITT_BUILD */ } void __kmp_win32_cond_destroy( kmp_win32_cond_t *cv ) { __kmp_win32_mutex_destroy( & cv->waiters_count_lock_ ); __kmp_free_handle( cv->event_ ); memset( cv, '\0', sizeof( *cv ) ); } /* TODO associate cv with a team instead of a thread so as to optimize * the case where we wake up a whole team */ void __kmp_win32_cond_wait( kmp_win32_cond_t *cv, kmp_win32_mutex_t *mx, kmp_info_t *th, int need_decrease_load ) { int my_generation; int last_waiter; /* Avoid race conditions */ __kmp_win32_mutex_lock( &cv->waiters_count_lock_ ); /* Increment count of waiters */ cv->waiters_count_++; /* Store current generation in our activation record. */ my_generation = cv->wait_generation_count_; __kmp_win32_mutex_unlock( &cv->waiters_count_lock_ ); __kmp_win32_mutex_unlock( mx ); for (;;) { int wait_done; /* Wait until the event is signaled */ WaitForSingleObject( cv->event_, INFINITE ); __kmp_win32_mutex_lock( &cv->waiters_count_lock_ ); /* Exit the loop when the event_> is signaled and * there are still waiting threads from this * that haven't been released from this wait yet. */ wait_done = ( cv->release_count_ > 0 ) && ( cv->wait_generation_count_ != my_generation ); __kmp_win32_mutex_unlock( &cv->waiters_count_lock_); /* there used to be a semicolon after the if statement, * it looked like a bug, so i removed it */ if( wait_done ) break; } __kmp_win32_mutex_lock( mx ); __kmp_win32_mutex_lock( &cv->waiters_count_lock_ ); cv->waiters_count_--; cv->release_count_--; last_waiter = ( cv->release_count_ == 0 ); __kmp_win32_mutex_unlock( &cv->waiters_count_lock_ ); if( last_waiter ) { /* We're the last waiter to be notified, so reset the manual event. */ ResetEvent( cv->event_ ); } } void __kmp_win32_cond_broadcast( kmp_win32_cond_t *cv ) { __kmp_win32_mutex_lock( &cv->waiters_count_lock_ ); if( cv->waiters_count_ > 0 ) { SetEvent( cv->event_ ); /* Release all the threads in this generation. */ cv->release_count_ = cv->waiters_count_; /* Start a new generation. */ cv->wait_generation_count_++; } __kmp_win32_mutex_unlock( &cv->waiters_count_lock_ ); } void __kmp_win32_cond_signal( kmp_win32_cond_t *cv ) { __kmp_win32_cond_broadcast( cv ); } /* ------------------------------------------------------------------------ */ /* ------------------------------------------------------------------------ */ void __kmp_enable( int new_state ) { if (__kmp_init_runtime) LeaveCriticalSection( & __kmp_win32_section ); } void __kmp_disable( int *old_state ) { *old_state = 0; if (__kmp_init_runtime) EnterCriticalSection( & __kmp_win32_section ); } void __kmp_suspend_initialize( void ) { /* do nothing */ } static void __kmp_suspend_initialize_thread( kmp_info_t *th ) { if ( ! TCR_4( th->th.th_suspend_init ) ) { /* this means we haven't initialized the suspension pthread objects for this thread in this instance of the process */ __kmp_win32_cond_init( &th->th.th_suspend_cv ); __kmp_win32_mutex_init( &th->th.th_suspend_mx ); TCW_4( th->th.th_suspend_init, TRUE ); } } void __kmp_suspend_uninitialize_thread( kmp_info_t *th ) { if ( TCR_4( th->th.th_suspend_init ) ) { /* this means we have initialize the suspension pthread objects for this thread in this instance of the process */ __kmp_win32_cond_destroy( & th->th.th_suspend_cv ); __kmp_win32_mutex_destroy( & th->th.th_suspend_mx ); TCW_4( th->th.th_suspend_init, FALSE ); } } /* This routine puts the calling thread to sleep after setting the * sleep bit for the indicated flag variable to true. */ template static inline void __kmp_suspend_template( int th_gtid, C *flag ) { kmp_info_t *th = __kmp_threads[th_gtid]; int status; typename C::flag_t old_spin; KF_TRACE( 30, ("__kmp_suspend_template: T#%d enter for flag's loc(%p)\n", th_gtid, flag->get() ) ); __kmp_suspend_initialize_thread( th ); __kmp_win32_mutex_lock( &th->th.th_suspend_mx ); KF_TRACE( 10, ( "__kmp_suspend_template: T#%d setting sleep bit for flag's loc(%p)\n", th_gtid, flag->get() ) ); /* TODO: shouldn't this use release semantics to ensure that __kmp_suspend_initialize_thread gets called first? */ old_spin = flag->set_sleeping(); KF_TRACE( 5, ( "__kmp_suspend_template: T#%d set sleep bit for flag's loc(%p)==%d\n", th_gtid, flag->get(), *(flag->get()) ) ); if ( flag->done_check_val(old_spin) ) { old_spin = flag->unset_sleeping(); KF_TRACE( 5, ( "__kmp_suspend_template: T#%d false alarm, reset sleep bit for flag's loc(%p)\n", th_gtid, flag->get()) ); } else { #ifdef DEBUG_SUSPEND __kmp_suspend_count++; #endif /* Encapsulate in a loop as the documentation states that this may * "with low probability" return when the condition variable has * not been signaled or broadcast */ int deactivated = FALSE; TCW_PTR(th->th.th_sleep_loc, (void *)flag); while ( flag->is_sleeping() ) { KF_TRACE( 15, ("__kmp_suspend_template: T#%d about to perform kmp_win32_cond_wait()\n", th_gtid ) ); // Mark the thread as no longer active (only in the first iteration of the loop). if ( ! deactivated ) { th->th.th_active = FALSE; if ( th->th.th_active_in_pool ) { th->th.th_active_in_pool = FALSE; KMP_TEST_THEN_DEC32( (kmp_int32 *) &__kmp_thread_pool_active_nth ); KMP_DEBUG_ASSERT( TCR_4(__kmp_thread_pool_active_nth) >= 0 ); } deactivated = TRUE; __kmp_win32_cond_wait( &th->th.th_suspend_cv, &th->th.th_suspend_mx, 0, 0 ); } else { __kmp_win32_cond_wait( &th->th.th_suspend_cv, &th->th.th_suspend_mx, 0, 0 ); } #ifdef KMP_DEBUG if( flag->is_sleeping() ) { KF_TRACE( 100, ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid )); } #endif /* KMP_DEBUG */ } // while // Mark the thread as active again (if it was previous marked as inactive) if ( deactivated ) { th->th.th_active = TRUE; if ( TCR_4(th->th.th_in_pool) ) { KMP_TEST_THEN_INC32( (kmp_int32 *) &__kmp_thread_pool_active_nth ); th->th.th_active_in_pool = TRUE; } } } __kmp_win32_mutex_unlock( &th->th.th_suspend_mx ); KF_TRACE( 