/* * kmp_taskq.c -- TASKQ support for OpenMP. */ //===----------------------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.txt for details. // //===----------------------------------------------------------------------===// #include "kmp.h" #include "kmp_i18n.h" #include "kmp_io.h" #include "kmp_error.h" #define MAX_MESSAGE 512 /* ------------------------------------------------------------------------ */ /* ------------------------------------------------------------------------ */ /* * Taskq routines and global variables */ #define KMP_DEBUG_REF_CTS(x) KF_TRACE(1, x); #define THREAD_ALLOC_FOR_TASKQ static int in_parallel_context( kmp_team_t *team ) { return ! team -> t.t_serialized; } static void __kmp_taskq_eo( int *gtid_ref, int *cid_ref, ident_t *loc_ref ) { int gtid = *gtid_ref; int tid = __kmp_tid_from_gtid( gtid ); kmp_uint32 my_token; kmpc_task_queue_t *taskq; kmp_taskq_t *tq = & __kmp_threads[gtid] -> th.th_team -> t.t_taskq; if ( __kmp_env_consistency_check ) #if KMP_USE_DYNAMIC_LOCK __kmp_push_sync( gtid, ct_ordered_in_taskq, loc_ref, NULL, 0 ); #else __kmp_push_sync( gtid, ct_ordered_in_taskq, loc_ref, NULL ); #endif if ( ! __kmp_threads[ gtid ]-> th.th_team -> t.t_serialized ) { KMP_MB(); /* Flush all pending memory write invalidates. */ /* GEH - need check here under stats to make sure */ /* inside task (curr_thunk[*tid_ref] != NULL) */ my_token =tq->tq_curr_thunk[ tid ]-> th_tasknum; taskq = tq->tq_curr_thunk[ tid ]-> th.th_shareds -> sv_queue; KMP_WAIT_YIELD(&taskq->tq_tasknum_serving, my_token, KMP_EQ, NULL); KMP_MB(); } } static void __kmp_taskq_xo( int *gtid_ref, int *cid_ref, ident_t *loc_ref ) { int gtid = *gtid_ref; int tid = __kmp_tid_from_gtid( gtid ); kmp_uint32 my_token; kmp_taskq_t *tq = & __kmp_threads[gtid] -> th.th_team -> t.t_taskq; if ( __kmp_env_consistency_check ) __kmp_pop_sync( gtid, ct_ordered_in_taskq, loc_ref ); if ( ! __kmp_threads[ gtid ]-> th.th_team -> t.t_serialized ) { KMP_MB(); /* Flush all pending memory write invalidates. */ /* GEH - need check here under stats to make sure */ /* inside task (curr_thunk[tid] != NULL) */ my_token = tq->tq_curr_thunk[ tid ]->th_tasknum; KMP_MB(); /* Flush all pending memory write invalidates. */ tq->tq_curr_thunk[ tid ]-> th.th_shareds -> sv_queue -> tq_tasknum_serving = my_token + 1; KMP_MB(); /* Flush all pending memory write invalidates. */ } } static void __kmp_taskq_check_ordered( kmp_int32 gtid, kmpc_thunk_t *thunk ) { kmp_uint32 my_token; kmpc_task_queue_t *taskq; /* assume we are always called from an active parallel context */ KMP_MB(); /* Flush all pending memory write invalidates. */ my_token = thunk -> th_tasknum; taskq = thunk -> th.th_shareds -> sv_queue; if(taskq->tq_tasknum_serving <= my_token) { KMP_WAIT_YIELD(&taskq->tq_tasknum_serving, my_token, KMP_GE, NULL); KMP_MB(); taskq->tq_tasknum_serving = my_token +1; KMP_MB(); } } #ifdef KMP_DEBUG static void __kmp_dump_TQF(kmp_int32 flags) { if (flags & TQF_IS_ORDERED) __kmp_printf("ORDERED "); if (flags & TQF_IS_LASTPRIVATE) __kmp_printf("LAST_PRIV "); if (flags & TQF_IS_NOWAIT) __kmp_printf("NOWAIT "); if (flags & TQF_HEURISTICS) __kmp_printf("HEURIST "); if (flags & TQF_INTERFACE_RESERVED1) __kmp_printf("RESERV1 "); if (flags & TQF_INTERFACE_RESERVED2) __kmp_printf("RESERV2 "); if (flags & TQF_INTERFACE_RESERVED3) __kmp_printf("RESERV3 "); if (flags & TQF_INTERFACE_RESERVED4) __kmp_printf("RESERV4 "); if (flags & TQF_IS_LAST_TASK) __kmp_printf("LAST_TASK "); if (flags & TQF_TASKQ_TASK) __kmp_printf("TASKQ_TASK "); if (flags & TQF_RELEASE_WORKERS) __kmp_printf("RELEASE "); if (flags & TQF_ALL_TASKS_QUEUED) __kmp_printf("ALL_QUEUED "); if (flags & TQF_PARALLEL_CONTEXT) __kmp_printf("PARALLEL "); if (flags & TQF_DEALLOCATED) __kmp_printf("DEALLOC "); if (!(flags & (TQF_INTERNAL_FLAGS|TQF_INTERFACE_FLAGS))) __kmp_printf("(NONE)"); } static void __kmp_dump_thunk( kmp_taskq_t *tq, kmpc_thunk_t *thunk, kmp_int32 global_tid ) { int i; int nproc = __kmp_threads[global_tid] -> th.th_team -> t.t_nproc; __kmp_printf("\tThunk at %p on (%d): ", thunk, global_tid); if (thunk != NULL) { for (i = 0; i < nproc; i++) { if( tq->tq_curr_thunk[i] == thunk ) { __kmp_printf("[%i] ", i); } } __kmp_printf("th_shareds=%p, ", thunk->th.th_shareds); __kmp_printf("th_task=%p, ", thunk->th_task); __kmp_printf("th_encl_thunk=%p, ", thunk->th_encl_thunk); __kmp_printf("th_status=%d, ", thunk->th_status); __kmp_printf("th_tasknum=%u, ", thunk->th_tasknum); __kmp_printf("th_flags="); __kmp_dump_TQF(thunk->th_flags); } __kmp_printf("\n"); } static void __kmp_dump_thunk_stack(kmpc_thunk_t *thunk, kmp_int32 thread_num) { kmpc_thunk_t *th; __kmp_printf(" Thunk stack for T#%d: ", thread_num); for (th = thunk; th != NULL; th = th->th_encl_thunk ) __kmp_printf("%p ", th); __kmp_printf("\n"); } static void __kmp_dump_task_queue( kmp_taskq_t *tq, kmpc_task_queue_t *queue, kmp_int32 global_tid ) { int qs, count, i; kmpc_thunk_t *thunk; kmpc_task_queue_t *taskq; __kmp_printf("Task Queue at %p on (%d):\n", queue, global_tid); if (queue != NULL) { int in_parallel = queue->tq_flags & TQF_PARALLEL_CONTEXT; if ( __kmp_env_consistency_check ) { __kmp_printf(" tq_loc : "); } if (in_parallel) { //if (queue->tq.tq_parent != 0) //__kmp_acquire_lock(& queue->tq.tq_parent->tq_link_lck, global_tid); //__kmp_acquire_lock(& queue->tq_link_lck, global_tid); KMP_MB(); /* make sure data structures are in consistent state before querying them */ /* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */ __kmp_printf(" tq_parent : %p\n", queue->tq.tq_parent); __kmp_printf(" tq_first_child : %p\n", queue->tq_first_child); __kmp_printf(" tq_next_child : %p\n", queue->tq_next_child); __kmp_printf(" tq_prev_child : %p\n", queue->tq_prev_child); __kmp_printf(" tq_ref_count : %d\n", queue->tq_ref_count); //__kmp_release_lock(& queue->tq_link_lck, global_tid); //if (queue->tq.tq_parent != 0) //__kmp_release_lock(& queue->tq.tq_parent->tq_link_lck, global_tid); //__kmp_acquire_lock(& queue->tq_free_thunks_lck, global_tid); //__kmp_acquire_lock(& queue->tq_queue_lck, global_tid); KMP_MB(); /* make sure data structures are in consistent state before querying them */ /* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */ } __kmp_printf(" tq_shareds : "); for (i=0; i<((queue == tq->tq_root) ? queue->tq_nproc : 1); i++) __kmp_printf("%p ", queue->tq_shareds[i].ai_data); __kmp_printf("\n"); if (in_parallel) { __kmp_printf(" tq_tasknum_queuing : %u\n", queue->tq_tasknum_queuing); __kmp_printf(" tq_tasknum_serving : %u\n", queue->tq_tasknum_serving); } __kmp_printf(" tq_queue : %p\n", queue->tq_queue); __kmp_printf(" tq_thunk_space : %p\n", queue->tq_thunk_space); __kmp_printf(" tq_taskq_slot : %p\n", queue->tq_taskq_slot); __kmp_printf(" tq_free_thunks : "); for (thunk = queue->tq_free_thunks; thunk != NULL; thunk = thunk->th.th_next_free ) __kmp_printf("%p ", thunk); __kmp_printf("\n"); __kmp_printf(" tq_nslots : %d\n", queue->tq_nslots); __kmp_printf(" tq_head : %d\n", queue->tq_head); __kmp_printf(" tq_tail : %d\n", queue->tq_tail); __kmp_printf(" tq_nfull : %d\n", queue->tq_nfull); __kmp_printf(" tq_hiwat : %d\n", queue->tq_hiwat); __kmp_printf(" tq_flags : "); __kmp_dump_TQF(queue->tq_flags); __kmp_printf("\n"); if (in_parallel) { __kmp_printf(" tq_th_thunks : "); for (i = 0; i < queue->tq_nproc; i++) { __kmp_printf("%d ", queue->tq_th_thunks[i].ai_data); } __kmp_printf("\n"); } __kmp_printf("\n"); __kmp_printf(" Queue slots:\n"); qs = queue->tq_tail; for ( count = 0; count < queue->tq_nfull; ++count ) { __kmp_printf("(%d)", qs); __kmp_dump_thunk( tq, queue->tq_queue[qs].qs_thunk, global_tid ); qs = (qs+1) % queue->tq_nslots; } __kmp_printf("\n"); if (in_parallel) { if (queue->tq_taskq_slot != NULL) { __kmp_printf(" TaskQ slot:\n"); __kmp_dump_thunk( tq, (kmpc_thunk_t *) queue->tq_taskq_slot, global_tid ); __kmp_printf("\n"); } //__kmp_release_lock(& queue->tq_queue_lck, global_tid); //__kmp_release_lock(& queue->tq_free_thunks_lck, global_tid); } } __kmp_printf(" Taskq freelist: "); //__kmp_acquire_lock( & tq->tq_freelist_lck, global_tid ); KMP_MB(); /* make sure data structures are in consistent state before querying them */ /* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */ for( taskq = tq->tq_freelist; taskq != NULL; taskq = taskq->tq.tq_next_free ) __kmp_printf("%p ", taskq); //__kmp_release_lock( & tq->tq_freelist_lck, global_tid ); __kmp_printf("\n\n"); } static void __kmp_aux_dump_task_queue_tree( kmp_taskq_t *tq, kmpc_task_queue_t *curr_queue, kmp_int32 level, kmp_int32 global_tid ) { int i, count, qs; int nproc = __kmp_threads[global_tid] -> th.th_team -> t.t_nproc; kmpc_task_queue_t *queue = curr_queue; if (curr_queue == NULL) return; __kmp_printf(" "); for (i=0; itq_curr_thunk[i] && tq->tq_curr_thunk[i]->th.th_shareds->sv_queue == curr_queue ) { __kmp_printf(" [%i]", i); } } __kmp_printf(":"); //__kmp_acquire_lock(& curr_queue->tq_queue_lck, global_tid); KMP_MB(); /* make sure data structures are in consistent state before querying them */ /* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */ qs = curr_queue->tq_tail; for ( count = 0; count < curr_queue->tq_nfull; ++count ) { __kmp_printf("%p ", curr_queue->tq_queue[qs].qs_thunk); qs = (qs+1) % curr_queue->tq_nslots; } //__kmp_release_lock(& curr_queue->tq_queue_lck, global_tid); __kmp_printf("\n"); if (curr_queue->tq_first_child) { //__kmp_acquire_lock(& curr_queue->tq_link_lck, global_tid); KMP_MB(); /* make sure data structures are in consistent state before querying them */ /* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */ if (curr_queue->tq_first_child) { for(queue = (kmpc_task_queue_t *)curr_queue->tq_first_child; queue != NULL; queue = queue->tq_next_child) { __kmp_aux_dump_task_queue_tree( tq, queue, level+1, global_tid ); } } //__kmp_release_lock(& curr_queue->tq_link_lck, global_tid); } } static void __kmp_dump_task_queue_tree( kmp_taskq_t *tq, kmpc_task_queue_t *tqroot, kmp_int32 global_tid) { __kmp_printf("TaskQ Tree at root %p on (%d):\n", tqroot, global_tid); __kmp_aux_dump_task_queue_tree( tq, tqroot, 0, global_tid ); __kmp_printf("\n"); } #endif /* --------------------------------------------------------------------------- */ /* New taskq storage routines that try to minimize overhead of mallocs but still provide cache line alignment. */ static void * __kmp_taskq_allocate(size_t size, kmp_int32 global_tid) { void *addr, *orig_addr; size_t bytes; KB_TRACE( 5, ("__kmp_taskq_allocate: called size=%d, gtid=%d\n", (int) size, global_tid ) ); bytes = sizeof(void *) + CACHE_LINE + size; #ifdef THREAD_ALLOC_FOR_TASKQ orig_addr = (void *) __kmp_thread_malloc( __kmp_thread_from_gtid(global_tid), bytes ); #else KE_TRACE( 10, ("%%%%%% MALLOC( %d )\n", bytes ) ); orig_addr = (void *) KMP_INTERNAL_MALLOC( bytes ); #endif /* THREAD_ALLOC_FOR_TASKQ */ if (orig_addr == 0) KMP_FATAL( OutOfHeapMemory ); addr = orig_addr; if (((kmp_uintptr_t) addr & ( CACHE_LINE - 1 )) != 0) { KB_TRACE( 50, ("__kmp_taskq_allocate: adjust for cache alignment\n" ) ); addr = (void *) (((kmp_uintptr_t) addr + CACHE_LINE) & ~( CACHE_LINE - 1 )); } (* (void **) addr) = orig_addr; KB_TRACE( 10, ("__kmp_taskq_allocate: allocate: %p, use: %p - %p, size: %d, gtid: %d\n", orig_addr, ((void **) addr) + 1, ((char *)(((void **) addr) + 1)) + size-1, (int) size, global_tid )); return ( ((void **) addr) + 1 ); } static void __kmpc_taskq_free(void *p, kmp_int32 global_tid) { KB_TRACE( 5, ("__kmpc_taskq_free: called addr=%p, gtid=%d\n", p, global_tid ) ); KB_TRACE(10, ("__kmpc_taskq_free: freeing: %p, gtid: %d\n", (*( ((void **) p)-1)), global_tid )); #ifdef THREAD_ALLOC_FOR_TASKQ __kmp_thread_free( __kmp_thread_from_gtid(global_tid), *( ((void **) p)-1) ); #else KMP_INTERNAL_FREE( *( ((void **) p)-1) ); #endif /* THREAD_ALLOC_FOR_TASKQ */ } /* --------------------------------------------------------------------------- */ /* * Keep freed kmpc_task_queue_t on an internal freelist and recycle since * they're of constant size. */ static kmpc_task_queue_t * __kmp_alloc_taskq ( kmp_taskq_t *tq, int in_parallel, kmp_int32 nslots, kmp_int32 nthunks, kmp_int32 nshareds, kmp_int32 nproc, size_t sizeof_thunk, size_t sizeof_shareds, kmpc_thunk_t **new_taskq_thunk, kmp_int32 global_tid ) { kmp_int32 i; size_t bytes; kmpc_task_queue_t *new_queue; kmpc_aligned_shared_vars_t *shared_var_array; char *shared_var_storage; char *pt; /* for doing byte-adjusted address computations */ __kmp_acquire_lock( & tq->tq_freelist_lck, global_tid ); KMP_MB(); /* make sure data structures are in consistent state before querying them */ /* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */ if( tq->tq_freelist ) { new_queue = tq -> tq_freelist; tq -> tq_freelist = tq -> tq_freelist -> tq.tq_next_free; KMP_DEBUG_ASSERT(new_queue->tq_flags & TQF_DEALLOCATED); new_queue->tq_flags = 0; __kmp_release_lock( & tq->tq_freelist_lck, global_tid ); } else { __kmp_release_lock( & tq->tq_freelist_lck, global_tid ); new_queue = (kmpc_task_queue_t *) __kmp_taskq_allocate (sizeof (kmpc_task_queue_t), global_tid); new_queue->tq_flags = 0; } /* space in the task queue for queue slots (allocate as one big chunk */ /* of storage including new_taskq_task space) */ sizeof_thunk += (CACHE_LINE - (sizeof_thunk % CACHE_LINE)); /* pad to cache line size */ pt = (char *) __kmp_taskq_allocate (nthunks * sizeof_thunk, global_tid); new_queue->tq_thunk_space = (kmpc_thunk_t *)pt; *new_taskq_thunk = (kmpc_thunk_t *)(pt + (nthunks - 1) * sizeof_thunk); /* chain the allocated thunks into a freelist for this queue */ new_queue->tq_free_thunks = (kmpc_thunk_t *)pt; for (i = 0; i < (nthunks - 2); i++) { ((kmpc_thunk_t *)(pt+i*sizeof_thunk))->th.th_next_free = (kmpc_thunk_t *)(pt + (i+1)*sizeof_thunk); #ifdef KMP_DEBUG ((kmpc_thunk_t *)(pt+i*sizeof_thunk))->th_flags = TQF_DEALLOCATED; #endif } ((kmpc_thunk_t *)(pt+(nthunks-2)*sizeof_thunk))->th.th_next_free = NULL; #ifdef KMP_DEBUG ((kmpc_thunk_t *)(pt+(nthunks-2)*sizeof_thunk))->th_flags = TQF_DEALLOCATED; #endif /* initialize the locks */ if (in_parallel) { __kmp_init_lock( & new_queue->tq_link_lck ); __kmp_init_lock( & new_queue->tq_free_thunks_lck ); __kmp_init_lock( & new_queue->tq_queue_lck ); } /* now allocate the slots */ bytes = nslots * sizeof (kmpc_aligned_queue_slot_t); new_queue->tq_queue = (kmpc_aligned_queue_slot_t *) __kmp_taskq_allocate( bytes, global_tid ); /* space for array of pointers to shared variable structures */ sizeof_shareds += sizeof(kmpc_task_queue_t *); sizeof_shareds += (CACHE_LINE - (sizeof_shareds % CACHE_LINE)); /* pad to cache line size */ bytes = nshareds * sizeof (kmpc_aligned_shared_vars_t); shared_var_array = (kmpc_aligned_shared_vars_t *) __kmp_taskq_allocate ( bytes, global_tid); bytes = nshareds * sizeof_shareds; shared_var_storage = (char *) __kmp_taskq_allocate ( bytes, global_tid); for (i=0; isv_queue = new_queue; } new_queue->tq_shareds = shared_var_array; /* array for number of outstanding thunks per thread */ if (in_parallel) { bytes = nproc * sizeof(kmpc_aligned_int32_t); new_queue->tq_th_thunks = (kmpc_aligned_int32_t *) __kmp_taskq_allocate ( bytes, global_tid); new_queue->tq_nproc = nproc; for (i=0; itq_th_thunks[i].ai_data = 0; } return new_queue; } static void __kmp_free_taskq (kmp_taskq_t *tq, kmpc_task_queue_t *p, int in_parallel, kmp_int32 global_tid) { __kmpc_taskq_free(p->tq_thunk_space, global_tid); __kmpc_taskq_free(p->tq_queue, global_tid); /* free shared var structure storage */ __kmpc_taskq_free((void *) p->tq_shareds[0].ai_data, global_tid); /* free array of pointers to shared vars storage */ __kmpc_taskq_free(p->tq_shareds, global_tid); #ifdef KMP_DEBUG p->tq_first_child = NULL; p->tq_next_child = NULL; p->tq_prev_child = NULL; p->tq_ref_count = -10; p->tq_shareds = NULL; p->tq_tasknum_queuing = 0; p->tq_tasknum_serving = 0; p->tq_queue = NULL; p->tq_thunk_space = NULL; p->tq_taskq_slot = NULL; p->tq_free_thunks = NULL; p->tq_nslots = 0; p->tq_head = 0; p->tq_tail = 0; p->tq_nfull = 0; p->tq_hiwat = 0; if (in_parallel) { int i; for (i=0; itq_nproc; i++) p->tq_th_thunks[i].ai_data = 0; } if ( __kmp_env_consistency_check ) p->tq_loc = NULL; KMP_DEBUG_ASSERT( p->tq_flags & TQF_DEALLOCATED ); p->tq_flags = TQF_DEALLOCATED; #endif /* KMP_DEBUG */ if (in_parallel) { __kmpc_taskq_free(p->tq_th_thunks, global_tid); __kmp_destroy_lock(& p->tq_link_lck); __kmp_destroy_lock(& p->tq_queue_lck); __kmp_destroy_lock(& p->tq_free_thunks_lck); } #ifdef KMP_DEBUG p->tq_th_thunks = NULL; #endif /* KMP_DEBUG */ KMP_MB(); /* make sure data structures are in consistent state before querying them */ /* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */ __kmp_acquire_lock( & tq->tq_freelist_lck, global_tid ); p->tq.tq_next_free = tq->tq_freelist; tq->tq_freelist = p; __kmp_release_lock( & tq->tq_freelist_lck, global_tid ); } /* * Once a group of thunks has been allocated for use in a particular queue, * these are managed via a per-queue freelist. * We force a check that there's always a thunk free if we need one. */ static kmpc_thunk_t * __kmp_alloc_thunk (kmpc_task_queue_t *queue, int in_parallel, kmp_int32 global_tid) { kmpc_thunk_t *fl; if (in_parallel) { __kmp_acquire_lock(& queue->tq_free_thunks_lck, global_tid); KMP_MB(); /* make sure data structures are in consistent state before querying them */ /* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */ } fl = queue->tq_free_thunks; KMP_DEBUG_ASSERT (fl != NULL); queue->tq_free_thunks = fl->th.th_next_free; fl->th_flags = 0; if (in_parallel) __kmp_release_lock(& queue->tq_free_thunks_lck, global_tid); return fl; } static void __kmp_free_thunk (kmpc_task_queue_t *queue, kmpc_thunk_t *p, int in_parallel, kmp_int32 global_tid) { #ifdef KMP_DEBUG p->th_task = 0; p->th_encl_thunk = 0; p->th_status = 0; p->th_tasknum = 0; /* Also could zero pointers to private vars */ #endif if (in_parallel) { __kmp_acquire_lock(& queue->tq_free_thunks_lck, global_tid); KMP_MB(); /* make sure data structures are in consistent state before querying them */ /* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */ } p->th.th_next_free = queue->tq_free_thunks; queue->tq_free_thunks = p; #ifdef KMP_DEBUG p->th_flags = TQF_DEALLOCATED; #endif if (in_parallel) __kmp_release_lock(& queue->tq_free_thunks_lck, global_tid); } /* --------------------------------------------------------------------------- */ /* returns nonzero if the queue just became full after the enqueue */ static kmp_int32 __kmp_enqueue_task ( kmp_taskq_t *tq, kmp_int32 global_tid, kmpc_task_queue_t *queue, kmpc_thunk_t *thunk, int in_parallel ) { kmp_int32 ret; /* dkp: can we get around the lock in the TQF_RELEASE_WORKERS case (only the master is executing then) */ if (in_parallel) { __kmp_acquire_lock(& queue->tq_queue_lck, global_tid); KMP_MB(); /* make sure data structures are in consistent state before querying them */ /* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */ } KMP_DEBUG_ASSERT (queue->tq_nfull < queue->tq_nslots); /* check queue not full */ queue->tq_queue[(queue->tq_head)++].qs_thunk = thunk; if (queue->tq_head >= queue->tq_nslots) queue->tq_head = 0; (queue->tq_nfull)++; KMP_MB(); /* to assure that nfull is seen to increase before TQF_ALL_TASKS_QUEUED is set */ ret = (in_parallel) ? (queue->tq_nfull == queue->tq_nslots) : FALSE; if (in_parallel) { /* don't need to wait until workers are released before unlocking */ __kmp_release_lock(& queue->tq_queue_lck, global_tid); if( tq->tq_global_flags & TQF_RELEASE_WORKERS ) { /* If just creating the root queue, the worker threads are waiting at */ /* a join barrier until now, when there's something in the queue for */ /* them to do; release them now to do work. */ /* This should only be done when this is the first task enqueued, */ /* so reset the flag here also. */ tq->tq_global_flags &= ~TQF_RELEASE_WORKERS; /* no lock needed, workers are still in spin mode */ KMP_MB(); /* avoid releasing barrier twice if taskq_task switches threads */ __kmpc_end_barrier_master( NULL, global_tid); } } return ret; } static kmpc_thunk_t * __kmp_dequeue_task (kmp_int32 global_tid, kmpc_task_queue_t *queue, int in_parallel) { kmpc_thunk_t *pt; int tid = __kmp_tid_from_gtid( global_tid ); KMP_DEBUG_ASSERT (queue->tq_nfull > 0); /* check queue not empty */ if (queue->tq.tq_parent != NULL && in_parallel) { int ct; __kmp_acquire_lock(& queue->tq.tq_parent->tq_link_lck, global_tid); ct = ++(queue->tq_ref_count); __kmp_release_lock(& queue->tq.tq_parent->tq_link_lck, global_tid); KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p inc %d\n", __LINE__, global_tid, queue, ct)); } pt = queue->tq_queue[(queue->tq_tail)++].qs_thunk; if (queue->tq_tail >= queue->tq_nslots) queue->tq_tail = 0; if (in_parallel) { queue->tq_th_thunks[tid].ai_data++; KMP_MB(); /* necessary so ai_data increment is propagated to other threads immediately (digital) */ KF_TRACE(200, ("__kmp_dequeue_task: T#%d(:%d) now has %d outstanding thunks from queue %p\n", global_tid, tid, queue->tq_th_thunks[tid].ai_data, queue)); } (queue->tq_nfull)--; #ifdef KMP_DEBUG KMP_MB(); /* necessary so (queue->tq_nfull > 0) above succeeds after tq_nfull is decremented */ KMP_DEBUG_ASSERT(queue->tq_nfull >= 0); if (in_parallel) { KMP_DEBUG_ASSERT(queue->tq_th_thunks[tid].ai_data <= __KMP_TASKQ_THUNKS_PER_TH); } #endif return pt; } /* * Find the next (non-null) task to dequeue and return it. * This is never called unless in_parallel=TRUE * * Here are the rules for deciding which queue to take the task from: * 1. Walk up the task queue tree from the current queue's parent and look * on the way up (for loop, below). * 2. Do a depth-first search back down the tree from the root and * look (find_task_in_descendant_queue()). * * Here are the rules for deciding which task to take from a queue * (__kmp_find_task_in_queue ()): * 1. Never take the last task from a queue if TQF_IS_LASTPRIVATE; this task * must be staged to make sure we execute the last one with * TQF_IS_LAST_TASK at the end of task queue execution. * 2. If the queue length is below some high water mark and the taskq task * is enqueued, prefer running the taskq task. * 3. Otherwise, take a (normal) task from the queue. * * If we do all this and return pt == NULL at the bottom of this routine, * this means there are no more tasks to execute (except possibly for * TQF_IS_LASTPRIVATE). */ static kmpc_thunk_t * __kmp_find_task_in_queue (kmp_int32 global_tid, kmpc_task_queue_t *queue) { kmpc_thunk_t *pt = NULL; int tid = __kmp_tid_from_gtid( global_tid ); /* To prevent deadlock from tq_queue_lck if queue already deallocated */ if ( !(queue->tq_flags & TQF_DEALLOCATED) ) { __kmp_acquire_lock(& queue->tq_queue_lck, global_tid); /* Check again to avoid race in __kmpc_end_taskq() */ if ( !