30, ("__kmp_suspend_template: T#%d exit\n", th_gtid ) ); } void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) { __kmp_suspend_template(th_gtid, flag); } void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) { __kmp_suspend_template(th_gtid, flag); } void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { __kmp_suspend_template(th_gtid, flag); } /* This routine signals the thread specified by target_gtid to wake up * after setting the sleep bit indicated by the flag argument to FALSE */ template static inline void __kmp_resume_template( int target_gtid, C *flag ) { kmp_info_t *th = __kmp_threads[target_gtid]; int status; #ifdef KMP_DEBUG int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; #endif KF_TRACE( 30, ( "__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", gtid, target_gtid ) ); __kmp_suspend_initialize_thread( th ); __kmp_win32_mutex_lock( &th->th.th_suspend_mx ); if (!flag) { // coming from __kmp_null_resume_wrapper flag = (C *)th->th.th_sleep_loc; } // First, check if the flag is null or its type has changed. If so, someone else woke it up. if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type simply shows what flag was cast to KF_TRACE( 5, ( "__kmp_resume_template: T#%d exiting, thread T#%d already awake: flag's loc(%p)\n", gtid, target_gtid, NULL ) ); __kmp_win32_mutex_unlock( &th->th.th_suspend_mx ); return; } else { typename C::flag_t old_spin = flag->unset_sleeping(); if ( !flag->is_sleeping_val(old_spin) ) { KF_TRACE( 5, ( "__kmp_resume_template: T#%d exiting, thread T#%d already awake: flag's loc(%p): " "%u => %u\n", gtid, target_gtid, flag->get(), old_spin, *(flag->get()) ) ); __kmp_win32_mutex_unlock( &th->th.th_suspend_mx ); return; } } TCW_PTR(th->th.th_sleep_loc, NULL); KF_TRACE( 5, ( "__kmp_resume_template: T#%d about to wakeup T#%d, reset sleep bit for flag's loc(%p)\n", gtid, target_gtid, flag->get() ) ); __kmp_win32_cond_signal( &th->th.th_suspend_cv ); __kmp_win32_mutex_unlock( &th->th.th_suspend_mx ); KF_TRACE( 30, ( "__kmp_resume_template: T#%d exiting after signaling wake up for T#%d\n", gtid, target_gtid ) ); } void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) { __kmp_resume_template(target_gtid, flag); } void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) { __kmp_resume_template(target_gtid, flag); } void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { __kmp_resume_template(target_gtid, flag); } /* ------------------------------------------------------------------------ */ /* ------------------------------------------------------------------------ */ void __kmp_yield( int cond ) { if (cond) Sleep(0); } /* ------------------------------------------------------------------------ */ /* ------------------------------------------------------------------------ */ void __kmp_gtid_set_specific( int gtid ) { if( __kmp_init_gtid ) { KA_TRACE( 50, ("__kmp_gtid_set_specific: T#%d key:%d\n", gtid, __kmp_gtid_threadprivate_key )); if( ! TlsSetValue( __kmp_gtid_threadprivate_key, (LPVOID)(gtid+1)) ) KMP_FATAL( TLSSetValueFailed ); } else { KA_TRACE( 50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n" ) ); } } int __kmp_gtid_get_specific() { int gtid; if( !__kmp_init_gtid ) { KA_TRACE( 50, ("__kmp_gtid_get_specific: runtime shutdown, returning KMP_GTID_SHUTDOWN\n" ) ); return KMP_GTID_SHUTDOWN; } gtid = (int)(kmp_intptr_t)TlsGetValue( __kmp_gtid_threadprivate_key ); if ( gtid == 0 ) { gtid = KMP_GTID_DNE; } else { gtid--; } KA_TRACE( 50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", __kmp_gtid_threadprivate_key, gtid )); return gtid; } /* ------------------------------------------------------------------------ */ /* ------------------------------------------------------------------------ */ #if KMP_GROUP_AFFINITY // // Only 1 DWORD in the mask should have any procs set. // Return the appropriate index, or -1 for an invalid mask. // int __kmp_get_proc_group( kmp_affin_mask_t const *mask ) { int i; int group = -1; for (i = 0; i < __kmp_num_proc_groups; i++) { #if KMP_USE_HWLOC // On windows, the long type is always 32 bits unsigned long first_32_bits = hwloc_bitmap_to_ith_ulong((hwloc_const_bitmap_t)mask, i*2); unsigned long second_32_bits = hwloc_bitmap_to_ith_ulong((hwloc_const_bitmap_t)mask, i*2+1); if (first_32_bits == 0 && second_32_bits == 0) { continue; } #else if (mask[i] == 0) { continue; } #endif if (group >= 0) { return -1; } group = i; } return group; } #endif /* KMP_GROUP_AFFINITY */ int __kmp_set_system_affinity( kmp_affin_mask_t const *mask, int abort_on_error ) { #if KMP_USE_HWLOC int retval = hwloc_set_cpubind(__kmp_hwloc_topology, (hwloc_cpuset_t)mask, HWLOC_CPUBIND_THREAD); if (retval >= 0) { return 0; } int error = errno; if (abort_on_error) { __kmp_msg( kmp_ms_fatal, KMP_MSG( FatalSysError ), KMP_ERR( error ), __kmp_msg_null ); } return error; #else # if KMP_GROUP_AFFINITY if (__kmp_num_proc_groups > 1) { // // Check for a valid mask. // GROUP_AFFINITY ga; int group = __kmp_get_proc_group( mask ); if (group < 0) { if (abort_on_error) { KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); } return -1; } // // Transform the bit vector into a GROUP_AFFINITY struct // and make the system call to set affinity. // ga.Group = group; ga.Mask = mask[group]; ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0; KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL); if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) { DWORD error = GetLastError(); if (abort_on_error) { __kmp_msg( kmp_ms_fatal, KMP_MSG( CantSetThreadAffMask ), KMP_ERR( error ), __kmp_msg_null ); } return error; } } else # endif /* KMP_GROUP_AFFINITY */ { if (!SetThreadAffinityMask( GetCurrentThread(), *mask )) { DWORD error = GetLastError(); if (abort_on_error) { __kmp_msg( kmp_ms_fatal, KMP_MSG( CantSetThreadAffMask ), KMP_ERR( error ), __kmp_msg_null ); } return error; } } #endif /* KMP_USE_HWLOC */ return 0; } int __kmp_get_system_affinity( kmp_affin_mask_t *mask, int abort_on_error ) { #if KMP_USE_HWLOC int retval = hwloc_get_cpubind(__kmp_hwloc_topology, (hwloc_cpuset_t)mask, HWLOC_CPUBIND_THREAD); if (retval >= 0) { return 0; } int error = errno; if (abort_on_error) { __kmp_msg( kmp_ms_fatal, KMP_MSG( FatalSysError ), KMP_ERR( error ), __kmp_msg_null ); } return error; #else /* KMP_USE_HWLOC */ # if KMP_GROUP_AFFINITY if (__kmp_num_proc_groups > 1) { KMP_CPU_ZERO(mask); GROUP_AFFINITY ga; KMP_DEBUG_ASSERT(__kmp_GetThreadGroupAffinity != NULL); if (__kmp_GetThreadGroupAffinity(GetCurrentThread(), &ga) == 0) { DWORD error = GetLastError(); if (abort_on_error) { __kmp_msg( kmp_ms_fatal, KMP_MSG(FunctionError, "GetThreadGroupAffinity()"), KMP_ERR(error), __kmp_msg_null ); } return error; } if ((ga.Group < 0) || (ga.Group > __kmp_num_proc_groups) || (ga.Mask == 0)) { return -1; } mask[ga.Group] = ga.Mask; } else # endif /* KMP_GROUP_AFFINITY */ { kmp_affin_mask_t newMask, sysMask, retval; if (!GetProcessAffinityMask(GetCurrentProcess(), &newMask, &sysMask)) { DWORD error = GetLastError(); if (abort_on_error) { __kmp_msg( kmp_ms_fatal, KMP_MSG(FunctionError, "GetProcessAffinityMask()"), KMP_ERR(error), __kmp_msg_null ); } return error; } retval = SetThreadAffinityMask(GetCurrentThread(), newMask); if (! retval) { DWORD error = GetLastError(); if (abort_on_error) { __kmp_msg( kmp_ms_fatal, KMP_MSG(FunctionError, "SetThreadAffinityMask()"), KMP_ERR(error), __kmp_msg_null ); } return error; } newMask = SetThreadAffinityMask(GetCurrentThread(), retval); if (! newMask) { DWORD error = GetLastError(); if (abort_on_error) { __kmp_msg( kmp_ms_fatal, KMP_MSG(FunctionError, "SetThreadAffinityMask()"), KMP_ERR(error), __kmp_msg_null ); } } *mask = retval; } #endif /* KMP_USE_HWLOC */ return 0; } void __kmp_affinity_bind_thread( int proc ) { #if KMP_USE_HWLOC kmp_affin_mask_t *mask; KMP_CPU_ALLOC_ON_STACK(mask); KMP_CPU_ZERO(mask); KMP_CPU_SET(proc, mask); __kmp_set_system_affinity(mask, TRUE); KMP_CPU_FREE_FROM_STACK(mask); #else /* KMP_USE_HWLOC */ # if KMP_GROUP_AFFINITY if (__kmp_num_proc_groups > 1) { // // Form the GROUP_AFFINITY struct directly, rather than filling // out a bit vector and calling __kmp_set_system_affinity(). // GROUP_AFFINITY ga; KMP_DEBUG_ASSERT((proc >= 0) && (proc < (__kmp_num_proc_groups * CHAR_BIT * sizeof(DWORD_PTR)))); ga.Group = proc / (CHAR_BIT * sizeof(DWORD_PTR)); ga.Mask = (unsigned long long)1 << (proc % (CHAR_BIT * sizeof(DWORD_PTR))); ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0; KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL); if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) { DWORD error = GetLastError(); if (__kmp_affinity_verbose) { // AC: continue silently if not verbose __kmp_msg( kmp_ms_warning, KMP_MSG( CantSetThreadAffMask ), KMP_ERR( error ), __kmp_msg_null ); } } } else # endif /* KMP_GROUP_AFFINITY */ { kmp_affin_mask_t mask; KMP_CPU_ZERO(&mask); KMP_CPU_SET(proc, &mask); __kmp_set_system_affinity(&mask, TRUE); } #endif /* KMP_USE_HWLOC */ } void __kmp_affinity_determine_capable( const char *env_var ) { // // All versions of Windows* OS (since Win '95) support SetThreadAffinityMask(). // #if KMP_GROUP_AFFINITY KMP_AFFINITY_ENABLE(__kmp_num_proc_groups*sizeof(kmp_affin_mask_t)); #else KMP_AFFINITY_ENABLE(sizeof(kmp_affin_mask_t)); #endif KA_TRACE( 10, ( "__kmp_affinity_determine_capable: " "Windows* OS affinity interface functional (mask size = %" KMP_SIZE_T_SPEC ").\n", __kmp_affin_mask_size ) ); } double __kmp_read_cpu_time( void ) { FILETIME CreationTime, ExitTime, KernelTime, UserTime; int status; double cpu_time; cpu_time = 0; status = GetProcessTimes( GetCurrentProcess(), &CreationTime, &ExitTime, &KernelTime, &UserTime ); if (status) { double sec = 0; sec += KernelTime.dwHighDateTime; sec += UserTime.dwHighDateTime; /* Shift left by 32 bits */ sec *= (double) (1 << 16) * (double) (1 << 16); sec += KernelTime.dwLowDateTime; sec += UserTime.dwLowDateTime; cpu_time += (sec * 100.0) / KMP_NSEC_PER_SEC; } return cpu_time; } int __kmp_read_system_info( struct kmp_sys_info *info ) { info->maxrss = 0; /* the maximum resident set size utilized (in kilobytes) */ info->minflt = 0; /* the number of page faults serviced without any I/O */ info->majflt = 0; /* the number of page faults serviced that required I/O */ info->nswap = 0; /* the number of times a process was "swapped" out of memory */ info->inblock = 0; /* the number of times the file system had to perform input */ info->oublock = 0; /* the number of times the file system had to perform output */ info->nvcsw = 0; /* the number of times a context switch was voluntarily */ info->nivcsw = 0; /* the number of times a context switch was forced */ return 1; } /* ------------------------------------------------------------------------ */ /* ------------------------------------------------------------------------ */ void __kmp_runtime_initialize( void ) { SYSTEM_INFO info; kmp_str_buf_t path; UINT path_size; if ( __kmp_init_runtime ) { return; }; #if KMP_DYNAMIC_LIB /* Pin dynamic library for the lifetime of application */ { // First, turn off error message boxes UINT err_mode = SetErrorMode (SEM_FAILCRITICALERRORS); HMODULE h; BOOL ret = GetModuleHandleEx( GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS |GET_MODULE_HANDLE_EX_FLAG_PIN, (LPCTSTR)&__kmp_serial_initialize, &h); KMP_DEBUG_ASSERT2(h && ret, "OpenMP RTL cannot find itself loaded"); SetErrorMode (err_mode); // Restore error mode KA_TRACE( 10, ("__kmp_runtime_initialize: dynamic library pinned\n") ); } #endif InitializeCriticalSection( & __kmp_win32_section ); #if USE_ITT_BUILD __kmp_itt_system_object_created( & __kmp_win32_section, "Critical Section" ); #endif /* USE_ITT_BUILD */ __kmp_initialize_system_tick(); #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) if ( ! __kmp_cpuinfo.initialized ) { __kmp_query_cpuid( & __kmp_cpuinfo ); }; // if #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ /* Set up minimum number of threads to switch to TLS gtid */ #if KMP_OS_WINDOWS && ! defined KMP_DYNAMIC_LIB // Windows* OS, static library. /* New thread may use stack space previously used by another thread, currently terminated. On Windows* OS, in case of static linking, we do not know the moment of thread termination, and our structures (__kmp_threads and __kmp_root arrays) are still keep info about dead threads. This leads to problem in __kmp_get_global_thread_id() function: it wrongly finds gtid (by searching through stack addresses of all known threads) for unregistered foreign tread. Setting __kmp_tls_gtid_min to 0 workarounds this problem: __kmp_get_global_thread_id() does not search through stacks, but get gtid from TLS immediately. --ln */ __kmp_tls_gtid_min = 0; #else __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; #endif /* for the static library */ if ( !__kmp_gtid_threadprivate_key ) { __kmp_gtid_threadprivate_key = TlsAlloc(); if( __kmp_gtid_threadprivate_key == TLS_OUT_OF_INDEXES ) { KMP_FATAL( TLSOutOfIndexes ); } } // // Load ntdll.dll. // /* Simple GetModuleHandle( "ntdll.dl" ) is not suitable due to security issue (see http://www.microsoft.com/technet/security/advisory/2269637.mspx). We have to specify full path to the library. */ __kmp_str_buf_init( & path ); path_size = GetSystemDirectory( path.str, path.size ); KMP_DEBUG_ASSERT( path_size > 0 ); if ( path_size >= path.size ) { // // Buffer is too short. Expand the buffer and try again. // __kmp_str_buf_reserve( & path, path_size ); path_size = GetSystemDirectory( path.str, path.size ); KMP_DEBUG_ASSERT( path_size > 0 ); }; // if if ( path_size > 0 && path_size < path.size ) { // // Now we have system directory name in the buffer. // Append backslash and name of dll to form full path, // path.used = path_size; __kmp_str_buf_print( & path, "\\%s", "ntdll.dll" ); // // Now load ntdll using full path. // ntdll = GetModuleHandle( path.str ); } KMP_DEBUG_ASSERT( ntdll != NULL ); if ( ntdll != NULL ) { NtQuerySystemInformation = (NtQuerySystemInformation_t) GetProcAddress( ntdll, "NtQuerySystemInformation" ); } KMP_DEBUG_ASSERT( NtQuerySystemInformation != NULL ); #if KMP_GROUP_AFFINITY // // Load kernel32.dll. // Same caveat - must use full system path name. // if ( path_size > 0 && path_size < path.size ) { // // Truncate the buffer back to just the system path length, // discarding "\\ntdll.dll", and replacing it with "kernel32.dll". // path.used = path_size; __kmp_str_buf_print( & path, "\\%s", "kernel32.dll" ); // // Load kernel32.dll using full path. // kernel32 = GetModuleHandle( path.str ); KA_TRACE( 10, ("__kmp_runtime_initialize: kernel32.dll = %s\n", path.str ) ); // // Load the function pointers to kernel32.dll routines // that may or may not exist on this system. // if ( kernel32 != NULL ) { __kmp_GetActiveProcessorCount = (kmp_GetActiveProcessorCount_t) GetProcAddress( kernel32, "GetActiveProcessorCount" ); __kmp_GetActiveProcessorGroupCount = (kmp_GetActiveProcessorGroupCount_t) GetProcAddress( kernel32, "GetActiveProcessorGroupCount" ); __kmp_GetThreadGroupAffinity = (kmp_GetThreadGroupAffinity_t) GetProcAddress( kernel32, "GetThreadGroupAffinity" ); __kmp_SetThreadGroupAffinity = (kmp_SetThreadGroupAffinity_t) GetProcAddress( kernel32, "SetThreadGroupAffinity" ); KA_TRACE( 10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorCount = %p\n", __kmp_GetActiveProcessorCount ) ); KA_TRACE( 10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorGroupCount = %p\n", __kmp_GetActiveProcessorGroupCount ) ); KA_TRACE( 10, ("__kmp_runtime_initialize:__kmp_GetThreadGroupAffinity = %p\n", __kmp_GetThreadGroupAffinity ) ); KA_TRACE( 10, ("__kmp_runtime_initialize: __kmp_SetThreadGroupAffinity = %p\n", __kmp_SetThreadGroupAffinity ) ); KA_TRACE( 10, ("__kmp_runtime_initialize: sizeof(kmp_affin_mask_t) = %d\n", sizeof(kmp_affin_mask_t) ) ); // // See if group affinity is supported on this system. // If so, calculate the #groups and #procs. // // Group affinity was introduced with Windows* 7 OS and // Windows* Server 2008 R2 OS. // if ( ( __kmp_GetActiveProcessorCount != NULL ) && ( __kmp_GetActiveProcessorGroupCount != NULL ) && ( __kmp_GetThreadGroupAffinity != NULL ) && ( __kmp_SetThreadGroupAffinity != NULL ) && ( ( __kmp_num_proc_groups = __kmp_GetActiveProcessorGroupCount() ) > 1 ) ) { // // Calculate the total number of active OS procs. // int i; KA_TRACE( 10, ("__kmp_runtime_initialize: %d processor groups detected\n", __kmp_num_proc_groups ) ); __kmp_xproc = 0; for ( i = 0; i < __kmp_num_proc_groups; i++ ) { DWORD size = __kmp_GetActiveProcessorCount( i ); __kmp_xproc += size; KA_TRACE( 10, ("__kmp_runtime_initialize: proc group %d size = %d\n", i, size ) ); } } else { KA_TRACE( 10, ("__kmp_runtime_initialize: %d processor groups detected\n", __kmp_num_proc_groups ) ); } } } if ( __kmp_num_proc_groups <= 1 ) { GetSystemInfo( & info ); __kmp_xproc = info.dwNumberOfProcessors; } #else GetSystemInfo( & info ); __kmp_xproc = info.dwNumberOfProcessors; #endif /* KMP_GROUP_AFFINITY */ // // If the OS said there were 0 procs, take a guess and use a value of 2. // This is done for Linux* OS, also. Do we need error / warning? // if ( __kmp_xproc <= 0 ) { __kmp_xproc = 2; } KA_TRACE( 5, ("__kmp_runtime_initialize: total processors = %d\n", __kmp_xproc) ); __kmp_str_buf_free( & path ); #if USE_ITT_BUILD __kmp_itt_initialize(); #endif /* USE_ITT_BUILD */ __kmp_init_runtime = TRUE; } // __kmp_runtime_initialize void __kmp_runtime_destroy( void ) { if ( ! __kmp_init_runtime ) { return; } #if USE_ITT_BUILD __kmp_itt_destroy(); #endif /* USE_ITT_BUILD */ /* we can't DeleteCriticalsection( & __kmp_win32_section ); */ /* due to the KX_TRACE() commands */ KA_TRACE( 40, ("__kmp_runtime_destroy\n" )); if( __kmp_gtid_threadprivate_key ) { TlsFree( __kmp_gtid_threadprivate_key ); __kmp_gtid_threadprivate_key = 0; } __kmp_affinity_uninitialize(); DeleteCriticalSection( & __kmp_win32_section ); ntdll = NULL; NtQuerySystemInformation = NULL; #if KMP_ARCH_X86_64 kernel32 = NULL; __kmp_GetActiveProcessorCount = NULL; __kmp_GetActiveProcessorGroupCount = NULL; __kmp_GetThreadGroupAffinity = NULL; __kmp_SetThreadGroupAffinity = NULL; #endif // KMP_ARCH_X86_64 __kmp_init_runtime = FALSE; } void __kmp_terminate_thread( int gtid ) { kmp_info_t *th = __kmp_threads[ gtid ]; if( !th ) return; KA_TRACE( 10, ("__kmp_terminate_thread: kill (%d)\n", gtid ) ); if (TerminateThread( th->th.th_info.ds.ds_thread, (DWORD) -1) == FALSE) { /* It's OK, the thread may have exited already */ } __kmp_free_handle( th->th.th_info.ds.ds_thread ); } /* ------------------------------------------------------------------------ */ /* ------------------------------------------------------------------------ */ void __kmp_clear_system_time( void ) { BOOL status; LARGE_INTEGER time; status = QueryPerformanceCounter( & time ); __kmp_win32_time = (kmp_int64) time.QuadPart; } void __kmp_initialize_system_tick( void ) { { BOOL status; LARGE_INTEGER freq; status = QueryPerformanceFrequency( & freq ); if (! status) { DWORD error = GetLastError(); __kmp_msg( kmp_ms_fatal, KMP_MSG( FunctionError, "QueryPerformanceFrequency()" ), KMP_ERR( error ), __kmp_msg_null ); } else { __kmp_win32_tick = ((double) 1.0) / (double) freq.QuadPart; } } } /* Calculate the elapsed wall clock time for the user */ void __kmp_elapsed( double *t ) { BOOL status; LARGE_INTEGER now; status = QueryPerformanceCounter( & now ); *t = ((double) now.QuadPart) * __kmp_win32_tick; } /* Calculate the elapsed wall clock tick for the user */ void __kmp_elapsed_tick( double *t ) { *t = __kmp_win32_tick; } void __kmp_read_system_time( double *delta ) { if (delta != NULL) { BOOL status; LARGE_INTEGER now; status = QueryPerformanceCounter( & now ); *delta = ((double) (((kmp_int64) now.QuadPart) - __kmp_win32_time)) * __kmp_win32_tick; } } /* ------------------------------------------------------------------------ */ /* ------------------------------------------------------------------------ */ void * __stdcall __kmp_launch_worker( void *arg ) { volatile void *stack_data; void *exit_val; void *padding = 0; kmp_info_t *this_thr = (kmp_info_t *) arg; int gtid; gtid = this_thr->th.th_info.ds.ds_gtid; __kmp_gtid_set_specific( gtid ); #ifdef KMP_TDATA_GTID #error "This define causes problems with LoadLibrary() + declspec(thread) " \ "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \ "reference: http://support.microsoft.com/kb/118816" //__kmp_gtid = gtid; #endif #if USE_ITT_BUILD __kmp_itt_thread_name( gtid ); #endif /* USE_ITT_BUILD */ __kmp_affinity_set_init_mask( gtid, FALSE ); #if KMP_ARCH_X86 || KMP_ARCH_X86_64 // // Set the FP control regs to be a copy of // the parallel initialization thread's. // __kmp_clear_x87_fpu_status_word(); __kmp_load_x87_fpu_control_word( &__kmp_init_x87_fpu_control_word ); __kmp_load_mxcsr( &__kmp_init_mxcsr ); #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ if ( __kmp_stkoffset > 0 && gtid > 0 ) { padding = KMP_ALLOCA( gtid * __kmp_stkoffset ); } KMP_FSYNC_RELEASING( &this_thr -> th.th_info.ds.ds_alive ); this_thr -> th.th_info.ds.ds_thread_id = GetCurrentThreadId(); TCW_4( this_thr -> th.th_info.ds.ds_alive, TRUE ); if ( TCR_4(__kmp_gtid_mode) < 2 ) { // check stack only if it is used to get gtid TCW_PTR(this_thr->th.th_info.ds.ds_stackbase, &stack_data); KMP_ASSERT( this_thr -> th.th_info.ds.ds_stackgrow == FALSE ); __kmp_check_stack_overlap( this_thr ); } KMP_MB(); exit_val = __kmp_launch_thread( this_thr ); KMP_FSYNC_RELEASING( &this_thr -> th.th_info.ds.ds_alive ); TCW_4( this_thr -> th.th_info.ds.ds_alive, FALSE ); KMP_MB(); return exit_val; } /* The monitor thread controls all of the threads in the complex */ void * __stdcall __kmp_launch_monitor( void *arg ) { DWORD wait_status; kmp_thread_t monitor; int status; int interval; kmp_info_t *this_thr = (kmp_info_t *) arg; KMP_DEBUG_ASSERT(__kmp_init_monitor); TCW_4( __kmp_init_monitor, 2 ); // AC: Signal the library that monitor has started // TODO: hide "2" in enum (like {true,false,started}) this_thr -> th.th_info.ds.ds_thread_id = GetCurrentThreadId(); TCW_4( this_thr -> th.th_info.ds.ds_alive, TRUE ); KMP_MB(); /* Flush all pending memory write invalidates. */ KA_TRACE( 10, ("__kmp_launch_monitor: launched\n" ) ); monitor = GetCurrentThread(); /* set thread priority */ status = SetThreadPriority( monitor, THREAD_PRIORITY_HIGHEST ); if (! status) { DWORD error = GetLastError(); __kmp_msg( kmp_ms_fatal, KMP_MSG( CantSetThreadPriority ), KMP_ERR( error ), __kmp_msg_null ); } /* register us as monitor */ __kmp_gtid_set_specific( KMP_GTID_MONITOR ); #ifdef KMP_TDATA_GTID #error "This define causes problems with LoadLibrary() + declspec(thread) " \ "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \ "reference: http://support.microsoft.com/kb/118816" //__kmp_gtid = KMP_GTID_MONITOR; #endif #if USE_ITT_BUILD __kmp_itt_thread_ignore(); // Instruct Intel(R) Threading Tools to ignore monitor thread. #endif /* USE_ITT_BUILD */ KMP_MB(); /* Flush all pending memory write invalidates. */ interval = ( 1000 / __kmp_monitor_wakeups ); /* in milliseconds */ while (! TCR_4(__kmp_global.g.g_done)) { /* This thread monitors the state of the system */ KA_TRACE( 15, ( "__kmp_launch_monitor: update\n" ) ); wait_status = WaitForSingleObject( __kmp_monitor_ev, interval ); if (wait_status == WAIT_TIMEOUT) { TCW_4( __kmp_global.g.g_time.dt.t_value, TCR_4( __kmp_global.g.g_time.dt.t_value ) + 