(queue->tq_flags & TQF_DEALLOCATED) ) { KMP_MB(); /* make sure data structures are in consistent state before querying them */ /* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */ if ((queue->tq_taskq_slot != NULL) && (queue->tq_nfull <= queue->tq_hiwat)) { /* if there's enough room in the queue and the dispatcher */ /* (taskq task) is available, schedule more tasks */ pt = (kmpc_thunk_t *) queue->tq_taskq_slot; queue->tq_taskq_slot = NULL; } else if (queue->tq_nfull == 0 || queue->tq_th_thunks[tid].ai_data >= __KMP_TASKQ_THUNKS_PER_TH) { /* do nothing if no thunks available or this thread can't */ /* run any because it already is executing too many */ pt = NULL; } else if (queue->tq_nfull > 1) { /* always safe to schedule a task even if TQF_IS_LASTPRIVATE */ pt = __kmp_dequeue_task (global_tid, queue, TRUE); } else if (!(queue->tq_flags & TQF_IS_LASTPRIVATE)) { /* one thing in queue, always safe to schedule if !TQF_IS_LASTPRIVATE */ pt = __kmp_dequeue_task (global_tid, queue, TRUE); } else if (queue->tq_flags & TQF_IS_LAST_TASK) { /* TQF_IS_LASTPRIVATE, one thing in queue, kmpc_end_taskq_task() */ /* has been run so this is last task, run with TQF_IS_LAST_TASK so */ /* instrumentation does copy-out. */ pt = __kmp_dequeue_task (global_tid, queue, TRUE); pt->th_flags |= TQF_IS_LAST_TASK; /* don't need test_then_or since already locked */ } } /* GEH - What happens here if is lastprivate, but not last task? */ __kmp_release_lock(& queue->tq_queue_lck, global_tid); } return pt; } /* * Walk a tree of queues starting at queue's first child * and return a non-NULL thunk if one can be scheduled. * Must only be called when in_parallel=TRUE */ static kmpc_thunk_t * __kmp_find_task_in_descendant_queue (kmp_int32 global_tid, kmpc_task_queue_t *curr_queue) { kmpc_thunk_t *pt = NULL; kmpc_task_queue_t *queue = curr_queue; if (curr_queue->tq_first_child != NULL) { __kmp_acquire_lock(& curr_queue->tq_link_lck, global_tid); KMP_MB(); /* make sure data structures are in consistent state before querying them */ /* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */ queue = (kmpc_task_queue_t *) curr_queue->tq_first_child; if (queue == NULL) { __kmp_release_lock(& curr_queue->tq_link_lck, global_tid); return NULL; } while (queue != NULL) { int ct; kmpc_task_queue_t *next; ct= ++(queue->tq_ref_count); __kmp_release_lock(& curr_queue->tq_link_lck, global_tid); KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p inc %d\n", __LINE__, global_tid, queue, ct)); pt = __kmp_find_task_in_queue (global_tid, queue); if (pt != NULL) { int ct; __kmp_acquire_lock(& curr_queue->tq_link_lck, global_tid); KMP_MB(); /* make sure data structures are in consistent state before querying them */ /* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */ ct = --(queue->tq_ref_count); KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p dec %d\n", __LINE__, global_tid, queue, ct)); KMP_DEBUG_ASSERT( queue->tq_ref_count >= 0 ); __kmp_release_lock(& curr_queue->tq_link_lck, global_tid); return pt; } /* although reference count stays active during descendant walk, shouldn't matter */ /* since if children still exist, reference counts aren't being monitored anyway */ pt = __kmp_find_task_in_descendant_queue (global_tid, queue); if (pt != NULL) { int ct; __kmp_acquire_lock(& curr_queue->tq_link_lck, global_tid); KMP_MB(); /* make sure data structures are in consistent state before querying them */ /* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */ ct = --(queue->tq_ref_count); KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p dec %d\n", __LINE__, global_tid, queue, ct)); KMP_DEBUG_ASSERT( ct >= 0 ); __kmp_release_lock(& curr_queue->tq_link_lck, global_tid); return pt; } __kmp_acquire_lock(& curr_queue->tq_link_lck, global_tid); KMP_MB(); /* make sure data structures are in consistent state before querying them */ /* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */ next = queue->tq_next_child; ct = --(queue->tq_ref_count); KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p dec %d\n", __LINE__, global_tid, queue, ct)); KMP_DEBUG_ASSERT( ct >= 0 ); queue = next; } __kmp_release_lock(& curr_queue->tq_link_lck, global_tid); } return pt; } /* * Walk up the taskq tree looking for a task to execute. * If we get to the root, search the tree for a descendent queue task. * Must only be called when in_parallel=TRUE */ static kmpc_thunk_t * __kmp_find_task_in_ancestor_queue (kmp_taskq_t *tq, kmp_int32 global_tid, kmpc_task_queue_t *curr_queue) { kmpc_task_queue_t *queue; kmpc_thunk_t *pt; pt = NULL; if (curr_queue->tq.tq_parent != NULL) { queue = curr_queue->tq.tq_parent; while (queue != NULL) { if (queue->tq.tq_parent != NULL) { int ct; __kmp_acquire_lock(& queue->tq.tq_parent->tq_link_lck, global_tid); KMP_MB(); /* make sure data structures are in consistent state before querying them */ /* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */ ct = ++(queue->tq_ref_count); __kmp_release_lock(& queue->tq.tq_parent->tq_link_lck, global_tid); KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p inc %d\n", __LINE__, global_tid, queue, ct)); } pt = __kmp_find_task_in_queue (global_tid, queue); if (pt != NULL) { if (queue->tq.tq_parent != NULL) { int ct; __kmp_acquire_lock(& queue->tq.tq_parent->tq_link_lck, global_tid); KMP_MB(); /* make sure data structures are in consistent state before querying them */ /* Seems to work without this call for digital/alpha, needed for IBM/RS6000 */ ct = --(queue->tq_ref_count); KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p dec %d\n", __LINE__, global_tid, queue, ct)); KMP_DEBUG_ASSERT( ct >= 0 ); __kmp_release_lock(& queue->tq.tq_parent->tq_link_lck, global_tid); } return pt; } if (queue->tq.tq_parent != NULL) { int ct; __kmp_acquire_lock(& queue->tq.tq_parent->tq_link_lck, global_tid); KMP_MB(); /* make sure data structures are in consistent state before querying them */ /* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */ ct = --(queue->tq_ref_count); KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p dec %d\n", __LINE__, global_tid, queue, ct)); KMP_DEBUG_ASSERT( ct >= 0 ); } queue = queue->tq.tq_parent; if (queue != NULL) __kmp_release_lock(& queue->tq_link_lck, global_tid); } } pt = __kmp_find_task_in_descendant_queue( global_tid, tq->tq_root ); return pt; } static int __kmp_taskq_tasks_finished (kmpc_task_queue_t *queue) { int i; /* KMP_MB(); *//* is this really necessary? */ for (i=0; itq_nproc; i++) { if (queue->tq_th_thunks[i].ai_data != 0) return FALSE; } return TRUE; } static int __kmp_taskq_has_any_children (kmpc_task_queue_t *queue) { return (queue->tq_first_child != NULL); } static void __kmp_remove_queue_from_tree( kmp_taskq_t *tq, kmp_int32 global_tid, kmpc_task_queue_t *queue, int in_parallel ) { #ifdef KMP_DEBUG kmp_int32 i; kmpc_thunk_t *thunk; #endif KF_TRACE(50, ("Before Deletion of TaskQ at %p on (%d):\n", queue, global_tid)); KF_DUMP(50, __kmp_dump_task_queue( tq, queue, global_tid )); /* sub-queue in a recursion, not the root task queue */ KMP_DEBUG_ASSERT (queue->tq.tq_parent != NULL); if (in_parallel) { __kmp_acquire_lock(& queue->tq.tq_parent->tq_link_lck, global_tid); KMP_MB(); /* make sure data structures are in consistent state before querying them */ /* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */ } KMP_DEBUG_ASSERT (queue->tq_first_child == NULL); /* unlink queue from its siblings if any at this level */ if (queue->tq_prev_child != NULL) queue->tq_prev_child->tq_next_child = queue->tq_next_child; if (queue->tq_next_child != NULL) queue->tq_next_child->tq_prev_child = queue->tq_prev_child; if (queue->tq.tq_parent->tq_first_child == queue) queue->tq.tq_parent->tq_first_child = queue->tq_next_child; queue->tq_prev_child = NULL; queue->tq_next_child = NULL; if (in_parallel) { KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p waiting for ref_count of %d to reach 1\n", __LINE__, global_tid, queue, queue->tq_ref_count)); /* wait until all other threads have stopped accessing this queue */ while (queue->tq_ref_count > 1) { __kmp_release_lock(& queue->tq.tq_parent->tq_link_lck, global_tid); KMP_WAIT_YIELD((volatile kmp_uint32*)&queue->tq_ref_count, 1, KMP_LE, NULL); __kmp_acquire_lock(& queue->tq.tq_parent->tq_link_lck, global_tid); KMP_MB(); /* make sure data structures are in consistent state before querying them */ /* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */ } __kmp_release_lock(& queue->tq.tq_parent->tq_link_lck, global_tid); } KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p freeing queue\n", __LINE__, global_tid, queue)); #ifdef KMP_DEBUG KMP_DEBUG_ASSERT(queue->tq_flags & TQF_ALL_TASKS_QUEUED); KMP_DEBUG_ASSERT(queue->tq_nfull == 0); for (i=0; itq_nproc; i++) { KMP_DEBUG_ASSERT(queue->tq_th_thunks[i].ai_data == 0); } i = 0; for (thunk=queue->tq_free_thunks; thunk != NULL; thunk=thunk->th.th_next_free) ++i; KMP_ASSERT (i == queue->tq_nslots + (queue->tq_nproc * __KMP_TASKQ_THUNKS_PER_TH)); #endif /* release storage for queue entry */ __kmp_free_taskq ( tq, queue, TRUE, global_tid ); KF_TRACE(50, ("After Deletion of TaskQ at %p on (%d):\n", queue, global_tid)); KF_DUMP(50, __kmp_dump_task_queue_tree( tq, tq->tq_root, global_tid )); } /* * Starting from indicated queue, proceed downward through tree and * remove all taskqs which are finished, but only go down to taskqs * which have the "nowait" clause present. Assume this is only called * when in_parallel=TRUE. */ static void __kmp_find_and_remove_finished_child_taskq( kmp_taskq_t *tq, kmp_int32 global_tid, kmpc_task_queue_t *curr_queue ) { kmpc_task_queue_t *queue = curr_queue; if (curr_queue->tq_first_child != NULL) { __kmp_acquire_lock(& curr_queue->tq_link_lck, global_tid); KMP_MB(); /* make sure data structures are in consistent state before querying them */ /* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */ queue = (kmpc_task_queue_t *) curr_queue->tq_first_child; if (queue != NULL) { __kmp_release_lock(& curr_queue->tq_link_lck, global_tid); return; } while (queue != NULL) { kmpc_task_queue_t *next; int ct = ++(queue->tq_ref_count); KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p inc %d\n", __LINE__, global_tid, queue, ct)); /* although reference count stays active during descendant walk, */ /* shouldn't matter since if children still exist, reference */ /* counts aren't being monitored anyway */ if (queue->tq_flags & TQF_IS_NOWAIT) { __kmp_find_and_remove_finished_child_taskq ( tq, global_tid, queue ); if ((queue->tq_flags & TQF_ALL_TASKS_QUEUED) && (queue->tq_nfull == 0) && __kmp_taskq_tasks_finished(queue) && ! __kmp_taskq_has_any_children(queue)) { /* Only remove this if we have not already marked it for deallocation. This should prevent multiple threads from trying to free this. */ if ( __kmp_test_lock(& queue->tq_queue_lck, global_tid) ) { if ( !(queue->tq_flags & TQF_DEALLOCATED) ) { queue->tq_flags |= TQF_DEALLOCATED; __kmp_release_lock(& queue->tq_queue_lck, global_tid); __kmp_remove_queue_from_tree( tq, global_tid, queue, TRUE ); /* Can't do any more here since can't be sure where sibling queue is so just exit this level */ return; } else { __kmp_release_lock(& queue->tq_queue_lck, global_tid); } } /* otherwise, just fall through and decrement reference count */ } } __kmp_acquire_lock(& curr_queue->tq_link_lck, global_tid); KMP_MB(); /* make sure data structures are in consistent state before querying them */ /* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */ next = queue->tq_next_child; ct = --(queue->tq_ref_count); KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p dec %d\n", __LINE__, global_tid, queue, ct)); KMP_DEBUG_ASSERT( ct >= 0 ); queue = next; } __kmp_release_lock(& curr_queue->tq_link_lck, global_tid); } } /* * Starting from indicated queue, proceed downward through tree and * remove all taskq's assuming all are finished and * assuming NO other threads are executing at this point. */ static void __kmp_remove_all_child_taskq( kmp_taskq_t *tq, kmp_int32 global_tid, kmpc_task_queue_t *queue ) { kmpc_task_queue_t *next_child; queue = (kmpc_task_queue_t *) queue->tq_first_child; while (queue != NULL) { __kmp_remove_all_child_taskq ( tq, global_tid, queue ); next_child = queue->tq_next_child; queue->tq_flags |= TQF_DEALLOCATED; __kmp_remove_queue_from_tree ( tq, global_tid, queue, FALSE ); queue = next_child; } } static void __kmp_execute_task_from_queue( kmp_taskq_t *tq, ident_t *loc, kmp_int32 global_tid, kmpc_thunk_t *thunk, int in_parallel ) { kmpc_task_queue_t *queue = thunk->th.th_shareds->sv_queue; kmp_int32 tid = __kmp_tid_from_gtid( global_tid ); KF_TRACE(100, ("After dequeueing this Task on (%d):\n", global_tid)); KF_DUMP(100, __kmp_dump_thunk( tq, thunk, global_tid )); KF_TRACE(100, ("Task Queue: %p looks like this (%d):\n", queue, global_tid)); KF_DUMP(100, __kmp_dump_task_queue( tq, queue, global_tid )); /* * For the taskq task, the curr_thunk pushes and pop pairs are set up as follows: * * happens exactly once: * 1) __kmpc_taskq : push (if returning thunk only) * 4) __kmpc_end_taskq_task : pop * * optionally happens *each* time taskq task is dequeued/enqueued: * 2) __kmpc_taskq_task : pop * 3) __kmp_execute_task_from_queue : push * * execution ordering: 1,(2,3)*,4 */ if (!(thunk->th_flags & TQF_TASKQ_TASK)) { kmp_int32 index = (queue == tq->tq_root) ? tid : 0; thunk->th.th_shareds = (kmpc_shared_vars_t *) queue->tq_shareds[index].ai_data; if ( __kmp_env_consistency_check ) { __kmp_push_workshare( global_tid, (queue->tq_flags & TQF_IS_ORDERED) ? ct_task_ordered : ct_task, queue->tq_loc ); } } else { if ( __kmp_env_consistency_check ) __kmp_push_workshare( global_tid, ct_taskq, queue->tq_loc ); } if (in_parallel) { thunk->th_encl_thunk = tq->tq_curr_thunk[tid]; tq->tq_curr_thunk[tid] = thunk; KF_DUMP( 200, __kmp_dump_thunk_stack( tq->tq_curr_thunk[tid], global_tid )); } KF_TRACE( 50, ("Begin Executing Thunk %p from queue %p on (%d)\n", thunk, queue, global_tid)); thunk->th_task (global_tid, thunk); KF_TRACE( 50, ("End Executing Thunk %p from queue %p on (%d)\n", thunk, queue, global_tid)); if (!(thunk->th_flags & TQF_TASKQ_TASK)) { if ( __kmp_env_consistency_check ) __kmp_pop_workshare( global_tid, (queue->tq_flags & TQF_IS_ORDERED) ? ct_task_ordered : ct_task, queue->tq_loc ); if (in_parallel) { tq->tq_curr_thunk[tid] = thunk->th_encl_thunk; thunk->th_encl_thunk = NULL; KF_DUMP( 200, __kmp_dump_thunk_stack( tq->tq_curr_thunk[tid], global_tid )); } if ((thunk->th_flags & TQF_IS_ORDERED) && in_parallel) { __kmp_taskq_check_ordered(global_tid, thunk); } __kmp_free_thunk (queue, thunk, in_parallel, global_tid); KF_TRACE(100, ("T#%d After freeing thunk: %p, TaskQ looks like this:\n", global_tid, thunk)); KF_DUMP(100, __kmp_dump_task_queue( tq, queue, global_tid )); if (in_parallel) { KMP_MB(); /* needed so thunk put on free list before outstanding thunk count is decremented */ KMP_DEBUG_ASSERT(queue->tq_th_thunks[tid].ai_data >= 1); KF_TRACE( 200, ("__kmp_execute_task_from_queue: T#%d has %d thunks in queue %p\n", global_tid, queue->tq_th_thunks[tid].ai_data-1, queue)); queue->tq_th_thunks[tid].ai_data--; /* KMP_MB(); */ /* is MB really necessary ? */ } if (queue->tq.tq_parent != NULL && in_parallel) { int ct; __kmp_acquire_lock(& queue->tq.tq_parent->tq_link_lck, global_tid); ct = --(queue->tq_ref_count); __kmp_release_lock(& queue->tq.tq_parent->tq_link_lck, global_tid); KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p dec %d\n", __LINE__, global_tid, queue, ct)); KMP_DEBUG_ASSERT( ct >= 0 ); } } } /* --------------------------------------------------------------------------- */ /* starts a taskq; creates and returns a thunk for the taskq_task */ /* also, returns pointer to shared vars for this thread in "shareds" arg */ kmpc_thunk_t * __kmpc_taskq( ident_t *loc, kmp_int32 global_tid, kmpc_task_t taskq_task, size_t sizeof_thunk, size_t sizeof_shareds, kmp_int32 flags, kmpc_shared_vars_t **shareds ) { int in_parallel; kmp_int32 nslots, nthunks, nshareds, nproc; kmpc_task_queue_t *new_queue, *curr_queue; kmpc_thunk_t *new_taskq_thunk; kmp_info_t *th; kmp_team_t *team; kmp_taskq_t *tq; kmp_int32 tid; KE_TRACE( 10, ("__kmpc_taskq called (%d)\n", global_tid)); th = __kmp_threads[ global_tid ]; team = th -> th.th_team; tq = & team -> t.t_taskq; nproc = team -> t.t_nproc; tid = __kmp_tid_from_gtid( global_tid ); /* find out whether this is a parallel taskq or serialized one. */ in_parallel = in_parallel_context( team ); if( ! tq->tq_root ) { if (in_parallel) { /* Vector ORDERED SECTION to taskq version */ th->th.th_dispatch->th_deo_fcn = __kmp_taskq_eo; /* Vector ORDERED SECTION to taskq version */ th->th.th_dispatch->th_dxo_fcn = __kmp_taskq_xo; } if (in_parallel) { /* This shouldn't be a barrier region boundary, it will confuse the user. */ /* Need the boundary to be at the end taskq instead. */ if ( __kmp_barrier( bs_plain_barrier, global_tid, TRUE, 0, NULL, NULL )) { /* Creating the active root queue, and we are not the master thread. */ /* The master thread below created the queue and tasks have been */ /* enqueued, and the master thread released this barrier. This */ /* worker thread can now proceed and execute tasks. See also the */ /* TQF_RELEASE_WORKERS which is used to handle this case. */ *shareds = (kmpc_shared_vars_t *) tq->tq_root->tq_shareds[tid].ai_data; KE_TRACE( 10, ("__kmpc_taskq return (%d)\n", global_tid)); return NULL; } } /* master thread only executes this code */ if( tq->tq_curr_thunk_capacity < nproc ) { if(tq->tq_curr_thunk) __kmp_free(tq->tq_curr_thunk); else { /* only need to do this once at outer level, i.e. when tq_curr_thunk is still NULL */ __kmp_init_lock( & tq->tq_freelist_lck ); } tq->tq_curr_thunk = (kmpc_thunk_t **) __kmp_allocate( nproc * sizeof(kmpc_thunk_t *) ); tq -> tq_curr_thunk_capacity = nproc; } if (in_parallel) tq->tq_global_flags = TQF_RELEASE_WORKERS; } /* dkp: in future, if flags & TQF_HEURISTICS, will choose nslots based */ /* on some heuristics (e.g., depth of queue nesting?). */ nslots = (in_parallel) ? (2 * nproc) : 1; /* There must be nproc * __KMP_TASKQ_THUNKS_PER_TH extra slots for pending */ /* jobs being executed by other threads, and one extra for taskq slot */ nthunks = (in_parallel) ? (nslots + (nproc * __KMP_TASKQ_THUNKS_PER_TH) + 1) : nslots + 2; /* Only the root taskq gets a per-thread array of shareds. */ /* The rest of the taskq's only get one copy of the shared vars. */ nshareds = ( !tq->tq_root && in_parallel) ? nproc : 1; /* create overall queue data structure and its components that require allocation */ new_queue = __kmp_alloc_taskq ( tq, in_parallel, nslots, nthunks, nshareds, nproc, sizeof_thunk, sizeof_shareds, &new_taskq_thunk, global_tid ); /* rest of new_queue initializations */ new_queue->tq_flags = flags & TQF_INTERFACE_FLAGS; if (in_parallel) { new_queue->tq_tasknum_queuing = 0; new_queue->tq_tasknum_serving = 0; new_queue->tq_flags |= TQF_PARALLEL_CONTEXT; } new_queue->tq_taskq_slot = NULL; new_queue->tq_nslots = nslots; new_queue->tq_hiwat = HIGH_WATER_MARK (nslots); new_queue->tq_nfull = 0; new_queue->tq_head = 0; new_queue->tq_tail = 0; new_queue->tq_loc = loc; if ((new_queue->tq_flags & TQF_IS_ORDERED) && in_parallel) { /* prepare to serve the first-queued task's ORDERED directive */ new_queue->tq_tasknum_serving = 1; /* Vector ORDERED SECTION to taskq version */ th->th.th_dispatch->th_deo_fcn = __kmp_taskq_eo; /* Vector ORDERED SECTION to taskq version */ th->th.th_dispatch->th_dxo_fcn = __kmp_taskq_xo; } /* create a new thunk for the taskq_task in the new_queue */ *shareds = (kmpc_shared_vars_t *) new_queue->tq_shareds[0].ai_data; new_taskq_thunk->th.th_shareds = *shareds; new_taskq_thunk->th_task = taskq_task; new_taskq_thunk->th_flags = new_queue->tq_flags | TQF_TASKQ_TASK; new_taskq_thunk->th_status = 0; KMP_DEBUG_ASSERT (new_taskq_thunk->th_flags & TQF_TASKQ_TASK); /* KMP_MB(); */ /* make sure these inits complete before threads start using this queue (necessary?) */ /* insert the new task queue into the tree, but only after all fields initialized */ if (in_parallel) { if( ! tq->tq_root ) { new_queue->tq.tq_parent = NULL; new_queue->tq_first_child = NULL; new_queue->tq_next_child = NULL; new_queue->tq_prev_child = NULL; new_queue->tq_ref_count = 1; tq->tq_root = new_queue; } else { curr_queue = tq->tq_curr_thunk[tid]->th.th_shareds->sv_queue; new_queue->tq.tq_parent = curr_queue; new_queue->tq_first_child = NULL; new_queue->tq_prev_child = NULL; new_queue->tq_ref_count = 1; /* for this the thread that built the queue */ KMP_DEBUG_REF_CTS(("line %d gtid %d: Q %p alloc %d\n", __LINE__, global_tid, new_queue, new_queue->tq_ref_count)); __kmp_acquire_lock(& curr_queue->tq_link_lck, global_tid); KMP_MB(); /* make sure data structures are in consistent state before querying them */ /* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */ new_queue->tq_next_child = (struct kmpc_task_queue_t *) curr_queue->tq_first_child; if (curr_queue->tq_first_child != NULL) curr_queue->tq_first_child->tq_prev_child = new_queue; curr_queue->tq_first_child = new_queue; __kmp_release_lock(& curr_queue->tq_link_lck, global_tid); } /* set up thunk stack only after code that determines curr_queue above */ new_taskq_thunk->th_encl_thunk = tq->tq_curr_thunk[tid]; tq->tq_curr_thunk[tid] = new_taskq_thunk; KF_DUMP( 200, __kmp_dump_thunk_stack( tq->tq_curr_thunk[tid], global_tid )); } else { new_taskq_thunk->th_encl_thunk = 0; new_queue->tq.tq_parent = NULL; new_queue->tq_first_child = NULL; new_queue->tq_next_child = NULL; new_queue->tq_prev_child = NULL; new_queue->tq_ref_count = 1; } #ifdef KMP_DEBUG KF_TRACE(150, ("Creating TaskQ Task on (%d):\n", global_tid)); KF_DUMP(150, __kmp_dump_thunk( tq, new_taskq_thunk, global_tid )); if (in_parallel) { KF_TRACE(25, ("After TaskQ at %p Creation on (%d):\n", new_queue, global_tid)); } else { KF_TRACE(25, ("After Serial TaskQ at %p Creation on (%d):\n", new_queue, global_tid)); } KF_DUMP(25, __kmp_dump_task_queue( tq, new_queue, global_tid )); if (in_parallel) { KF_DUMP(50, __kmp_dump_task_queue_tree( tq, tq->tq_root, global_tid )); } #endif /* KMP_DEBUG */ if ( __kmp_env_consistency_check ) __kmp_push_workshare( global_tid, ct_taskq, new_queue->tq_loc ); KE_TRACE( 10, ("__kmpc_taskq return (%d)\n", global_tid)); return new_taskq_thunk; } /* ends a taskq; last thread out destroys the queue */ void __kmpc_end_taskq(ident_t *loc, kmp_int32 global_tid, kmpc_thunk_t *taskq_thunk) { #ifdef KMP_DEBUG kmp_int32 i; #endif kmp_taskq_t *tq; int in_parallel; kmp_info_t *th; kmp_int32 is_outermost; kmpc_task_queue_t *queue; kmpc_thunk_t *thunk; int nproc; KE_TRACE( 10, ("__kmpc_end_taskq called (%d)\n", global_tid)); tq = & __kmp_threads[global_tid] -> th.th_team -> t.t_taskq; nproc = __kmp_threads[global_tid] -> th.th_team -> t.t_nproc; /* For the outermost taskq only, all but one thread will have taskq_thunk == NULL */ queue = (taskq_thunk == NULL) ? tq->tq_root : taskq_thunk->th.th_shareds->sv_queue; KE_TRACE( 50, ("__kmpc_end_taskq queue=%p (%d) \n", queue, global_tid)); is_outermost = (queue == tq->tq_root); in_parallel = (queue->tq_flags & TQF_PARALLEL_CONTEXT); if (in_parallel) { kmp_uint32 spins; /* this is just a safeguard to release the waiting threads if */ /* the outermost taskq