1 ); } KMP_MB(); /* Flush all pending memory write invalidates. */ } KA_TRACE( 10, ("__kmp_launch_monitor: finished\n" ) ); status = SetThreadPriority( monitor, THREAD_PRIORITY_NORMAL ); if (! status) { DWORD error = GetLastError(); __kmp_msg( kmp_ms_fatal, KMP_MSG( CantSetThreadPriority ), KMP_ERR( error ), __kmp_msg_null ); } if (__kmp_global.g.g_abort != 0) { /* now we need to terminate the worker threads */ /* the value of t_abort is the signal we caught */ int gtid; KA_TRACE( 10, ("__kmp_launch_monitor: terminate sig=%d\n", (__kmp_global.g.g_abort) ) ); /* terminate the OpenMP worker threads */ /* TODO this is not valid for sibling threads!! * the uber master might not be 0 anymore.. */ for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) __kmp_terminate_thread( gtid ); __kmp_cleanup(); Sleep( 0 ); KA_TRACE( 10, ("__kmp_launch_monitor: raise sig=%d\n", (__kmp_global.g.g_abort) ) ); if (__kmp_global.g.g_abort > 0) { raise( __kmp_global.g.g_abort ); } } TCW_4( this_thr -> th.th_info.ds.ds_alive, FALSE ); KMP_MB(); return arg; } void __kmp_create_worker( int gtid, kmp_info_t *th, size_t stack_size ) { kmp_thread_t handle; DWORD idThread; KA_TRACE( 10, ("__kmp_create_worker: try to create thread (%d)\n", gtid ) ); th->th.th_info.ds.ds_gtid = gtid; if ( KMP_UBER_GTID(gtid) ) { int stack_data; /* TODO: GetCurrentThread() returns a pseudo-handle that is unsuitable for other threads to use. Is it appropriate to just use GetCurrentThread? When should we close this handle? When unregistering the root? */ { BOOL rc; rc = DuplicateHandle( GetCurrentProcess(), GetCurrentThread(), GetCurrentProcess(), &th->th.th_info.ds.ds_thread, 0, FALSE, DUPLICATE_SAME_ACCESS ); KMP_ASSERT( rc ); KA_TRACE( 10, (" __kmp_create_worker: ROOT Handle duplicated, th = %p, handle = %" KMP_UINTPTR_SPEC "\n", (LPVOID)th, th->th.th_info.ds.ds_thread ) ); th->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); } if ( TCR_4(__kmp_gtid_mode) < 2 ) { // check stack only if it is used to get gtid /* we will dynamically update the stack range if gtid_mode == 1 */ TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); __kmp_check_stack_overlap( th ); } } else { KMP_MB(); /* Flush all pending memory write invalidates. */ /* Set stack size for this thread now. */ KA_TRACE( 10, ( "__kmp_create_worker: stack_size = %" KMP_SIZE_T_SPEC " bytes\n", stack_size ) ); stack_size += gtid * __kmp_stkoffset; TCW_PTR(th->th.th_info.ds.ds_stacksize, stack_size); TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); KA_TRACE( 10, ( "__kmp_create_worker: (before) stack_size = %" KMP_SIZE_T_SPEC " bytes, &__kmp_launch_worker = %p, th = %p, " "&idThread = %p\n", (SIZE_T) stack_size, (LPTHREAD_START_ROUTINE) & __kmp_launch_worker, (LPVOID) th, &idThread ) ); handle = CreateThread( NULL, (SIZE_T) stack_size, (LPTHREAD_START_ROUTINE) __kmp_launch_worker, (LPVOID) th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread ); KA_TRACE( 10, ( "__kmp_create_worker: (after) stack_size = %" KMP_SIZE_T_SPEC " bytes, &__kmp_launch_worker = %p, th = %p, " "idThread = %u, handle = %" KMP_UINTPTR_SPEC "\n", (SIZE_T) stack_size, (LPTHREAD_START_ROUTINE) & __kmp_launch_worker, (LPVOID) th, idThread, handle ) ); if ( handle == 0 ) { DWORD error = GetLastError(); __kmp_msg(kmp_ms_fatal, KMP_MSG( CantCreateThread ), KMP_ERR( error ), __kmp_msg_null); } else { th->th.th_info.ds.ds_thread = handle; } KMP_MB(); /* Flush all pending memory write invalidates. */ } KA_TRACE( 10, ("__kmp_create_worker: done creating thread (%d)\n", gtid ) ); } int __kmp_still_running(kmp_info_t *th) { return (WAIT_TIMEOUT == WaitForSingleObject( th->th.th_info.ds.ds_thread, 0)); } void __kmp_create_monitor( kmp_info_t *th ) { kmp_thread_t handle; DWORD idThread; int ideal, new_ideal; if( __kmp_dflt_blocktime == KMP_MAX_BLOCKTIME ) { // We don't need monitor thread in case of MAX_BLOCKTIME KA_TRACE( 10, ("__kmp_create_monitor: skipping monitor thread because of MAX blocktime\n" ) ); th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op th->th.th_info.ds.ds_gtid = 0; TCW_4( __kmp_init_monitor, 2 ); // Signal to stop waiting for monitor creation return; } KA_TRACE( 10, ("__kmp_create_monitor: try to create monitor\n" ) ); KMP_MB(); /* Flush all pending memory write invalidates. */ __kmp_monitor_ev = CreateEvent( NULL, TRUE, FALSE, NULL ); if ( __kmp_monitor_ev == NULL ) { DWORD error = GetLastError(); __kmp_msg( kmp_ms_fatal, KMP_MSG( CantCreateEvent ), KMP_ERR( error ), __kmp_msg_null ); }; // if #if USE_ITT_BUILD __kmp_itt_system_object_created( __kmp_monitor_ev, "Event" ); #endif /* USE_ITT_BUILD */ th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; // FIXME - on Windows* OS, if __kmp_monitor_stksize = 0, figure out how // to automatically expand stacksize based on CreateThread error code. if ( __kmp_monitor_stksize == 0 ) { __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; } if ( __kmp_monitor_stksize < __kmp_sys_min_stksize ) { __kmp_monitor_stksize = __kmp_sys_min_stksize; } KA_TRACE( 10, ("__kmp_create_monitor: requested stacksize = %d bytes\n", (int) __kmp_monitor_stksize ) ); TCW_4( __kmp_global.g.g_time.dt.t_value, 0 ); handle = CreateThread( NULL, (SIZE_T) __kmp_monitor_stksize, (LPTHREAD_START_ROUTINE) __kmp_launch_monitor, (LPVOID) th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread ); if (handle == 0) { DWORD error = GetLastError(); __kmp_msg( kmp_ms_fatal, KMP_MSG( CantCreateThread ), KMP_ERR( error ), __kmp_msg_null ); } else th->th.th_info.ds.ds_thread = handle; KMP_MB(); /* Flush all pending memory write invalidates. */ KA_TRACE( 10, ("__kmp_create_monitor: monitor created %p\n", (void *) th->th.th_info.ds.ds_thread ) ); } /* Check to see if thread is still alive. NOTE: The ExitProcess(code) system call causes all threads to Terminate with a exit_val = code. Because of