never queues a task */ if (is_outermost && (KMP_MASTER_GTID( global_tid ))) { if( tq->tq_global_flags & TQF_RELEASE_WORKERS ) { /* no lock needed, workers are still in spin mode */ tq->tq_global_flags &= ~TQF_RELEASE_WORKERS; __kmp_end_split_barrier( bs_plain_barrier, global_tid ); } } /* keep dequeueing work until all tasks are queued and dequeued */ do { /* wait until something is available to dequeue */ KMP_INIT_YIELD(spins); while ( (queue->tq_nfull == 0) && (queue->tq_taskq_slot == NULL) && (! __kmp_taskq_has_any_children(queue) ) && (! (queue->tq_flags & TQF_ALL_TASKS_QUEUED) ) ) { KMP_YIELD_WHEN( TRUE, spins ); } /* check to see if we can execute tasks in the queue */ while ( ( (queue->tq_nfull != 0) || (queue->tq_taskq_slot != NULL) ) && (thunk = __kmp_find_task_in_queue(global_tid, queue)) != NULL ) { KF_TRACE(50, ("Found thunk: %p in primary queue %p (%d)\n", thunk, queue, global_tid)); __kmp_execute_task_from_queue( tq, loc, global_tid, thunk, in_parallel ); } /* see if work found can be found in a descendant queue */ if ( (__kmp_taskq_has_any_children(queue)) && (thunk = __kmp_find_task_in_descendant_queue(global_tid, queue)) != NULL ) { KF_TRACE(50, ("Stole thunk: %p in descendant queue: %p while waiting in queue: %p (%d)\n", thunk, thunk->th.th_shareds->sv_queue, queue, global_tid )); __kmp_execute_task_from_queue( tq, loc, global_tid, thunk, in_parallel ); } } while ( (! (queue->tq_flags & TQF_ALL_TASKS_QUEUED)) || (queue->tq_nfull != 0) ); KF_TRACE(50, ("All tasks queued and dequeued in queue: %p (%d)\n", queue, global_tid)); /* wait while all tasks are not finished and more work found in descendant queues */ while ( (!__kmp_taskq_tasks_finished(queue)) && (thunk = __kmp_find_task_in_descendant_queue(global_tid, queue)) != NULL ) { KF_TRACE(50, ("Stole thunk: %p in descendant queue: %p while waiting in queue: %p (%d)\n", thunk, thunk->th.th_shareds->sv_queue, queue, global_tid)); __kmp_execute_task_from_queue( tq, loc, global_tid, thunk, in_parallel ); } KF_TRACE(50, ("No work found in descendent queues or all work finished in queue: %p (%d)\n", queue, global_tid)); if (!is_outermost) { /* need to return if NOWAIT present and not outermost taskq */ if (queue->tq_flags & TQF_IS_NOWAIT) { __kmp_acquire_lock(& queue->tq.tq_parent->tq_link_lck, global_tid); queue->tq_ref_count--; KMP_DEBUG_ASSERT( queue->tq_ref_count >= 0 ); __kmp_release_lock(& queue->tq.tq_parent->tq_link_lck, global_tid); KE_TRACE( 10, ("__kmpc_end_taskq return for nowait case (%d)\n", global_tid)); return; } __kmp_find_and_remove_finished_child_taskq( tq, global_tid, queue ); /* WAIT until all tasks are finished and no child queues exist before proceeding */ KMP_INIT_YIELD(spins); while (!__kmp_taskq_tasks_finished(queue) || __kmp_taskq_has_any_children(queue)) { thunk = __kmp_find_task_in_ancestor_queue( tq, global_tid, queue ); if (thunk != NULL) { KF_TRACE(50, ("Stole thunk: %p in ancestor queue: %p while waiting in queue: %p (%d)\n", thunk, thunk->th.th_shareds->sv_queue, queue, global_tid)); __kmp_execute_task_from_queue( tq, loc, global_tid, thunk, in_parallel ); } KMP_YIELD_WHEN( thunk == NULL, spins ); __kmp_find_and_remove_finished_child_taskq( tq, global_tid, queue ); } __kmp_acquire_lock(& queue->tq_queue_lck, global_tid); if ( !(queue->tq_flags & TQF_DEALLOCATED) ) { queue->tq_flags |= TQF_DEALLOCATED; } __kmp_release_lock(& queue->tq_queue_lck, global_tid); /* only the allocating thread can deallocate the queue */ if (taskq_thunk != NULL) { __kmp_remove_queue_from_tree( tq, global_tid, queue, TRUE ); } KE_TRACE( 10, ("__kmpc_end_taskq return for non_outermost queue, wait case (%d)\n", global_tid)); return; } /* Outermost Queue: steal work from descendants until all tasks are finished */ KMP_INIT_YIELD(spins); while (!__kmp_taskq_tasks_finished(queue)) { thunk = __kmp_find_task_in_descendant_queue(global_tid, queue); if (thunk != NULL) { KF_TRACE(50, ("Stole thunk: %p in descendant queue: %p while waiting in queue: %p (%d)\n", thunk, thunk->th.th_shareds->sv_queue, queue, global_tid)); __kmp_execute_task_from_queue( tq, loc, global_tid, thunk, in_parallel ); } KMP_YIELD_WHEN( thunk == NULL, spins ); } /* Need this barrier to prevent destruction of queue before threads have all executed above code */ /* This may need to be done earlier when NOWAIT is implemented for the outermost level */ if ( !__kmp_barrier( bs_plain_barrier, global_tid, TRUE, 0, NULL, NULL )) { /* the queue->tq_flags & TQF_IS_NOWAIT case is not yet handled here; */ /* for right now, everybody waits, and the master thread destroys the */ /* remaining queues. */ __kmp_remove_all_child_taskq( tq, global_tid, queue ); /* Now destroy the root queue */ KF_TRACE(100, ("T#%d Before Deletion of top-level TaskQ at %p:\n", global_tid, queue )); KF_DUMP(100, __kmp_dump_task_queue( tq, queue, global_tid )); #ifdef KMP_DEBUG /* the root queue entry */ KMP_DEBUG_ASSERT ((queue->tq.tq_parent == NULL) && (queue->tq_next_child == NULL)); /* children must all be gone by now because of barrier above */ KMP_DEBUG_ASSERT (queue->tq_first_child == NULL); for (i=0; itq_th_thunks[i].ai_data == 0); } for (i=0, thunk=queue->tq_free_thunks; thunk != NULL; i++, thunk=thunk->th.th_next_free); KMP_DEBUG_ASSERT (i == queue->tq_nslots + (nproc * __KMP_TASKQ_THUNKS_PER_TH)); for (i = 0; i < nproc; i++) { KMP_DEBUG_ASSERT( ! tq->tq_curr_thunk[i] ); } #endif /* unlink the root queue entry */ tq -> tq_root = NULL; /* release storage for root queue entry */ KF_TRACE(50, ("After Deletion of top-level TaskQ at %p on (%d):\n", queue, global_tid)); queue->tq_flags |= TQF_DEALLOCATED; __kmp_free_taskq ( tq, queue, in_parallel, global_tid ); KF_DUMP(50, __kmp_dump_task_queue_tree( tq, tq->tq_root, global_tid )); /* release the workers now that the data structures are up to date */ __kmp_end_split_barrier( bs_plain_barrier, global_tid ); } th = __kmp_threads[ global_tid ]; /* Reset ORDERED SECTION to parallel version */ th->th.th_dispatch->th_deo_fcn = 0; /* Reset ORDERED SECTION to parallel version */ th->th.th_dispatch->th_dxo_fcn = 0; } else { /* in serial execution context, dequeue the last task */ /* and execute it, if there were any tasks encountered */ if (queue->tq_nfull > 0) { KMP_DEBUG_ASSERT(queue->tq_nfull == 1); thunk = __kmp_dequeue_task(global_tid, queue, in_parallel); if (queue->tq_flags & TQF_IS_LAST_TASK) { /* TQF_IS_LASTPRIVATE, one thing in queue, __kmpc_end_taskq_task() */ /* has been run so this is last task, run with TQF_IS_LAST_TASK so */ /* instrumentation does copy-out. */ /* no need for test_then_or call since already locked */ thunk->th_flags |= TQF_IS_LAST_TASK; } KF_TRACE(50, ("T#%d found thunk: %p in serial queue: %p\n", global_tid, thunk, queue)); __kmp_execute_task_from_queue( tq, loc, global_tid, thunk, in_parallel ); } /* destroy the unattached serial queue now that there is no more work to do */ KF_TRACE(100, ("Before Deletion of Serialized TaskQ at %p on (%d):\n", queue, global_tid)); KF_DUMP(100, __kmp_dump_task_queue( tq, queue, global_tid )); #ifdef KMP_DEBUG i = 0; for (thunk=queue->tq_free_thunks; thunk != NULL; thunk=thunk->th.th_next_free) ++i; KMP_DEBUG_ASSERT (i == queue->tq_nslots + 1); #endif /* release storage for unattached serial queue */ KF_TRACE(50, ("Serialized TaskQ at %p deleted on (%d).\n", queue, global_tid)); queue->tq_flags |= TQF_DEALLOCATED; __kmp_free_taskq ( tq, queue, in_parallel, global_tid ); } KE_TRACE( 10, ("__kmpc_end_taskq return (%d)\n", global_tid)); } /* Enqueues a task for thunk previously created by __kmpc_task_buffer. */ /* Returns nonzero if just filled up queue */ kmp_int32 __kmpc_task(ident_t *loc, kmp_int32 global_tid, kmpc_thunk_t *thunk) { kmp_int32 ret; kmpc_task_queue_t *queue; int in_parallel; kmp_taskq_t *tq; KE_TRACE( 10, ("__kmpc_task called (%d)\n", global_tid)); KMP_DEBUG_ASSERT (!(thunk->th_flags & TQF_TASKQ_TASK)); /* thunk->th_task is a regular task */ tq = &__kmp_threads[global_tid] -> th.th_team -> t.t_taskq; queue = thunk->th.th_shareds->sv_queue; in_parallel = (queue->tq_flags & TQF_PARALLEL_CONTEXT); if (in_parallel && (thunk->th_flags & TQF_IS_ORDERED)) thunk->th_tasknum = ++queue->tq_tasknum_queuing; /* For serial execution dequeue the preceding task and execute it, if one exists */ /* This cannot be the last task. That one is handled in __kmpc_end_taskq */ if (!in_parallel && queue->tq_nfull > 0) { kmpc_thunk_t *prev_thunk; KMP_DEBUG_ASSERT(queue->tq_nfull == 1); prev_thunk = __kmp_dequeue_task(global_tid, queue, in_parallel); KF_TRACE(50, ("T#%d found thunk: %p in serial queue: %p\n", global_tid, prev_thunk, queue)); __kmp_execute_task_from_queue( tq, loc, global_tid, prev_thunk, in_parallel ); } /* The instrumentation sequence is: __kmpc_task_buffer(), initialize private */ /* variables, __kmpc_task(). The __kmpc_task_buffer routine checks that the */ /* task queue is not full and allocates a thunk (which is then passed to */ /* __kmpc_task()). So, the enqueue below should never fail due to a full queue. */ KF_TRACE(100, ("After enqueueing this Task on (%d):\n", global_tid)); KF_DUMP(100, __kmp_dump_thunk( tq, thunk, global_tid )); ret = __kmp_enqueue_task ( tq, global_tid, queue, thunk, in_parallel ); KF_TRACE(100, ("Task Queue looks like this on (%d):\n", global_tid)); KF_DUMP(100, __kmp_dump_task_queue( tq, queue, global_tid )); KE_TRACE( 10, ("__kmpc_task return (%d)\n", global_tid)); return ret; } /* enqueues a taskq_task for thunk previously created by __kmpc_taskq */ /* this should never be called unless in a parallel context */ void __kmpc_taskq_task(ident_t *loc, kmp_int32 global_tid, kmpc_thunk_t *thunk, kmp_int32 status) { kmpc_task_queue_t *queue; kmp_taskq_t *tq = &__kmp_threads[global_tid] -> th.th_team -> t.t_taskq; int tid = __kmp_tid_from_gtid( global_tid ); KE_TRACE( 10, ("__kmpc_taskq_task called (%d)\n", global_tid)); KF_TRACE(100, ("TaskQ Task argument thunk on (%d):\n", global_tid)); KF_DUMP(100, __kmp_dump_thunk( tq, thunk, global_tid )); queue = thunk->th.th_shareds->sv_queue; if ( __kmp_env_consistency_check ) __kmp_pop_workshare( global_tid, ct_taskq, loc ); /* thunk->th_task is the taskq_task */ KMP_DEBUG_ASSERT (thunk->th_flags & TQF_TASKQ_TASK); /* not supposed to call __kmpc_taskq_task if it's already enqueued */ KMP_DEBUG_ASSERT (queue->tq_taskq_slot == NULL); /* dequeue taskq thunk from curr_thunk stack */ tq->tq_curr_thunk[tid] = thunk->th_encl_thunk; thunk->th_encl_thunk = NULL; KF_DUMP( 200, __kmp_dump_thunk_stack( tq->tq_curr_thunk[tid], global_tid )); thunk->th_status = status; KMP_MB(); /* flush thunk->th_status before taskq_task enqueued to avoid race condition */ /* enqueue taskq_task in thunk into special slot in queue */ /* GEH - probably don't need to lock taskq slot since only one */ /* thread enqueues & already a lock set at dequeue point */ queue->tq_taskq_slot = thunk; KE_TRACE( 10, ("__kmpc_taskq_task return (%d)\n", global_tid)); } /* ends a taskq_task; done generating tasks */ void __kmpc_end_taskq_task(ident_t *loc, kmp_int32 global_tid, kmpc_thunk_t *thunk) { kmp_taskq_t *tq; kmpc_task_queue_t *queue; int in_parallel; int tid; KE_TRACE( 10, ("__kmpc_end_taskq_task called (%d)\n", global_tid)); tq = &__kmp_threads[global_tid] -> th.th_team -> t.t_taskq; queue = thunk->th.th_shareds->sv_queue; in_parallel = (queue->tq_flags & TQF_PARALLEL_CONTEXT); tid = __kmp_tid_from_gtid( global_tid ); if ( __kmp_env_consistency_check ) __kmp_pop_workshare( global_tid, ct_taskq, loc ); if (in_parallel) { #if KMP_ARCH_X86 || \ KMP_ARCH_X86_64 KMP_TEST_THEN_OR32( &queue->tq_flags, (kmp_int32) TQF_ALL_TASKS_QUEUED ); #else { __kmp_acquire_lock(& queue->tq_queue_lck, global_tid); KMP_MB(); /* make sure data structures are in consistent state before querying them */ /* Seems to work fine without this call for digital/alpha, needed for IBM/RS6000 */ queue->tq_flags |= TQF_ALL_TASKS_QUEUED; __kmp_release_lock(& queue->tq_queue_lck, global_tid); } #endif } if (thunk->th_flags & TQF_IS_LASTPRIVATE) { /* Normally, __kmp_find_task_in_queue() refuses to schedule the last task in the */ /* queue if TQF_IS_LASTPRIVATE so we can positively identify that last task */ /* and run it with its TQF_IS_LAST_TASK bit turned on in th_flags. When */ /* __kmpc_end_taskq_task() is called we are done generating all the tasks, so */ /* we know the last one in the queue is the lastprivate task. Mark the queue */ /* as having gotten to this state via tq_flags & TQF_IS_LAST_TASK; when that */ /* task actually executes mark it via th_flags & TQF_IS_LAST_TASK (this th_flags */ /* bit signals the instrumented code to do copy-outs after execution). */ if (! in_parallel) { /* No synchronization needed for serial context */ queue->tq_flags |= TQF_IS_LAST_TASK; } else { #if KMP_ARCH_X86 || \ KMP_ARCH_X86_64 KMP_TEST_THEN_OR32( &queue->tq_flags, (kmp_int32) TQF_IS_LAST_TASK ); #else { __kmp_acquire_lock(& queue->tq_queue_lck, global_tid); KMP_MB(); /* make sure data structures are in consistent state before querying them */ /* Seems to work without this call for digital/alpha, needed for IBM/RS6000 */ queue->tq_flags |= TQF_IS_LAST_TASK; __kmp_release_lock(& queue->tq_queue_lck, global_tid); } #endif /* to prevent race condition where last task is dequeued but */ /* flag isn't visible yet (not sure about this) */ KMP_MB(); } } /* dequeue taskq thunk from curr_thunk stack */ if (in_parallel) { tq->tq_curr_thunk[tid] = thunk->th_encl_thunk; thunk->th_encl_thunk = NULL; KF_DUMP( 200, __kmp_dump_thunk_stack( tq->tq_curr_thunk[tid], global_tid )); } KE_TRACE( 10, ("__kmpc_end_taskq_task return (%d)\n", global_tid)); } /* returns thunk for a regular task based on taskq_thunk */ /* (__kmpc_taskq_task does the analogous thing for a TQF_TASKQ_TASK) */ kmpc_thunk_t * __kmpc_task_buffer(ident_t *loc, kmp_int32 global_tid, kmpc_thunk_t *taskq_thunk, kmpc_task_t task) { kmp_taskq_t *tq; kmpc_task_queue_t *queue; kmpc_thunk_t *new_thunk; int in_parallel; KE_TRACE( 10, ("__kmpc_task_buffer called (%d)\n", global_tid)); KMP_DEBUG_ASSERT (taskq_thunk->th_flags & TQF_TASKQ_TASK); /* taskq_thunk->th_task is the taskq_task */ tq = &__kmp_threads[global_tid] -> th.th_team -> t.t_taskq; queue = taskq_thunk->th.th_shareds->sv_queue; in_parallel = (queue->tq_flags & TQF_PARALLEL_CONTEXT); /* The instrumentation sequence is: __kmpc_task_buffer(), initialize private */ /* variables, __kmpc_task(). The __kmpc_task_buffer routine checks that the */ /* task queue is not full and allocates a thunk (which is then passed to */ /* __kmpc_task()). So, we can pre-allocate a thunk here assuming it will be */ /* the next to be enqueued in __kmpc_task(). */ new_thunk = __kmp_alloc_thunk (queue, in_parallel, global_tid); new_thunk->th.th_shareds = (kmpc_shared_vars_t *) queue->tq_shareds[0].ai_data; new_thunk->th_encl_thunk = NULL; new_thunk->th_task = task; /* GEH - shouldn't need to lock the read of tq_flags here */ new_thunk->th_flags = queue->tq_flags & TQF_INTERFACE_FLAGS; new_thunk->th_status = 0; KMP_DEBUG_ASSERT (!(new_thunk->th_flags & TQF_TASKQ_TASK)); KF_TRACE(100, ("Creating Regular Task on (%d):\n", global_tid)); KF_DUMP(100, __kmp_dump_thunk( tq, new_thunk, global_tid )); KE_TRACE( 10, ("__kmpc_task_buffer return (%d)\n", global_tid)); return new_thunk; } /* --------------------------------------------------------------------------- */