this we can not rely on exit_val having any particular value. So this routine may return STILL_ALIVE in exit_val even after the thread is dead. */ int __kmp_is_thread_alive( kmp_info_t * th, DWORD *exit_val ) { DWORD rc; rc = GetExitCodeThread( th->th.th_info.ds.ds_thread, exit_val ); if ( rc == 0 ) { DWORD error = GetLastError(); __kmp_msg( kmp_ms_fatal, KMP_MSG( FunctionError, "GetExitCodeThread()" ), KMP_ERR( error ), __kmp_msg_null ); }; // if return ( *exit_val == STILL_ACTIVE ); } void __kmp_exit_thread( int exit_status ) { ExitThread( exit_status ); } // __kmp_exit_thread /* This is a common part for both __kmp_reap_worker() and __kmp_reap_monitor(). */ static void __kmp_reap_common( kmp_info_t * th ) { DWORD exit_val; KMP_MB(); /* Flush all pending memory write invalidates. */ KA_TRACE( 10, ( "__kmp_reap_common: try to reap (%d)\n", th->th.th_info.ds.ds_gtid ) ); /* 2006-10-19: There are two opposite situations: 1. Windows* OS keep thread alive after it resets ds_alive flag and exits from thread function. (For example, see C70770/Q394281 "unloading of dll based on OMP is very slow".) 2. Windows* OS may kill thread before it resets ds_alive flag. Right solution seems to be waiting for *either* thread termination *or* ds_alive resetting. */ { // TODO: This code is very similar to KMP_WAIT_YIELD. Need to generalize KMP_WAIT_YIELD to // cover this usage also. void * obj = NULL; register kmp_uint32 spins; #if USE_ITT_BUILD KMP_FSYNC_SPIN_INIT( obj, (void*) & th->th.th_info.ds.ds_alive ); #endif /* USE_ITT_BUILD */ KMP_INIT_YIELD( spins ); do { #if USE_ITT_BUILD KMP_FSYNC_SPIN_PREPARE( obj ); #endif /* USE_ITT_BUILD */ __kmp_is_thread_alive( th, &exit_val ); KMP_YIELD( TCR_4(__kmp_nth) > __kmp_avail_proc ); KMP_YIELD_SPIN( spins ); } while ( exit_val == STILL_ACTIVE && TCR_4( th->th.th_info.ds.ds_alive ) ); #if USE_ITT_BUILD if ( exit_val == STILL_ACTIVE ) { KMP_FSYNC_CANCEL( obj ); } else { KMP_FSYNC_SPIN_ACQUIRED( obj ); }; // if #endif /* USE_ITT_BUILD */ } __kmp_free_handle( th->th.th_info.ds.ds_thread ); /* * NOTE: The ExitProcess(code) system call causes all threads to Terminate * with a exit_val = code. Because of this we can not rely on * exit_val having any particular value. */ if ( exit_val == STILL_ACTIVE ) { KA_TRACE( 1, ( "__kmp_reap_common: thread still active.\n" ) ); } else if ( (void *) exit_val != (void *) th) { KA_TRACE( 1, ( "__kmp_reap_common: ExitProcess / TerminateThread used?\n" ) ); }; // if KA_TRACE( 10, ( "__kmp_reap_common: done reaping (%d), handle = %" KMP_UINTPTR_SPEC "\n", th->th.th_info.ds.ds_gtid, th->th.th_info.ds.ds_thread ) ); th->th.th_info.ds.ds_thread = 0; th->th.th_info.ds.ds_tid = KMP_GTID_DNE; th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; th->th.th_info.ds.ds_thread_id = 0; KMP_MB(); /* Flush all pending memory write invalidates. */ } void __kmp_reap_monitor( kmp_info_t *th ) { int status; KA_TRACE( 10, ("__kmp_reap_monitor: try to reap %p\n", (void *) th->th.th_info.ds.ds_thread ) ); // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. // If both tid and gtid are 0, it means the monitor did not ever start. // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. KMP_DEBUG_ASSERT( th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid ); if ( th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR ) { KA_TRACE( 10, ("__kmp_reap_monitor: monitor did not start, returning\n") ); return; }; // if KMP_MB(); /* Flush all pending memory write invalidates. */ status = SetEvent( __kmp_monitor_ev ); if ( status == FALSE ) { DWORD error = GetLastError(); __kmp_msg( kmp_ms_fatal, KMP_MSG( CantSetEvent ), KMP_ERR( error ), __kmp_msg_null ); } KA_TRACE( 10, ( "__kmp_reap_monitor: reaping thread (%d)\n", th->th.th_info.ds.ds_gtid ) ); __kmp_reap_common( th ); __kmp_free_handle( __kmp_monitor_ev ); KMP_MB(); /* Flush all pending memory write invalidates. */ } void __kmp_reap_worker( kmp_info_t * th ) { KA_TRACE( 10, ( "__kmp_reap_worker: reaping thread (%d)\n", th->th.th_info.ds.ds_gtid ) ); __kmp_reap_common( th ); } /* ------------------------------------------------------------------------ */ /* ------------------------------------------------------------------------ */ #if KMP_HANDLE_SIGNALS static void __kmp_team_handler( int signo ) { if ( __kmp_global.g.g_abort == 0 ) { // Stage 1 signal handler, let's shut down all of the threads. if ( __kmp_debug_buf ) { __kmp_dump_debug_buffer(); }; // if KMP_MB(); // Flush all pending memory write invalidates. TCW_4( __kmp_global.g.g_abort, signo ); KMP_MB(); // Flush all pending memory write invalidates. TCW_4( __kmp_global.g.g_done, TRUE ); KMP_MB(); // Flush all pending memory write invalidates. } } // __kmp_team_handler static sig_func_t __kmp_signal( int signum, sig_func_t handler ) { sig_func_t old = signal( signum, handler ); if ( old == SIG_ERR ) { int error = errno; __kmp_msg( kmp_ms_fatal, KMP_MSG( FunctionError, "signal" ), KMP_ERR( error ), __kmp_msg_null ); }; // if return old; } static void __kmp_install_one_handler( int sig, sig_func_t handler, int parallel_init ) { sig_func_t old; KMP_MB(); /* Flush all pending memory write invalidates. */ KB_TRACE( 60, ("__kmp_install_one_handler: called: sig=%d\n", sig ) ); if ( parallel_init ) { old = __kmp_signal( sig, handler ); // SIG_DFL on Windows* OS in NULL or 0. if ( old == __kmp_sighldrs[ sig ] ) { __kmp_siginstalled[ sig ] = 1; } else { // Restore/keep user's handler if one previously installed. old = __kmp_signal( sig, old ); }; // if } else { // Save initial/system signal handlers to see if user handlers installed. // 2009-09-23: It is a dead code. On Windows* OS __kmp_install_signals called once with // parallel_init == TRUE. old = __kmp_signal( sig, SIG_DFL ); __kmp_sighldrs[ sig ] = old; __kmp_signal( sig, old ); }; // if KMP_MB(); /* Flush all pending memory write invalidates. */ } // __kmp_install_one_handler static void __kmp_remove_one_handler( int sig ) { if ( __kmp_siginstalled[ sig ] ) { sig_func_t old; KMP_MB(); // Flush all pending memory write invalidates. KB_TRACE( 60, ( "__kmp_remove_one_handler: called: sig=%d\n", sig ) ); old = __kmp_signal( sig, __kmp_sighldrs[ sig ] ); if ( old != __kmp_team_handler ) { KB_TRACE( 10, ( "__kmp_remove_one_handler: oops, not our handler, restoring: sig=%d\n", sig ) ); old = __kmp_signal( sig, old ); }; // if __kmp_sighldrs[ sig ] = NULL; __kmp_siginstalled[ sig ] = 0; KMP_MB(); // Flush all pending memory write invalidates. }; // if } // __kmp_remove_one_handler void __kmp_install_signals( int parallel_init ) { KB_TRACE( 10, ( "__kmp_install_signals: called\n" ) ); if ( ! __kmp_handle_signals ) { KB_TRACE( 10, ( "__kmp_install_signals: KMP_HANDLE_SIGNALS is false - handlers not installed\n" ) ); return; }; // if __kmp_install_one_handler( SIGINT, __kmp_team_handler, parallel_init ); __kmp_install_one_handler( SIGILL, __kmp_team_handler, parallel_init ); __kmp_install_one_handler( SIGABRT, __kmp_team_handler, parallel_init ); __kmp_install_one_handler( SIGFPE, __kmp_team_handler, parallel_init ); __kmp_install_one_handler( SIGSEGV, __kmp_team_handler, parallel_init ); __kmp_install_one_handler( SIGTERM, __kmp_team_handler, parallel_init ); } // __kmp_install_signals void __kmp_remove_signals( void ) { int sig; KB_TRACE( 10, ("__kmp_remove_signals: called\n" ) ); for ( sig = 1; sig < NSIG; ++ sig ) { __kmp_remove_one_handler( sig ); }; // for sig } // __kmp_remove_signals #endif // KMP_HANDLE_SIGNALS /* Put the thread to sleep for a time period */ void __kmp_thread_sleep( int millis ) { DWORD status; status = SleepEx( (DWORD) millis, FALSE ); if ( status ) { DWORD error = GetLastError(); __kmp_msg( kmp_ms_fatal, KMP_MSG( FunctionError, "SleepEx()" ), KMP_ERR( error ), __kmp_msg_null ); } } /* Determine whether the given address is mapped into the current address space. */ int __kmp_is_address_mapped( void * addr ) { DWORD status; MEMORY_BASIC_INFORMATION lpBuffer; SIZE_T dwLength; dwLength = sizeof(MEMORY_BASIC_INFORMATION); status = VirtualQuery( addr, &lpBuffer, dwLength ); return !((( lpBuffer.State == MEM_RESERVE) || ( lpBuffer.State == MEM_FREE )) || (( lpBuffer.Protect == PAGE_NOACCESS ) || ( lpBuffer.Protect == PAGE_EXECUTE ))); } kmp_uint64 __kmp_hardware_timestamp(void) { kmp_uint64 r = 0; QueryPerformanceCounter((LARGE_INTEGER*) &r); return r; } /* Free handle and check the error code */ void __kmp_free_handle( kmp_thread_t tHandle ) { /* called with parameter type HANDLE also, thus suppose kmp_thread_t defined as HANDLE */ BOOL rc; rc = CloseHandle( tHandle ); if ( !rc ) { DWORD error = GetLastError(); __kmp_msg( kmp_ms_fatal, KMP_MSG( CantCloseHandle ), KMP_ERR( error ), __kmp_msg_null ); } } int __kmp_get_load_balance( int max ) { static ULONG glb_buff_size = 100 * 1024; static int glb_running_threads = 0; /* Saved count of the running threads for the thread balance algortihm */ static double glb_call_time = 0; /* Thread balance algorithm call time */ int running_threads = 0; // Number of running threads in the system. NTSTATUS status = 0; ULONG buff_size = 0; ULONG info_size = 0; void * buffer = NULL; PSYSTEM_PROCESS_INFORMATION spi = NULL; int first_time = 1; double call_time = 0.0; //start, finish; __kmp_elapsed( & call_time ); if ( glb_call_time && ( call_time - glb_call_time < __kmp_load_balance_interval ) ) { running_threads = glb_running_threads; goto finish; } glb_call_time = call_time; // Do not spend time on running algorithm if we have a permanent error. if ( NtQuerySystemInformation == NULL ) { running_threads = -1; goto finish; }; // if if ( max <= 0 ) { max = INT_MAX; }; // if do { if ( first_time ) { buff_size = glb_buff_size; } else { buff_size = 2 * buff_size; } buffer = KMP_INTERNAL_REALLOC( buffer, buff_size ); if ( buffer == NULL ) { running_threads = -1; goto finish; }; // if status = NtQuerySystemInformation( SystemProcessInformation, buffer, buff_size, & info_size ); first_time = 0; } while ( status == STATUS_INFO_LENGTH_MISMATCH ); glb_buff_size = buff_size; #define CHECK( cond ) \ { \ KMP_DEBUG_ASSERT( cond ); \ if ( ! ( cond ) ) { \ running_threads = -1; \ goto finish; \ } \ } CHECK( buff_size >= info_size ); spi = PSYSTEM_PROCESS_INFORMATION( buffer ); for ( ; ; ) { ptrdiff_t offset = uintptr_t( spi ) - uintptr_t( buffer ); CHECK( 0 <= offset && offset + sizeof( SYSTEM_PROCESS_INFORMATION ) < info_size ); HANDLE pid = spi->ProcessId; ULONG num = spi->NumberOfThreads; CHECK( num >= 1 ); size_t spi_size = sizeof( SYSTEM_PROCESS_INFORMATION ) + sizeof( SYSTEM_THREAD ) * ( num - 1 ); CHECK( offset + spi_size < info_size ); // Make sure process info record fits the buffer. if ( spi->NextEntryOffset != 0 ) { CHECK( spi_size <= spi->NextEntryOffset ); // And do not overlap with the next record. }; // if // pid == 0 corresponds to the System Idle Process. It always has running threads // on all cores. So, we don't consider the running threads of this process. if ( pid != 0 ) { for ( int i = 0; i < num; ++ i ) { THREAD_STATE state = spi->Threads[ i ].State; // Count threads that have Ready or Running state. // !!! TODO: Why comment does not match the code??? if ( state == StateRunning ) { ++ running_threads; // Stop counting running threads if the number is already greater than // the number of available cores if ( running_threads >= max ) { goto finish; } } // if }; // for i } // if if ( spi->NextEntryOffset == 0 ) { break; }; // if spi = PSYSTEM_PROCESS_INFORMATION( uintptr_t( spi ) + spi->NextEntryOffset ); }; // forever #undef CHECK finish: // Clean up and exit. if ( buffer != NULL ) { KMP_INTERNAL_FREE( buffer ); }; // if glb_running_threads = running_threads; return running_threads; } //__kmp_get_load_balance()