/* * kmp_settings.c -- Initialize environment variables */ //===----------------------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.txt for details. // //===----------------------------------------------------------------------===// #include "kmp.h" #include "kmp_wrapper_getpid.h" #include "kmp_environment.h" #include "kmp_atomic.h" #include "kmp_itt.h" #include "kmp_str.h" #include "kmp_settings.h" #include "kmp_i18n.h" #include "kmp_lock.h" #include "kmp_io.h" static int __kmp_env_toPrint( char const * name, int flag ); bool __kmp_env_format = 0; // 0 - old format; 1 - new format // ------------------------------------------------------------------------------------------------- // Helper string functions. Subject to move to kmp_str. // ------------------------------------------------------------------------------------------------- static double __kmp_convert_to_double( char const * s ) { double result; if ( KMP_SSCANF( s, "%lf", &result ) < 1 ) { result = 0.0; } return result; } #ifdef KMP_DEBUG static unsigned int __kmp_readstr_with_sentinel(char *dest, char const * src, size_t len, char sentinel) { unsigned int i; for (i = 0; i < len; i++) { if ((*src == '\0') || (*src == sentinel)) { break; } *(dest++) = *(src++); } *dest = '\0'; return i; } #endif static int __kmp_match_with_sentinel( char const * a, char const * b, size_t len, char sentinel ) { size_t l = 0; if(a == NULL) a = ""; if(b == NULL) b = ""; while(*a && *b && *b != sentinel) { char ca = *a, cb = *b; if(ca >= 'a' && ca <= 'z') ca -= 'a' - 'A'; if(cb >= 'a' && cb <= 'z') cb -= 'a' - 'A'; if(ca != cb) return FALSE; ++l; ++a; ++b; } return l >= len; } // // Expected usage: // token is the token to check for. // buf is the string being parsed. // *end returns the char after the end of the token. // it is not modified unless a match occurs. // // // Example 1: // // if (__kmp_match_str("token", buf, *end) { // // buf = end; // } // // Example 2: // // if (__kmp_match_str("token", buf, *end) { // char *save = **end; // **end = sentinel; // // **end = save; // buf = end; // } // static int __kmp_match_str( char const *token, char const *buf, const char **end) { KMP_ASSERT(token != NULL); KMP_ASSERT(buf != NULL); KMP_ASSERT(end != NULL); while (*token && *buf) { char ct = *token, cb = *buf; if(ct >= 'a' && ct <= 'z') ct -= 'a' - 'A'; if(cb >= 'a' && cb <= 'z') cb -= 'a' - 'A'; if (ct != cb) return FALSE; ++token; ++buf; } if (*token) { return FALSE; } *end = buf; return TRUE; } static size_t __kmp_round4k( size_t size ) { size_t _4k = 4 * 1024; if ( size & ( _4k - 1 ) ) { size &= ~ ( _4k - 1 ); if ( size <= KMP_SIZE_T_MAX - _4k ) { size += _4k; // Round up if there is no overflow. }; // if }; // if return size; } // __kmp_round4k /* Here, multipliers are like __kmp_convert_to_seconds, but floating-point values are allowed, and the return value is in milliseconds. The default multiplier is milliseconds. Returns INT_MAX only if the value specified matches "infinit*". Returns -1 if specified string is invalid. */ int __kmp_convert_to_milliseconds( char const * data ) { int ret, nvalues, factor; char mult, extra; double value; if (data == NULL) return (-1); if ( __kmp_str_match( "infinit", -1, data)) return (INT_MAX); value = (double) 0.0; mult = '\0'; nvalues = KMP_SSCANF (data, "%lf%c%c", &value, &mult, &extra); if (nvalues < 1) return (-1); if (nvalues == 1) mult = '\0'; if (nvalues == 3) return (-1); if (value < 0) return (-1); switch (mult) { case '\0': /* default is milliseconds */ factor = 1; break; case 's': case 'S': factor = 1000; break; case 'm': case 'M': factor = 1000 * 60; break; case 'h': case 'H': factor = 1000 * 60 * 60; break; case 'd': case 'D': factor = 1000 * 24 * 60 * 60; break; default: return (-1); } if ( value >= ( (INT_MAX-1) / factor) ) ret = INT_MAX-1; /* Don't allow infinite value here */ else ret = (int) (value * (double) factor); /* truncate to int */ return ret; } static int __kmp_strcasecmp_with_sentinel( char const * a, char const * b, char sentinel ) { if(a == NULL) a = ""; if(b == NULL) b = ""; while(*a && *b && *b != sentinel) { char ca = *a, cb = *b; if(ca >= 'a' && ca <= 'z') ca -= 'a' - 'A'; if(cb >= 'a' && cb <= 'z') cb -= 'a' - 'A'; if(ca != cb) return (int)(unsigned char)*a - (int)(unsigned char)*b; ++a; ++b; } return *a ? (*b && *b != sentinel) ? (int)(unsigned char)*a - (int)(unsigned char)*b : 1 : (*b && *b != sentinel) ? -1 : 0; } // ================================================================================================= // Table structures and helper functions. // ================================================================================================= typedef struct __kmp_setting kmp_setting_t; typedef struct __kmp_stg_ss_data kmp_stg_ss_data_t; typedef struct __kmp_stg_wp_data kmp_stg_wp_data_t; typedef struct __kmp_stg_fr_data kmp_stg_fr_data_t; typedef void ( * kmp_stg_parse_func_t )( char const * name, char const * value, void * data ); typedef void ( * kmp_stg_print_func_t )( kmp_str_buf_t * buffer, char const * name, void * data ); struct __kmp_setting { char const * name; // Name of setting (environment variable). kmp_stg_parse_func_t parse; // Parser function. kmp_stg_print_func_t print; // Print function. void * data; // Data passed to parser and printer. int set; // Variable set during this "session" // (__kmp_env_initialize() or kmp_set_defaults() call). int defined; // Variable set in any "session". }; // struct __kmp_setting struct __kmp_stg_ss_data { size_t factor; // Default factor: 1 for KMP_STACKSIZE, 1024 for others. kmp_setting_t * * rivals; // Array of pointers to rivals (including itself). }; // struct __kmp_stg_ss_data struct __kmp_stg_wp_data { int omp; // 0 -- KMP_LIBRARY, 1 -- OMP_WAIT_POLICY. kmp_setting_t * * rivals; // Array of pointers to rivals (including itself). }; // struct __kmp_stg_wp_data struct __kmp_stg_fr_data { int force; // 0 -- KMP_DETERMINISTIC_REDUCTION, 1 -- KMP_FORCE_REDUCTION. kmp_setting_t * * rivals; // Array of pointers to rivals (including itself). }; // struct __kmp_stg_fr_data static int __kmp_stg_check_rivals( // 0 -- Ok, 1 -- errors found. char const * name, // Name of variable. char const * value, // Value of the variable. kmp_setting_t * * rivals // List of rival settings (the list must include current one). ); // ------------------------------------------------------------------------------------------------- // Helper parse functions. // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_bool( char const * name, char const * value, int * out ) { if ( __kmp_str_match_true( value ) ) { * out = TRUE; } else if (__kmp_str_match_false( value ) ) { * out = FALSE; } else { __kmp_msg( kmp_ms_warning, KMP_MSG( BadBoolValue, name, value ), KMP_HNT( ValidBoolValues ), __kmp_msg_null ); }; // if } // __kmp_stg_parse_bool static void __kmp_stg_parse_size( char const * name, char const * value, size_t size_min, size_t size_max, int * is_specified, size_t * out, size_t factor ) { char const * msg = NULL; #if KMP_OS_DARWIN size_min = __kmp_round4k( size_min ); size_max = __kmp_round4k( size_max ); #endif // KMP_OS_DARWIN if ( value ) { if ( is_specified != NULL ) { * is_specified = 1; }; // if __kmp_str_to_size( value, out, factor, & msg ); if ( msg == NULL ) { if ( * out > size_max ) { * out = size_max; msg = KMP_I18N_STR( ValueTooLarge ); } else if ( * out < size_min ) { * out = size_min; msg = KMP_I18N_STR( ValueTooSmall ); } else { #if KMP_OS_DARWIN size_t round4k = __kmp_round4k( * out ); if ( * out != round4k ) { * out = round4k; msg = KMP_I18N_STR( NotMultiple4K ); }; // if #endif }; // if } else { // If integer overflow occurred, * out == KMP_SIZE_T_MAX. Cut it to size_max silently. if ( * out < size_min ) { * out = size_max; } else if ( * out > size_max ) { * out = size_max; }; // if }; // if if ( msg != NULL ) { // Message is not empty. Print warning. kmp_str_buf_t buf; __kmp_str_buf_init( & buf ); __kmp_str_buf_print_size( & buf, * out ); KMP_WARNING( ParseSizeIntWarn, name, value, msg ); KMP_INFORM( Using_str_Value, name, buf.str ); __kmp_str_buf_free( & buf ); }; // if }; // if } // __kmp_stg_parse_size #if KMP_AFFINITY_SUPPORTED static void __kmp_stg_parse_str( char const * name, char const * value, char const * * out ) { KMP_INTERNAL_FREE( (void *) * out ); * out = __kmp_str_format( "%s", value ); } // __kmp_stg_parse_str #endif static void __kmp_stg_parse_int( char const * name, // I: Name of environment variable (used in warning messages). char const * value, // I: Value of environment variable to parse. int min, // I: Miminal allowed value. int max, // I: Maximum allowed value. int * out // O: Output (parsed) value. ) { char const * msg = NULL; kmp_uint64 uint = * out; __kmp_str_to_uint( value, & uint, & msg ); if ( msg == NULL ) { if ( uint < (unsigned int)min ) { msg = KMP_I18N_STR( ValueTooSmall ); uint = min; } else if ( uint > (unsigned int)max ) { msg = KMP_I18N_STR( ValueTooLarge ); uint = max; }; // if } else { // If overflow occurred msg contains error message and uint is very big. Cut tmp it // to INT_MAX. if ( uint < (unsigned int)min ) { uint = min; } else if ( uint > (unsigned int)max ) { uint = max; }; // if }; // if if ( msg != NULL ) { // Message is not empty. Print warning. kmp_str_buf_t buf; KMP_WARNING( ParseSizeIntWarn, name, value, msg ); __kmp_str_buf_init( & buf ); __kmp_str_buf_print( &buf, "%" KMP_UINT64_SPEC "", uint ); KMP_INFORM( Using_uint64_Value, name, buf.str ); __kmp_str_buf_free( &buf ); }; // if * out = uint; } // __kmp_stg_parse_int #if KMP_DEBUG_ADAPTIVE_LOCKS static void __kmp_stg_parse_file( char const * name, char const * value, char * suffix, char * * out ) { char buffer[256]; char *t; int hasSuffix; KMP_INTERNAL_FREE( (void *) * out ); t = (char *) strrchr(value, '.'); hasSuffix = t && __kmp_str_eqf( t, suffix ); t = __kmp_str_format( "%s%s", value, hasSuffix ? "" : suffix ); __kmp_expand_file_name( buffer, sizeof(buffer), t); KMP_INTERNAL_FREE(t); * out = __kmp_str_format( "%s", buffer ); } // __kmp_stg_parse_file #endif #ifdef KMP_DEBUG static char * par_range_to_print = NULL; static void __kmp_stg_parse_par_range( char const * name, char const * value, int * out_range, char * out_routine, char * out_file, int * out_lb, int * out_ub ) { size_t len = KMP_STRLEN( value + 1 ); par_range_to_print = (char *) KMP_INTERNAL_MALLOC( len +1 ); KMP_STRNCPY_S( par_range_to_print, len + 1, value, len + 1); __kmp_par_range = +1; __kmp_par_range_lb = 0; __kmp_par_range_ub = INT_MAX; for (;;) { unsigned int len; if (( value == NULL ) || ( *value == '\0' )) { break; } if ( ! __kmp_strcasecmp_with_sentinel( "routine", value, '=' )) { value = strchr( value, '=' ) + 1; len = __kmp_readstr_with_sentinel( out_routine, value, KMP_PAR_RANGE_ROUTINE_LEN - 1, ',' ); if ( len == 0 ) { goto par_range_error; } value = strchr( value, ',' ); if ( value != NULL ) { value++; } continue; } if ( ! __kmp_strcasecmp_with_sentinel( "filename", value, '=' )) { value = strchr( value, '=' ) + 1; len = __kmp_readstr_with_sentinel( out_file, value, KMP_PAR_RANGE_FILENAME_LEN - 1, ',' ); if ( len == 0) { goto par_range_error; } value = strchr( value, ',' ); if ( value != NULL ) { value++; } continue; } if (( ! __kmp_strcasecmp_with_sentinel( "range", value, '=' )) || ( ! __kmp_strcasecmp_with_sentinel( "incl_range", value, '=' ))) { value = strchr( value, '=' ) + 1; if ( KMP_SSCANF( value, "%d:%d", out_lb, out_ub ) != 2 ) { goto par_range_error; } *out_range = +1; value = strchr( value, ',' ); if ( value != NULL ) { value++; } continue; } if ( ! __kmp_strcasecmp_with_sentinel( "excl_range", value, '=' )) { value = strchr( value, '=' ) + 1; if ( KMP_SSCANF( value, "%d:%d", out_lb, out_ub) != 2 ) { goto par_range_error; } *out_range = -1; value = strchr( value, ',' ); if ( value != NULL ) { value++; } continue; } par_range_error: KMP_WARNING( ParRangeSyntax, name ); __kmp_par_range = 0; break; } } // __kmp_stg_parse_par_range #endif int __kmp_initial_threads_capacity( int req_nproc ) { int nth = 32; /* MIN( MAX( 32, 4 * $OMP_NUM_THREADS, 4 * omp_get_num_procs() ), __kmp_max_nth) */ if (nth < (4 * req_nproc)) nth = (4 * req_nproc); if (nth < (4 * __kmp_xproc)) nth = (4 * __kmp_xproc); if (nth > __kmp_max_nth) nth = __kmp_max_nth; return nth; } int __kmp_default_tp_capacity( int req_nproc, int max_nth, int all_threads_specified) { int nth = 128; if(all_threads_specified) return max_nth; /* MIN( MAX (128, 4 * $OMP_NUM_THREADS, 4 * omp_get_num_procs() ), __kmp_max_nth ) */ if (nth < (4 * req_nproc)) nth = (4 * req_nproc); if (nth < (4 * __kmp_xproc)) nth = (4 * __kmp_xproc); if (nth > __kmp_max_nth) nth = __kmp_max_nth; return nth; } // ------------------------------------------------------------------------------------------------- // Helper print functions. // ------------------------------------------------------------------------------------------------- static void __kmp_stg_print_bool( kmp_str_buf_t * buffer, char const * name, int value ) { if( __kmp_env_format ) { KMP_STR_BUF_PRINT_BOOL; } else { __kmp_str_buf_print( buffer, " %s=%s\n", name, value ? "true" : "false" ); } } // __kmp_stg_print_bool static void __kmp_stg_print_int( kmp_str_buf_t * buffer, char const * name, int value ) { if( __kmp_env_format ) { KMP_STR_BUF_PRINT_INT; } else { __kmp_str_buf_print( buffer, " %s=%d\n", name, value ); } } // __kmp_stg_print_int static void __kmp_stg_print_uint64( kmp_str_buf_t * buffer, char const * name, kmp_uint64 value ) { if( __kmp_env_format ) { KMP_STR_BUF_PRINT_UINT64; } else { __kmp_str_buf_print( buffer, " %s=%" KMP_UINT64_SPEC "\n", name, value ); } } // __kmp_stg_print_uint64 static void __kmp_stg_print_str( kmp_str_buf_t * buffer, char const * name, char const * value ) { if( __kmp_env_format ) { KMP_STR_BUF_PRINT_STR; } else { __kmp_str_buf_print( buffer, " %s=%s\n", name, value ); } } // __kmp_stg_print_str static void __kmp_stg_print_size( kmp_str_buf_t * buffer, char const * name, size_t value ) { if( __kmp_env_format ) { KMP_STR_BUF_PRINT_NAME_EX(name); __kmp_str_buf_print_size( buffer, value ); __kmp_str_buf_print( buffer, "'\n" ); } else { __kmp_str_buf_print( buffer, " %s=", name ); __kmp_str_buf_print_size( buffer, value ); __kmp_str_buf_print( buffer, "\n" ); return; } } // __kmp_stg_print_size // ================================================================================================= // Parse and print functions. // ================================================================================================= // ------------------------------------------------------------------------------------------------- // KMP_ALL_THREADS, KMP_MAX_THREADS, OMP_THREAD_LIMIT // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_all_threads( char const * name, char const * value, void * data ) { kmp_setting_t * * rivals = (kmp_setting_t * *) data; int rc; rc = __kmp_stg_check_rivals( name, value, rivals ); if ( rc ) { return; }; // if if ( ! __kmp_strcasecmp_with_sentinel( "all", value, 0 ) ) { __kmp_max_nth = __kmp_xproc; __kmp_allThreadsSpecified = 1; } else { __kmp_stg_parse_int( name, value, 1, __kmp_sys_max_nth, & __kmp_max_nth ); __kmp_allThreadsSpecified = 0; } K_DIAG( 1, ( "__kmp_max_nth == %d\n", __kmp_max_nth ) ); } // __kmp_stg_parse_all_threads static void __kmp_stg_print_all_threads( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_int( buffer, name, __kmp_max_nth ); } // __kmp_stg_print_all_threads // ------------------------------------------------------------------------------------------------- // KMP_BLOCKTIME // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_blocktime( char const * name, char const * value, void * data ) { __kmp_dflt_blocktime = __kmp_convert_to_milliseconds( value ); if ( __kmp_dflt_blocktime < 0 ) { __kmp_dflt_blocktime = KMP_DEFAULT_BLOCKTIME; __kmp_msg( kmp_ms_warning, KMP_MSG( InvalidValue, name, value ), __kmp_msg_null ); KMP_INFORM( Using_int_Value, name, __kmp_dflt_blocktime ); __kmp_env_blocktime = FALSE; // Revert to default as if var not set. } else { if ( __kmp_dflt_blocktime < KMP_MIN_BLOCKTIME ) { __kmp_dflt_blocktime = KMP_MIN_BLOCKTIME; __kmp_msg( kmp_ms_warning, KMP_MSG( SmallValue, name, value ), __kmp_msg_null ); KMP_INFORM( MinValueUsing, name, __kmp_dflt_blocktime ); } else if ( __kmp_dflt_blocktime > KMP_MAX_BLOCKTIME ) { __kmp_dflt_blocktime = KMP_MAX_BLOCKTIME; __kmp_msg( kmp_ms_warning, KMP_MSG( LargeValue, name, value ), __kmp_msg_null ); KMP_INFORM( MaxValueUsing, name, __kmp_dflt_blocktime ); }; // if __kmp_env_blocktime = TRUE; // KMP_BLOCKTIME was specified. }; // if // calculate number of monitor thread wakeup intervals corresonding to blocktime. __kmp_monitor_wakeups = KMP_WAKEUPS_FROM_BLOCKTIME( __kmp_dflt_blocktime, __kmp_monitor_wakeups ); __kmp_bt_intervals = KMP_INTERVALS_FROM_BLOCKTIME( __kmp_dflt_blocktime, __kmp_monitor_wakeups ); K_DIAG( 1, ( "__kmp_env_blocktime == %d\n", __kmp_env_blocktime ) ); if ( __kmp_env_blocktime ) { K_DIAG( 1, ( "__kmp_dflt_blocktime == %d\n", __kmp_dflt_blocktime ) ); } } // __kmp_stg_parse_blocktime static void __kmp_stg_print_blocktime( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_int( buffer, name, __kmp_dflt_blocktime ); } // __kmp_stg_print_blocktime // ------------------------------------------------------------------------------------------------- // KMP_DUPLICATE_LIB_OK // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_duplicate_lib_ok( char const * name, char const * value, void * data ) { /* actually this variable is not supported, put here for compatibility with earlier builds and for static/dynamic combination */ __kmp_stg_parse_bool( name, value, & __kmp_duplicate_library_ok ); } // __kmp_stg_parse_duplicate_lib_ok static void __kmp_stg_print_duplicate_lib_ok( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_bool( buffer, name, __kmp_duplicate_library_ok ); } // __kmp_stg_print_duplicate_lib_ok // ------------------------------------------------------------------------------------------------- // KMP_INHERIT_FP_CONTROL // ------------------------------------------------------------------------------------------------- #if KMP_ARCH_X86 || KMP_ARCH_X86_64 static void __kmp_stg_parse_inherit_fp_control( char const * name, char const * value, void * data ) { __kmp_stg_parse_bool( name, value, & __kmp_inherit_fp_control ); } // __kmp_stg_parse_inherit_fp_control static void __kmp_stg_print_inherit_fp_control( kmp_str_buf_t * buffer, char const * name, void * data ) { #if KMP_DEBUG __kmp_stg_print_bool( buffer, name, __kmp_inherit_fp_control ); #endif /* KMP_DEBUG */ } // __kmp_stg_print_inherit_fp_control #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ // ------------------------------------------------------------------------------------------------- // KMP_LIBRARY, OMP_WAIT_POLICY // ------------------------------------------------------------------------------------------------- static char const *blocktime_str = NULL; static void __kmp_stg_parse_wait_policy( char const * name, char const * value, void * data ) { kmp_stg_wp_data_t * wait = (kmp_stg_wp_data_t *) data; int rc; rc = __kmp_stg_check_rivals( name, value, wait->rivals ); if ( rc ) { return; }; // if if ( wait->omp ) { if ( __kmp_str_match( "ACTIVE", 1, value ) ) { __kmp_library = library_turnaround; if ( blocktime_str == NULL ) { // KMP_BLOCKTIME not specified, so set default to "infinite". __kmp_dflt_blocktime = KMP_MAX_BLOCKTIME; } } else if ( __kmp_str_match( "PASSIVE", 1, value ) ) { __kmp_library = library_throughput; if ( blocktime_str == NULL ) { // KMP_BLOCKTIME not specified, so set default to 0. __kmp_dflt_blocktime = 0; } } else { KMP_WARNING( StgInvalidValue, name, value ); }; // if } else { if ( __kmp_str_match( "serial", 1, value ) ) { /* S */ __kmp_library = library_serial; } else if ( __kmp_str_match( "throughput", 2, value ) ) { /* TH */ __kmp_library = library_throughput; } else if ( __kmp_str_match( "turnaround", 2, value ) ) { /* TU */ __kmp_library = library_turnaround; } else if ( __kmp_str_match( "dedicated", 1, value ) ) { /* D */ __kmp_library = library_turnaround; } else if ( __kmp_str_match( "multiuser", 1, value ) ) { /* M */ __kmp_library = library_throughput; } else { KMP_WARNING( StgInvalidValue, name, value ); }; // if }; // if __kmp_aux_set_library( __kmp_library ); } // __kmp_stg_parse_wait_policy static void __kmp_stg_print_wait_policy( kmp_str_buf_t * buffer, char const * name, void * data ) { kmp_stg_wp_data_t * wait = (kmp_stg_wp_data_t *) data; char const * value = NULL; if ( wait->omp ) { switch ( __kmp_library ) { case library_turnaround : { value = "ACTIVE"; } break; case library_throughput : { value = "PASSIVE"; } break; }; // switch } else { switch ( __kmp_library ) { case library_serial : { value = "serial"; } break; case library_turnaround : { value = "turnaround"; } break; case library_throughput : { value = "throughput"; } break; }; // switch }; // if if ( value != NULL ) { __kmp_stg_print_str( buffer, name, value ); }; // if } // __kmp_stg_print_wait_policy // ------------------------------------------------------------------------------------------------- // KMP_MONITOR_STACKSIZE // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_monitor_stacksize( char const * name, char const * value, void * data ) { __kmp_stg_parse_size( name, value, __kmp_sys_min_stksize, KMP_MAX_STKSIZE, NULL, & __kmp_monitor_stksize, 1 ); } // __kmp_stg_parse_monitor_stacksize static void __kmp_stg_print_monitor_stacksize( kmp_str_buf_t * buffer, char const * name, void * data ) { if( __kmp_env_format ) { if ( __kmp_monitor_stksize > 0 ) KMP_STR_BUF_PRINT_NAME_EX(name); else KMP_STR_BUF_PRINT_NAME; } else { __kmp_str_buf_print( buffer, " %s", name ); } if ( __kmp_monitor_stksize > 0 ) { __kmp_str_buf_print_size( buffer, __kmp_monitor_stksize ); } else { __kmp_str_buf_print( buffer, ": %s\n", KMP_I18N_STR( NotDefined ) ); } if( __kmp_env_format && __kmp_monitor_stksize ) { __kmp_str_buf_print( buffer, "'\n"); } } // __kmp_stg_print_monitor_stacksize // ------------------------------------------------------------------------------------------------- // KMP_SETTINGS // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_settings( char const * name, char const * value, void * data ) { __kmp_stg_parse_bool( name, value, & __kmp_settings ); } // __kmp_stg_parse_settings static void __kmp_stg_print_settings( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_bool( buffer, name, __kmp_settings ); } // __kmp_stg_print_settings // ------------------------------------------------------------------------------------------------- // KMP_STACKPAD // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_stackpad( char const * name, char const * value, void * data ) { __kmp_stg_parse_int( name, // Env var name value, // Env var value KMP_MIN_STKPADDING, // Min value KMP_MAX_STKPADDING, // Max value & __kmp_stkpadding // Var to initialize ); } // __kmp_stg_parse_stackpad static void __kmp_stg_print_stackpad( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_int( buffer, name, __kmp_stkpadding ); } // __kmp_stg_print_stackpad // ------------------------------------------------------------------------------------------------- // KMP_STACKOFFSET // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_stackoffset( char const * name, char const * value, void * data ) { __kmp_stg_parse_size( name, // Env var name value, // Env var value KMP_MIN_STKOFFSET, // Min value KMP_MAX_STKOFFSET, // Max value NULL, // & __kmp_stkoffset, // Var to initialize 1 ); } // __kmp_stg_parse_stackoffset static void __kmp_stg_print_stackoffset( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_size( buffer, name, __kmp_stkoffset ); } // __kmp_stg_print_stackoffset // ------------------------------------------------------------------------------------------------- // KMP_STACKSIZE, OMP_STACKSIZE, GOMP_STACKSIZE // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_stacksize( char const * name, char const * value, void * data ) { kmp_stg_ss_data_t * stacksize = (kmp_stg_ss_data_t *) data; int rc; rc = __kmp_stg_check_rivals( name, value, stacksize->rivals ); if ( rc ) { return; }; // if __kmp_stg_parse_size( name, // Env var name value, // Env var value __kmp_sys_min_stksize, // Min value KMP_MAX_STKSIZE, // Max value & __kmp_env_stksize, // & __kmp_stksize, // Var to initialize stacksize->factor ); } // __kmp_stg_parse_stacksize // This function is called for printing both KMP_STACKSIZE (factor is 1) and OMP_STACKSIZE (factor is 1024). // Currently it is not possible to print OMP_STACKSIZE value in bytes. We can consider adding this // possibility by a customer request in future. static void __kmp_stg_print_stacksize( kmp_str_buf_t * buffer, char const * name, void * data ) { kmp_stg_ss_data_t * stacksize = (kmp_stg_ss_data_t *) data; if( __kmp_env_format ) { KMP_STR_BUF_PRINT_NAME_EX(name); __kmp_str_buf_print_size( buffer, (__kmp_stksize % 1024) ? __kmp_stksize / stacksize->factor : __kmp_stksize ); __kmp_str_buf_print( buffer, "'\n" ); } else { __kmp_str_buf_print( buffer, " %s=", name ); __kmp_str_buf_print_size( buffer, (__kmp_stksize % 1024) ? __kmp_stksize / stacksize->factor : __kmp_stksize ); __kmp_str_buf_print( buffer, "\n" ); } } // __kmp_stg_print_stacksize // ------------------------------------------------------------------------------------------------- // KMP_VERSION // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_version( char const * name, char const * value, void * data ) { __kmp_stg_parse_bool( name, value, & __kmp_version ); } // __kmp_stg_parse_version static void __kmp_stg_print_version( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_bool( buffer, name, __kmp_version ); } // __kmp_stg_print_version // ------------------------------------------------------------------------------------------------- // KMP_WARNINGS // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_warnings( char const * name, char const * value, void * data ) { __kmp_stg_parse_bool( name, value, & __kmp_generate_warnings ); if (__kmp_generate_warnings != kmp_warnings_off) { // AC: we have only 0/1 values documented, __kmp_generate_warnings = kmp_warnings_explicit; // so reset it to explicit in order to } // distinguish from default setting } // __kmp_env_parse_warnings static void __kmp_stg_print_warnings( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_bool( buffer, name, __kmp_generate_warnings ); // AC: TODO: change to print_int? } // __kmp_env_print_warnings // (needs documentation change)... // ------------------------------------------------------------------------------------------------- // OMP_NESTED, OMP_NUM_THREADS // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_nested( char const * name, char const * value, void * data ) { __kmp_stg_parse_bool( name, value, & __kmp_dflt_nested ); } // __kmp_stg_parse_nested static void __kmp_stg_print_nested( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_bool( buffer, name, __kmp_dflt_nested ); } // __kmp_stg_print_nested static void __kmp_parse_nested_num_threads( const char *var, const char *env, kmp_nested_nthreads_t *nth_array ) { const char *next = env; const char *scan = next; int total = 0; // Count elements that were set. It'll be used as an array size int prev_comma = FALSE; // For correct processing sequential commas // Count the number of values in the env. var string for ( ; ; ) { SKIP_WS( next ); if ( *next == '\0' ) { break; } // Next character is not an integer or not a comma => end of list if ( ( ( *next < '0' ) || ( *next > '9' ) ) && ( *next !=',') ) { KMP_WARNING( NthSyntaxError, var, env ); return; } // The next character is ',' if ( *next == ',' ) { // ',' is the fisrt character if ( total == 0 || prev_comma ) { total++; } prev_comma = TRUE; next++; //skip ',' SKIP_WS( next ); } // Next character is a digit if ( *next >= '0' && *next <= '9' ) { prev_comma = FALSE; SKIP_DIGITS( next ); total++; const char *tmp = next; SKIP_WS( tmp ); if ( ( *next == ' ' || *next == '\t' ) && ( *tmp >= '0' && *tmp <= '9' ) ) { KMP_WARNING( NthSpacesNotAllowed, var, env ); return; } } } KMP_DEBUG_ASSERT( total > 0 ); if( total <= 0 ) { KMP_WARNING( NthSyntaxError, var, env ); return; } // Check if the nested nthreads array exists if ( ! nth_array->nth ) { // Allocate an array of double size nth_array->nth = ( int * )KMP_INTERNAL_MALLOC( sizeof( int ) * total * 2 ); if ( nth_array->nth == NULL ) { KMP_FATAL( MemoryAllocFailed ); } nth_array->size = total * 2; } else { if ( nth_array->size < total ) { // Increase the array size do { nth_array->size *= 2; } while ( nth_array->size < total ); nth_array->nth = (int *) KMP_INTERNAL_REALLOC( nth_array->nth, sizeof( int ) * nth_array->size ); if ( nth_array->nth == NULL ) { KMP_FATAL( MemoryAllocFailed ); } } } nth_array->used = total; int i = 0; prev_comma = FALSE; total = 0; // Save values in the array for ( ; ; ) { SKIP_WS( scan ); if ( *scan == '\0' ) { break; } // The next character is ',' if ( *scan == ',' ) { // ',' in the beginning of the list if ( total == 0 ) { // The value is supposed to be equal to __kmp_avail_proc but it is unknown at the moment. // So let's put a placeholder (#threads = 0) to correct it later. nth_array->nth[i++] = 0; total++; }else if ( prev_comma ) { // Num threads is inherited from the previous level nth_array->nth[i] = nth_array->nth[i - 1]; i++; total++; } prev_comma = TRUE; scan++; //skip ',' SKIP_WS( scan ); } // Next character is a digit if ( *scan >= '0' && *scan <= '9' ) { int num; const char *buf = scan; char const * msg = NULL; prev_comma = FALSE; SKIP_DIGITS( scan ); total++; num = __kmp_str_to_int( buf, *scan ); if ( num < KMP_MIN_NTH ) { msg = KMP_I18N_STR( ValueTooSmall ); num = KMP_MIN_NTH; } else if ( num > __kmp_sys_max_nth ) { msg = KMP_I18N_STR( ValueTooLarge ); num = __kmp_sys_max_nth; } if ( msg != NULL ) { // Message is not empty. Print warning. KMP_WARNING( ParseSizeIntWarn, var, env, msg ); KMP_INFORM( Using_int_Value, var, num ); } nth_array->nth[i++] = num; } } } static void __kmp_stg_parse_num_threads( char const * name, char const * value, void * data ) { // TODO: Remove this option. OMP_NUM_THREADS is a list of positive integers! if ( ! __kmp_strcasecmp_with_sentinel( "all", value, 0 ) ) { // The array of 1 element __kmp_nested_nth.nth = ( int* )KMP_INTERNAL_MALLOC( sizeof( int ) ); __kmp_nested_nth.size = __kmp_nested_nth.used = 1; __kmp_nested_nth.nth[0] = __kmp_dflt_team_nth = __kmp_dflt_team_nth_ub = __kmp_xproc; } else { __kmp_parse_nested_num_threads( name, value, & __kmp_nested_nth ); if ( __kmp_nested_nth.nth ) { __kmp_dflt_team_nth = __kmp_nested_nth.nth[0]; if ( __kmp_dflt_team_nth_ub < __kmp_dflt_team_nth ) { __kmp_dflt_team_nth_ub = __kmp_dflt_team_nth; } } }; // if K_DIAG( 1, ( "__kmp_dflt_team_nth == %d\n", __kmp_dflt_team_nth ) ); } // __kmp_stg_parse_num_threads static void __kmp_stg_print_num_threads( kmp_str_buf_t * buffer, char const * name, void * data ) { if( __kmp_env_format ) { KMP_STR_BUF_PRINT_NAME; } else { __kmp_str_buf_print( buffer, " %s", name ); } if ( __kmp_nested_nth.used ) { kmp_str_buf_t buf; __kmp_str_buf_init( &buf ); for ( int i = 0; i < __kmp_nested_nth.used; i++) { __kmp_str_buf_print( &buf, "%d", __kmp_nested_nth.nth[i] ); if ( i < __kmp_nested_nth.used - 1 ) { __kmp_str_buf_print( &buf, "," ); } } __kmp_str_buf_print( buffer, "='%s'\n", buf.str ); __kmp_str_buf_free(&buf); } else { __kmp_str_buf_print( buffer, ": %s\n", KMP_I18N_STR( NotDefined ) ); } } // __kmp_stg_print_num_threads // ------------------------------------------------------------------------------------------------- // OpenMP 3.0: KMP_TASKING, OMP_MAX_ACTIVE_LEVELS, // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_tasking( char const * name, char const * value, void * data ) { __kmp_stg_parse_int( name, value, 0, (int)tskm_max, (int *)&__kmp_tasking_mode ); } // __kmp_stg_parse_tasking static void __kmp_stg_print_tasking( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_int( buffer, name, __kmp_tasking_mode ); } // __kmp_stg_print_tasking static void __kmp_stg_parse_task_stealing( char const * name, char const * value, void * data ) { __kmp_stg_parse_int( name, value, 0, 1, (int *)&__kmp_task_stealing_constraint ); } // __kmp_stg_parse_task_stealing static void __kmp_stg_print_task_stealing( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_int( buffer, name, __kmp_task_stealing_constraint ); } // __kmp_stg_print_task_stealing static void __kmp_stg_parse_max_active_levels( char const * name, char const * value, void * data ) { __kmp_stg_parse_int( name, value, 0, KMP_MAX_ACTIVE_LEVELS_LIMIT, & __kmp_dflt_max_active_levels ); } // __kmp_stg_parse_max_active_levels static void __kmp_stg_print_max_active_levels( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_int( buffer, name, __kmp_dflt_max_active_levels ); } // __kmp_stg_print_max_active_levels #if OMP_45_ENABLED // ------------------------------------------------------------------------------------------------- // OpenMP 4.5: OMP_MAX_TASK_PRIORITY // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_max_task_priority(char const *name, char const *value, void *data) { __kmp_stg_parse_int(name, value, 0, KMP_MAX_TASK_PRIORITY_LIMIT, &__kmp_max_task_priority); } // __kmp_stg_parse_max_task_priority static void __kmp_stg_print_max_task_priority(kmp_str_buf_t *buffer, char const *name, void *data) { __kmp_stg_print_int(buffer, name, __kmp_max_task_priority); } // __kmp_stg_print_max_task_priority #endif // OMP_45_ENABLED // ------------------------------------------------------------------------------------------------- // KMP_DISP_NUM_BUFFERS // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_disp_buffers( char const * name, char const * value, void * data ) { if ( TCR_4(__kmp_init_serial) ) { KMP_WARNING( EnvSerialWarn, name ); return; } // read value before serial initialization only __kmp_stg_parse_int( name, value, 1, KMP_MAX_NTH, & __kmp_dispatch_num_buffers ); } // __kmp_stg_parse_disp_buffers static void __kmp_stg_print_disp_buffers( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_int( buffer, name, __kmp_dispatch_num_buffers ); } // __kmp_stg_print_disp_buffers #if KMP_NESTED_HOT_TEAMS // ------------------------------------------------------------------------------------------------- // KMP_HOT_TEAMS_MAX_LEVEL, KMP_HOT_TEAMS_MODE // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_hot_teams_level( char const * name, char const * value, void * data ) { if ( TCR_4(__kmp_init_parallel) ) { KMP_WARNING( EnvParallelWarn, name ); return; } // read value before first parallel only __kmp_stg_parse_int( name, value, 0, KMP_MAX_ACTIVE_LEVELS_LIMIT, & __kmp_hot_teams_max_level ); } // __kmp_stg_parse_hot_teams_level static void __kmp_stg_print_hot_teams_level( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_int( buffer, name, __kmp_hot_teams_max_level ); } // __kmp_stg_print_hot_teams_level static void __kmp_stg_parse_hot_teams_mode( char const * name, char const * value, void * data ) { if ( TCR_4(__kmp_init_parallel) ) { KMP_WARNING( EnvParallelWarn, name ); return; } // read value before first parallel only __kmp_stg_parse_int( name, value, 0, KMP_MAX_ACTIVE_LEVELS_LIMIT, & __kmp_hot_teams_mode ); } // __kmp_stg_parse_hot_teams_mode static void __kmp_stg_print_hot_teams_mode( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_int( buffer, name, __kmp_hot_teams_mode ); } // __kmp_stg_print_hot_teams_mode #endif // KMP_NESTED_HOT_TEAMS // ------------------------------------------------------------------------------------------------- // KMP_HANDLE_SIGNALS // ------------------------------------------------------------------------------------------------- #if KMP_HANDLE_SIGNALS static void __kmp_stg_parse_handle_signals( char const * name, char const * value, void * data ) { __kmp_stg_parse_bool( name, value, & __kmp_handle_signals ); } // __kmp_stg_parse_handle_signals static void __kmp_stg_print_handle_signals( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_bool( buffer, name, __kmp_handle_signals ); } // __kmp_stg_print_handle_signals #endif // KMP_HANDLE_SIGNALS // ------------------------------------------------------------------------------------------------- // KMP_X_DEBUG, KMP_DEBUG, KMP_DEBUG_BUF_*, KMP_DIAG // ------------------------------------------------------------------------------------------------- #ifdef KMP_DEBUG #define KMP_STG_X_DEBUG( x ) \ static void __kmp_stg_parse_##x##_debug( char const * name, char const * value, void * data ) { \ __kmp_stg_parse_int( name, value, 0, INT_MAX, & kmp_##x##_debug ); \ } /* __kmp_stg_parse_x_debug */ \ static void __kmp_stg_print_##x##_debug( kmp_str_buf_t * buffer, char const * name, void * data ) { \ __kmp_stg_print_int( buffer, name, kmp_##x##_debug ); \ } /* __kmp_stg_print_x_debug */ KMP_STG_X_DEBUG( a ) KMP_STG_X_DEBUG( b ) KMP_STG_X_DEBUG( c ) KMP_STG_X_DEBUG( d ) KMP_STG_X_DEBUG( e ) KMP_STG_X_DEBUG( f ) #undef KMP_STG_X_DEBUG static void __kmp_stg_parse_debug( char const * name, char const * value, void * data ) { int debug = 0; __kmp_stg_parse_int( name, value, 0, INT_MAX, & debug ); if ( kmp_a_debug < debug ) { kmp_a_debug = debug; }; // if if ( kmp_b_debug < debug ) { kmp_b_debug = debug; }; // if if ( kmp_c_debug < debug ) { kmp_c_debug = debug; }; // if if ( kmp_d_debug < debug ) { kmp_d_debug = debug; }; // if if ( kmp_e_debug < debug ) { kmp_e_debug = debug; }; // if if ( kmp_f_debug < debug ) { kmp_f_debug = debug; }; // if } // __kmp_stg_parse_debug static void __kmp_stg_parse_debug_buf( char const * name, char const * value, void * data ) { __kmp_stg_parse_bool( name, value, & __kmp_debug_buf ); // !!! TODO: Move buffer initialization of of this file! It may works incorrectly if // KMP_DEBUG_BUF is parsed before KMP_DEBUG_BUF_LINES or KMP_DEBUG_BUF_CHARS. if ( __kmp_debug_buf ) { int i; int elements = __kmp_debug_buf_lines * __kmp_debug_buf_chars; /* allocate and initialize all entries in debug buffer to empty */ __kmp_debug_buffer = (char *) __kmp_page_allocate( elements * sizeof( char ) ); for ( i = 0; i < elements; i += __kmp_debug_buf_chars ) __kmp_debug_buffer[i] = '\0'; __kmp_debug_count = 0; } K_DIAG( 1, ( "__kmp_debug_buf = %d\n", __kmp_debug_buf ) ); } // __kmp_stg_parse_debug_buf static void __kmp_stg_print_debug_buf( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_bool( buffer, name, __kmp_debug_buf ); } // __kmp_stg_print_debug_buf static void __kmp_stg_parse_debug_buf_atomic( char const * name, char const * value, void * data ) { __kmp_stg_parse_bool( name, value, & __kmp_debug_buf_atomic ); } // __kmp_stg_parse_debug_buf_atomic static void __kmp_stg_print_debug_buf_atomic( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_bool( buffer, name, __kmp_debug_buf_atomic ); } // __kmp_stg_print_debug_buf_atomic static void __kmp_stg_parse_debug_buf_chars( char const * name, char const * value, void * data ) { __kmp_stg_parse_int( name, value, KMP_DEBUG_BUF_CHARS_MIN, INT_MAX, & __kmp_debug_buf_chars ); } // __kmp_stg_debug_parse_buf_chars static void __kmp_stg_print_debug_buf_chars( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_int( buffer, name, __kmp_debug_buf_chars ); } // __kmp_stg_print_debug_buf_chars static void __kmp_stg_parse_debug_buf_lines( char const * name, char const * value, void * data ) { __kmp_stg_parse_int( name, value, KMP_DEBUG_BUF_LINES_MIN, INT_MAX, & __kmp_debug_buf_lines ); } // __kmp_stg_parse_debug_buf_lines static void __kmp_stg_print_debug_buf_lines( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_int( buffer, name, __kmp_debug_buf_lines ); } // __kmp_stg_print_debug_buf_lines static void __kmp_stg_parse_diag( char const * name, char const * value, void * data ) { __kmp_stg_parse_int( name, value, 0, INT_MAX, & kmp_diag ); } // __kmp_stg_parse_diag static void __kmp_stg_print_diag( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_int( buffer, name, kmp_diag ); } // __kmp_stg_print_diag #endif // KMP_DEBUG // ------------------------------------------------------------------------------------------------- // KMP_ALIGN_ALLOC // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_align_alloc( char const * name, char const * value, void * data ) { __kmp_stg_parse_size( name, value, CACHE_LINE, INT_MAX, NULL, & __kmp_align_alloc, 1 ); } // __kmp_stg_parse_align_alloc static void __kmp_stg_print_align_alloc( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_size( buffer, name, __kmp_align_alloc ); } // __kmp_stg_print_align_alloc // ------------------------------------------------------------------------------------------------- // KMP_PLAIN_BARRIER, KMP_FORKJOIN_BARRIER, KMP_REDUCTION_BARRIER // ------------------------------------------------------------------------------------------------- // TODO: Remove __kmp_barrier_branch_bit_env_name varibale, remove loops from parse and print // functions, pass required info through data argument. static void __kmp_stg_parse_barrier_branch_bit( char const * name, char const * value, void * data ) { const char *var; /* ---------- Barrier branch bit control ------------ */ for ( int i=bs_plain_barrier; i KMP_MAX_BRANCH_BITS ) { __kmp_msg( kmp_ms_warning, KMP_MSG( BarrReleaseValueInvalid, name, comma + 1 ), __kmp_msg_null ); __kmp_barrier_release_branch_bits[ i ] = __kmp_barrier_release_bb_dflt; } } if ( __kmp_barrier_gather_branch_bits[ i ] > KMP_MAX_BRANCH_BITS ) { KMP_WARNING( BarrGatherValueInvalid, name, value ); KMP_INFORM( Using_uint_Value, name, __kmp_barrier_gather_bb_dflt ); __kmp_barrier_gather_branch_bits[ i ] = __kmp_barrier_gather_bb_dflt; } } K_DIAG(1, ("%s == %d,%d\n", __kmp_barrier_branch_bit_env_name[ i ], \ __kmp_barrier_gather_branch_bits [ i ], \ __kmp_barrier_release_branch_bits [ i ])) } } // __kmp_stg_parse_barrier_branch_bit static void __kmp_stg_print_barrier_branch_bit( kmp_str_buf_t * buffer, char const * name, void * data ) { const char *var; for ( int i=bs_plain_barrier; irivals ); if ( rc ) { return; }; // if if ( reduction->force ) { if( value != 0 ) { if( __kmp_str_match( "critical", 0, value ) ) __kmp_force_reduction_method = critical_reduce_block; else if( __kmp_str_match( "atomic", 0, value ) ) __kmp_force_reduction_method = atomic_reduce_block; else if( __kmp_str_match( "tree", 0, value ) ) __kmp_force_reduction_method = tree_reduce_block; else { KMP_FATAL( UnknownForceReduction, name, value ); } } } else { __kmp_stg_parse_bool( name, value, & __kmp_determ_red ); if( __kmp_determ_red ) { __kmp_force_reduction_method = tree_reduce_block; } else { __kmp_force_reduction_method = reduction_method_not_defined; } } K_DIAG( 1, ( "__kmp_force_reduction_method == %d\n", __kmp_force_reduction_method ) ); } // __kmp_stg_parse_force_reduction static void __kmp_stg_print_force_reduction( kmp_str_buf_t * buffer, char const * name, void * data ) { kmp_stg_fr_data_t * reduction = (kmp_stg_fr_data_t *) data; if ( reduction->force ) { if( __kmp_force_reduction_method == critical_reduce_block) { __kmp_stg_print_str( buffer, name, "critical"); } else if ( __kmp_force_reduction_method == atomic_reduce_block ) { __kmp_stg_print_str( buffer, name, "atomic"); } else if ( __kmp_force_reduction_method == tree_reduce_block ) { __kmp_stg_print_str( buffer, name, "tree"); } else { if( __kmp_env_format ) { KMP_STR_BUF_PRINT_NAME; } else { __kmp_str_buf_print( buffer, " %s", name ); } __kmp_str_buf_print( buffer, ": %s\n", KMP_I18N_STR( NotDefined ) ); } } else { __kmp_stg_print_bool( buffer, name, __kmp_determ_red ); } } // __kmp_stg_print_force_reduction // ------------------------------------------------------------------------------------------------- // KMP_STORAGE_MAP // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_storage_map( char const * name, char const * value, void * data ) { if ( __kmp_str_match( "verbose", 1, value ) ) { __kmp_storage_map = TRUE; __kmp_storage_map_verbose = TRUE; __kmp_storage_map_verbose_specified = TRUE; } else { __kmp_storage_map_verbose = FALSE; __kmp_stg_parse_bool( name, value, & __kmp_storage_map ); // !!! }; // if } // __kmp_stg_parse_storage_map static void __kmp_stg_print_storage_map( kmp_str_buf_t * buffer, char const * name, void * data ) { if ( __kmp_storage_map_verbose || __kmp_storage_map_verbose_specified ) { __kmp_stg_print_str( buffer, name, "verbose" ); } else { __kmp_stg_print_bool( buffer, name, __kmp_storage_map ); } } // __kmp_stg_print_storage_map // ------------------------------------------------------------------------------------------------- // KMP_ALL_THREADPRIVATE // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_all_threadprivate( char const * name, char const * value, void * data ) { __kmp_stg_parse_int( name, value, __kmp_allThreadsSpecified ? __kmp_max_nth : 1, __kmp_max_nth, & __kmp_tp_capacity ); } // __kmp_stg_parse_all_threadprivate static void __kmp_stg_print_all_threadprivate( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_int( buffer, name, __kmp_tp_capacity ); } // ------------------------------------------------------------------------------------------------- // KMP_FOREIGN_THREADS_THREADPRIVATE // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_foreign_threads_threadprivate( char const * name, char const * value, void * data ) { __kmp_stg_parse_bool( name, value, & __kmp_foreign_tp ); } // __kmp_stg_parse_foreign_threads_threadprivate static void __kmp_stg_print_foreign_threads_threadprivate( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_bool( buffer, name, __kmp_foreign_tp ); } // __kmp_stg_print_foreign_threads_threadprivate // ------------------------------------------------------------------------------------------------- // KMP_AFFINITY, GOMP_CPU_AFFINITY, KMP_TOPOLOGY_METHOD // ------------------------------------------------------------------------------------------------- #if KMP_AFFINITY_SUPPORTED // // Parse the proc id list. Return TRUE if successful, FALSE otherwise. // static int __kmp_parse_affinity_proc_id_list( const char *var, const char *env, const char **nextEnv, char **proclist ) { const char *scan = env; const char *next = scan; int empty = TRUE; *proclist = NULL; for (;;) { int start, end, stride; SKIP_WS(scan); next = scan; if (*next == '\0') { break; } if (*next == '{') { int num; next++; // skip '{' SKIP_WS(next); scan = next; // // Read the first integer in the set. // if ((*next < '0') || (*next > '9')) { KMP_WARNING( AffSyntaxError, var ); return FALSE; } SKIP_DIGITS(next); num = __kmp_str_to_int(scan, *next); KMP_ASSERT(num >= 0); for (;;) { // // Check for end of set. // SKIP_WS(next); if (*next == '}') { next++; // skip '}' break; } // // Skip optional comma. // if (*next == ',') { next++; } SKIP_WS(next); // // Read the next integer in the set. // scan = next; if ((*next < '0') || (*next > '9')) { KMP_WARNING( AffSyntaxError, var ); return FALSE; } SKIP_DIGITS(next); num = __kmp_str_to_int(scan, *next); KMP_ASSERT(num >= 0); } empty = FALSE; SKIP_WS(next); if (*next == ',') { next++; } scan = next; continue; } // // Next character is not an integer => end of list // if ((*next < '0') || (*next > '9')) { if (empty) { KMP_WARNING( AffSyntaxError, var ); return FALSE; } break; } // // Read the first integer. // SKIP_DIGITS(next); start = __kmp_str_to_int(scan, *next); KMP_ASSERT(start >= 0); SKIP_WS(next); // // If this isn't a range, then go on. // if (*next != '-') { empty = FALSE; // // Skip optional comma. // if (*next == ',') { next++; } scan = next; continue; } // // This is a range. Skip over the '-' and read in the 2nd int. // next++; // skip '-' SKIP_WS(next); scan = next; if ((*next < '0') || (*next > '9')) { KMP_WARNING( AffSyntaxError, var ); return FALSE; } SKIP_DIGITS(next); end = __kmp_str_to_int(scan, *next); KMP_ASSERT(end >= 0); // // Check for a stride parameter // stride = 1; SKIP_WS(next); if (*next == ':') { // // A stride is specified. Skip over the ':" and read the 3rd int. // int sign = +1; next++; // skip ':' SKIP_WS(next); scan = next; if (*next == '-') { sign = -1; next++; SKIP_WS(next); scan = next; } if ((*next < '0') || (*next > '9')) { KMP_WARNING( AffSyntaxError, var ); return FALSE; } SKIP_DIGITS(next); stride = __kmp_str_to_int(scan, *next); KMP_ASSERT(stride >= 0); stride *= sign; } // // Do some range checks. // if (stride == 0) { KMP_WARNING( AffZeroStride, var ); return FALSE; } if (stride > 0) { if (start > end) { KMP_WARNING( AffStartGreaterEnd, var, start, end ); return FALSE; } } else { if (start < end) { KMP_WARNING( AffStrideLessZero, var, start, end ); return FALSE; } } if ((end - start) / stride > 65536 ) { KMP_WARNING( AffRangeTooBig, var, end, start, stride ); return FALSE; } empty = FALSE; // // Skip optional comma. // SKIP_WS(next); if (*next == ',') { next++; } scan = next; } *nextEnv = next; { int len = next - env; char *retlist = (char *)__kmp_allocate((len + 1) * sizeof(char)); KMP_MEMCPY_S(retlist, (len+1)*sizeof(char), env, len * sizeof(char)); retlist[len] = '\0'; *proclist = retlist; } return TRUE; } // // If KMP_AFFINITY is specified without a type, then // __kmp_affinity_notype should point to its setting. // static kmp_setting_t *__kmp_affinity_notype = NULL; static void __kmp_parse_affinity_env( char const * name, char const * value, enum affinity_type * out_type, char ** out_proclist, int * out_verbose, int * out_warn, int * out_respect, enum affinity_gran * out_gran, int * out_gran_levels, int * out_dups, int * out_compact, int * out_offset ) { char * buffer = NULL; // Copy of env var value. char * buf = NULL; // Buffer for strtok_r() function. char * next = NULL; // end of token / start of next. const char * start; // start of current token (for err msgs) int count = 0; // Counter of parsed integer numbers. int number[ 2 ]; // Parsed numbers. // Guards. int type = 0; int proclist = 0; int max_proclist = 0; int verbose = 0; int warnings = 0; int respect = 0; int gran = 0; int dups = 0; KMP_ASSERT( value != NULL ); if ( TCR_4(__kmp_init_middle) ) { KMP_WARNING( EnvMiddleWarn, name ); __kmp_env_toPrint( name, 0 ); return; } __kmp_env_toPrint( name, 1 ); buffer = __kmp_str_format( "%s", value ); // Copy env var to keep original intact. buf = buffer; SKIP_WS(buf); // Helper macros. // // If we see a parse error, emit a warning and scan to the next ",". // // FIXME - there's got to be a better way to print an error // message, hopefully without overwritting peices of buf. // #define EMIT_WARN(skip,errlist) \ { \ char ch; \ if (skip) { \ SKIP_TO(next, ','); \ } \ ch = *next; \ *next = '\0'; \ KMP_WARNING errlist; \ *next = ch; \ if (skip) { \ if (ch == ',') next++; \ } \ buf = next; \ } #define _set_param(_guard,_var,_val) \ { \ if ( _guard == 0 ) { \ _var = _val; \ } else { \ EMIT_WARN( FALSE, ( AffParamDefined, name, start ) ); \ }; \ ++ _guard; \ } #define set_type(val) _set_param( type, *out_type, val ) #define set_verbose(val) _set_param( verbose, *out_verbose, val ) #define set_warnings(val) _set_param( warnings, *out_warn, val ) #define set_respect(val) _set_param( respect, *out_respect, val ) #define set_dups(val) _set_param( dups, *out_dups, val ) #define set_proclist(val) _set_param( proclist, *out_proclist, val ) #define set_gran(val,levels) \ { \ if ( gran == 0 ) { \ *out_gran = val; \ *out_gran_levels = levels; \ } else { \ EMIT_WARN( FALSE, ( AffParamDefined, name, start ) ); \ }; \ ++ gran; \ } # if OMP_40_ENABLED KMP_DEBUG_ASSERT( ( __kmp_nested_proc_bind.bind_types != NULL ) && ( __kmp_nested_proc_bind.used > 0 ) ); # endif while ( *buf != '\0' ) { start = next = buf; if (__kmp_match_str("none", buf, (const char **)&next)) { set_type( affinity_none ); # if OMP_40_ENABLED __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; # endif buf = next; } else if (__kmp_match_str("scatter", buf, (const char **)&next)) { set_type( affinity_scatter ); # if OMP_40_ENABLED __kmp_nested_proc_bind.bind_types[0] = proc_bind_intel; # endif buf = next; } else if (__kmp_match_str("compact", buf, (const char **)&next)) { set_type( affinity_compact ); # if OMP_40_ENABLED __kmp_nested_proc_bind.bind_types[0] = proc_bind_intel; # endif buf = next; } else if (__kmp_match_str("logical", buf, (const char **)&next)) { set_type( affinity_logical ); # if OMP_40_ENABLED __kmp_nested_proc_bind.bind_types[0] = proc_bind_intel; # endif buf = next; } else if (__kmp_match_str("physical", buf, (const char **)&next)) { set_type( affinity_physical ); # if OMP_40_ENABLED __kmp_nested_proc_bind.bind_types[0] = proc_bind_intel; # endif buf = next; } else if (__kmp_match_str("explicit", buf, (const char **)&next)) { set_type( affinity_explicit ); # if OMP_40_ENABLED __kmp_nested_proc_bind.bind_types[0] = proc_bind_intel; # endif buf = next; } else if (__kmp_match_str("balanced", buf, (const char **)&next)) { set_type( affinity_balanced ); # if OMP_40_ENABLED __kmp_nested_proc_bind.bind_types[0] = proc_bind_intel; # endif buf = next; } else if (__kmp_match_str("disabled", buf, (const char **)&next)) { set_type( affinity_disabled ); # if OMP_40_ENABLED __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; # endif buf = next; } else if (__kmp_match_str("verbose", buf, (const char **)&next)) { set_verbose( TRUE ); buf = next; } else if (__kmp_match_str("noverbose", buf, (const char **)&next)) { set_verbose( FALSE ); buf = next; } else if (__kmp_match_str("warnings", buf, (const char **)&next)) { set_warnings( TRUE ); buf = next; } else if (__kmp_match_str("nowarnings", buf, (const char **)&next)) { set_warnings( FALSE ); buf = next; } else if (__kmp_match_str("respect", buf, (const char **)&next)) { set_respect( TRUE ); buf = next; } else if (__kmp_match_str("norespect", buf, (const char **)&next)) { set_respect( FALSE ); buf = next; } else if (__kmp_match_str("duplicates", buf, (const char **)&next) || __kmp_match_str("dups", buf, (const char **)&next)) { set_dups( TRUE ); buf = next; } else if (__kmp_match_str("noduplicates", buf, (const char **)&next) || __kmp_match_str("nodups", buf, (const char **)&next)) { set_dups( FALSE ); buf = next; } else if (__kmp_match_str("granularity", buf, (const char **)&next) || __kmp_match_str("gran", buf, (const char **)&next)) { SKIP_WS(next); if (*next != '=') { EMIT_WARN( TRUE, ( AffInvalidParam, name, start ) ); continue; } next++; // skip '=' SKIP_WS(next); buf = next; if (__kmp_match_str("fine", buf, (const char **)&next)) { set_gran( affinity_gran_fine, -1 ); buf = next; } else if (__kmp_match_str("thread", buf, (const char **)&next)) { set_gran( affinity_gran_thread, -1 ); buf = next; } else if (__kmp_match_str("core", buf, (const char **)&next)) { set_gran( affinity_gran_core, -1 ); buf = next; } else if (__kmp_match_str("package", buf, (const char **)&next)) { set_gran( affinity_gran_package, -1 ); buf = next; } else if (__kmp_match_str("node", buf, (const char **)&next)) { set_gran( affinity_gran_node, -1 ); buf = next; # if KMP_GROUP_AFFINITY } else if (__kmp_match_str("group", buf, (const char **)&next)) { set_gran( affinity_gran_group, -1 ); buf = next; # endif /* KMP_GROUP AFFINITY */ } else if ((*buf >= '0') && (*buf <= '9')) { int n; next = buf; SKIP_DIGITS(next); n = __kmp_str_to_int( buf, *next ); KMP_ASSERT(n >= 0); buf = next; set_gran( affinity_gran_default, n ); } else { EMIT_WARN( TRUE, ( AffInvalidParam, name, start ) ); continue; } } else if (__kmp_match_str("proclist", buf, (const char **)&next)) { char *temp_proclist; SKIP_WS(next); if (*next != '=') { EMIT_WARN( TRUE, ( AffInvalidParam, name, start ) ); continue; } next++; // skip '=' SKIP_WS(next); if (*next != '[') { EMIT_WARN( TRUE, ( AffInvalidParam, name, start ) ); continue; } next++; // skip '[' buf = next; if (! __kmp_parse_affinity_proc_id_list(name, buf, (const char **)&next, &temp_proclist)) { // // warning already emitted. // SKIP_TO(next, ']'); if (*next == ']') next++; SKIP_TO(next, ','); if (*next == ',') next++; buf = next; continue; } if (*next != ']') { EMIT_WARN( TRUE, ( AffInvalidParam, name, start ) ); continue; } next++; // skip ']' set_proclist( temp_proclist ); } else if ((*buf >= '0') && (*buf <= '9')) { // Parse integer numbers -- permute and offset. int n; next = buf; SKIP_DIGITS(next); n = __kmp_str_to_int( buf, *next ); KMP_ASSERT(n >= 0); buf = next; if ( count < 2 ) { number[ count ] = n; } else { KMP_WARNING( AffManyParams, name, start ); }; // if ++ count; } else { EMIT_WARN( TRUE, ( AffInvalidParam, name, start ) ); continue; } SKIP_WS(next); if (*next == ',') { next++; SKIP_WS(next); } else if (*next != '\0') { const char *temp = next; EMIT_WARN( TRUE, ( ParseExtraCharsWarn, name, temp ) ); continue; } buf = next; } // while #undef EMIT_WARN #undef _set_param #undef set_type #undef set_verbose #undef set_warnings #undef set_respect #undef set_granularity KMP_INTERNAL_FREE( buffer ); if ( proclist ) { if ( ! type ) { KMP_WARNING( AffProcListNoType, name ); __kmp_affinity_type = affinity_explicit; } else if ( __kmp_affinity_type != affinity_explicit ) { KMP_WARNING( AffProcListNotExplicit, name ); KMP_ASSERT( *out_proclist != NULL ); KMP_INTERNAL_FREE( *out_proclist ); *out_proclist = NULL; } } switch ( *out_type ) { case affinity_logical: case affinity_physical: { if ( count > 0 ) { *out_offset = number[ 0 ]; }; // if if ( count > 1 ) { KMP_WARNING( AffManyParamsForLogic, name, number[ 1 ] ); }; // if } break; case affinity_balanced: { if ( count > 0 ) { *out_compact = number[ 0 ]; }; // if if ( count > 1 ) { *out_offset = number[ 1 ]; }; // if if ( __kmp_affinity_gran == affinity_gran_default ) { #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) if( __kmp_mic_type != non_mic ) { if( __kmp_affinity_verbose || __kmp_affinity_warnings ) { KMP_WARNING( AffGranUsing, "KMP_AFFINITY", "fine" ); } __kmp_affinity_gran = affinity_gran_fine; } else #endif { if( __kmp_affinity_verbose || __kmp_affinity_warnings ) { KMP_WARNING( AffGranUsing, "KMP_AFFINITY", "core" ); } __kmp_affinity_gran = affinity_gran_core; } } } break; case affinity_scatter: case affinity_compact: { if ( count > 0 ) { *out_compact = number[ 0 ]; }; // if if ( count > 1 ) { *out_offset = number[ 1 ]; }; // if } break; case affinity_explicit: { if ( *out_proclist == NULL ) { KMP_WARNING( AffNoProcList, name ); __kmp_affinity_type = affinity_none; } if ( count > 0 ) { KMP_WARNING( AffNoParam, name, "explicit" ); } } break; case affinity_none: { if ( count > 0 ) { KMP_WARNING( AffNoParam, name, "none" ); }; // if } break; case affinity_disabled: { if ( count > 0 ) { KMP_WARNING( AffNoParam, name, "disabled" ); }; // if } break; case affinity_default: { if ( count > 0 ) { KMP_WARNING( AffNoParam, name, "default" ); }; // if } break; default: { KMP_ASSERT( 0 ); }; }; // switch } // __kmp_parse_affinity_env static void __kmp_stg_parse_affinity( char const * name, char const * value, void * data ) { kmp_setting_t **rivals = (kmp_setting_t **) data; int rc; rc = __kmp_stg_check_rivals( name, value, rivals ); if ( rc ) { return; } __kmp_parse_affinity_env( name, value, & __kmp_affinity_type, & __kmp_affinity_proclist, & __kmp_affinity_verbose, & __kmp_affinity_warnings, & __kmp_affinity_respect_mask, & __kmp_affinity_gran, & __kmp_affinity_gran_levels, & __kmp_affinity_dups, & __kmp_affinity_compact, & __kmp_affinity_offset ); } // __kmp_stg_parse_affinity static void __kmp_stg_print_affinity( kmp_str_buf_t * buffer, char const * name, void * data ) { if( __kmp_env_format ) { KMP_STR_BUF_PRINT_NAME_EX(name); } else { __kmp_str_buf_print( buffer, " %s='", name ); } if ( __kmp_affinity_verbose ) { __kmp_str_buf_print( buffer, "%s,", "verbose"); } else { __kmp_str_buf_print( buffer, "%s,", "noverbose"); } if ( __kmp_affinity_warnings ) { __kmp_str_buf_print( buffer, "%s,", "warnings"); } else { __kmp_str_buf_print( buffer, "%s,", "nowarnings"); } if ( KMP_AFFINITY_CAPABLE() ) { if ( __kmp_affinity_respect_mask ) { __kmp_str_buf_print( buffer, "%s,", "respect"); } else { __kmp_str_buf_print( buffer, "%s,", "norespect"); } switch ( __kmp_affinity_gran ) { case affinity_gran_default: __kmp_str_buf_print( buffer, "%s", "granularity=default,"); break; case affinity_gran_fine: __kmp_str_buf_print( buffer, "%s", "granularity=fine,"); break; case affinity_gran_thread: __kmp_str_buf_print( buffer, "%s", "granularity=thread,"); break; case affinity_gran_core: __kmp_str_buf_print( buffer, "%s", "granularity=core,"); break; case affinity_gran_package: __kmp_str_buf_print( buffer, "%s", "granularity=package,"); break; case affinity_gran_node: __kmp_str_buf_print( buffer, "%s", "granularity=node,"); break; # if KMP_GROUP_AFFINITY case affinity_gran_group: __kmp_str_buf_print( buffer, "%s", "granularity=group,"); break; # endif /* KMP_GROUP_AFFINITY */ } if ( __kmp_affinity_dups ) { __kmp_str_buf_print( buffer, "%s,", "duplicates"); } else { __kmp_str_buf_print( buffer, "%s,", "noduplicates"); } } if ( ! KMP_AFFINITY_CAPABLE() ) { __kmp_str_buf_print( buffer, "%s", "disabled" ); } else switch ( __kmp_affinity_type ){ case affinity_none: __kmp_str_buf_print( buffer, "%s", "none"); break; case affinity_physical: __kmp_str_buf_print( buffer, "%s,%d", "physical", __kmp_affinity_offset ); break; case affinity_logical: __kmp_str_buf_print( buffer, "%s,%d", "logical", __kmp_affinity_offset ); break; case affinity_compact: __kmp_str_buf_print( buffer, "%s,%d,%d", "compact", __kmp_affinity_compact, __kmp_affinity_offset ); break; case affinity_scatter: __kmp_str_buf_print( buffer, "%s,%d,%d", "scatter", __kmp_affinity_compact, __kmp_affinity_offset ); break; case affinity_explicit: __kmp_str_buf_print( buffer, "%s=[%s],%s", "proclist", __kmp_affinity_proclist, "explicit" ); break; case affinity_balanced: __kmp_str_buf_print( buffer, "%s,%d,%d", "balanced", __kmp_affinity_compact, __kmp_affinity_offset ); break; case affinity_disabled: __kmp_str_buf_print( buffer, "%s", "disabled"); break; case affinity_default: __kmp_str_buf_print( buffer, "%s", "default"); break; default: __kmp_str_buf_print( buffer, "%s", ""); break; } __kmp_str_buf_print( buffer, "'\n" ); } //__kmp_stg_print_affinity # ifdef KMP_GOMP_COMPAT static void __kmp_stg_parse_gomp_cpu_affinity( char const * name, char const * value, void * data ) { const char * next = NULL; char * temp_proclist; kmp_setting_t **rivals = (kmp_setting_t **) data; int rc; rc = __kmp_stg_check_rivals( name, value, rivals ); if ( rc ) { return; } if ( TCR_4(__kmp_init_middle) ) { KMP_WARNING( EnvMiddleWarn, name ); __kmp_env_toPrint( name, 0 ); return; } __kmp_env_toPrint( name, 1 ); if ( __kmp_parse_affinity_proc_id_list( name, value, &next, &temp_proclist )) { SKIP_WS(next); if (*next == '\0') { // // GOMP_CPU_AFFINITY => granularity=fine,explicit,proclist=... // __kmp_affinity_proclist = temp_proclist; __kmp_affinity_type = affinity_explicit; __kmp_affinity_gran = affinity_gran_fine; # if OMP_40_ENABLED __kmp_nested_proc_bind.bind_types[0] = proc_bind_intel; # endif } else { KMP_WARNING( AffSyntaxError, name ); if (temp_proclist != NULL) { KMP_INTERNAL_FREE((void *)temp_proclist); } } } else { // // Warning already emitted // __kmp_affinity_type = affinity_none; # if OMP_40_ENABLED __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; # endif } } // __kmp_stg_parse_gomp_cpu_affinity # endif /* KMP_GOMP_COMPAT */ # if OMP_40_ENABLED /*----------------------------------------------------------------------------- The OMP_PLACES proc id list parser. Here is the grammar: place_list := place place_list := place , place_list place := num place := place : num place := place : num : signed place := { subplacelist } place := ! place // (lowest priority) subplace_list := subplace subplace_list := subplace , subplace_list subplace := num subplace := num : num subplace := num : num : signed signed := num signed := + signed signed := - signed -----------------------------------------------------------------------------*/ static int __kmp_parse_subplace_list( const char *var, const char **scan ) { const char *next; for (;;) { int start, count, stride; // // Read in the starting proc id // SKIP_WS(*scan); if ((**scan < '0') || (**scan > '9')) { KMP_WARNING( SyntaxErrorUsing, var, "\"threads\"" ); return FALSE; } next = *scan; SKIP_DIGITS(next); start = __kmp_str_to_int(*scan, *next); KMP_ASSERT(start >= 0); *scan = next; // // valid follow sets are ',' ':' and '}' // SKIP_WS(*scan); if (**scan == '}') { break; } if (**scan == ',') { (*scan)++; // skip ',' continue; } if (**scan != ':') { KMP_WARNING( SyntaxErrorUsing, var, "\"threads\"" ); return FALSE; } (*scan)++; // skip ':' // // Read count parameter // SKIP_WS(*scan); if ((**scan < '0') || (**scan > '9')) { KMP_WARNING( SyntaxErrorUsing, var, "\"threads\"" ); return FALSE; } next = *scan; SKIP_DIGITS(next); count = __kmp_str_to_int(*scan, *next); KMP_ASSERT(count >= 0); *scan = next; // // valid follow sets are ',' ':' and '}' // SKIP_WS(*scan); if (**scan == '}') { break; } if (**scan == ',') { (*scan)++; // skip ',' continue; } if (**scan != ':') { KMP_WARNING( SyntaxErrorUsing, var, "\"threads\"" ); return FALSE; } (*scan)++; // skip ':' // // Read stride parameter // int sign = +1; for (;;) { SKIP_WS(*scan); if (**scan == '+') { (*scan)++; // skip '+' continue; } if (**scan == '-') { sign *= -1; (*scan)++; // skip '-' continue; } break; } SKIP_WS(*scan); if ((**scan < '0') || (**scan > '9')) { KMP_WARNING( SyntaxErrorUsing, var, "\"threads\"" ); return FALSE; } next = *scan; SKIP_DIGITS(next); stride = __kmp_str_to_int(*scan, *next); KMP_ASSERT(stride >= 0); *scan = next; stride *= sign; // // valid follow sets are ',' and '}' // SKIP_WS(*scan); if (**scan == '}') { break; } if (**scan == ',') { (*scan)++; // skip ',' continue; } KMP_WARNING( SyntaxErrorUsing, var, "\"threads\"" ); return FALSE; } return TRUE; } static int __kmp_parse_place( const char *var, const char ** scan ) { const char *next; // // valid follow sets are '{' '!' and num // SKIP_WS(*scan); if (**scan == '{') { (*scan)++; // skip '{' if (! __kmp_parse_subplace_list(var, scan)) { return FALSE; } if (**scan != '}') { KMP_WARNING( SyntaxErrorUsing, var, "\"threads\"" ); return FALSE; } (*scan)++; // skip '}' } else if (**scan == '!') { (*scan)++; // skip '!' return __kmp_parse_place(var, scan); //'!' has lower precedence than ':' } else if ((**scan >= '0') && (**scan <= '9')) { next = *scan; SKIP_DIGITS(next); int proc = __kmp_str_to_int(*scan, *next); KMP_ASSERT(proc >= 0); *scan = next; } else { KMP_WARNING( SyntaxErrorUsing, var, "\"threads\"" ); return FALSE; } return TRUE; } static int __kmp_parse_place_list( const char *var, const char *env, char **place_list ) { const char *scan = env; const char *next = scan; for (;;) { int start, count, stride; if (! __kmp_parse_place(var, &scan)) { return FALSE; } // // valid follow sets are ',' ':' and EOL // SKIP_WS(scan); if (*scan == '\0') { break; } if (*scan == ',') { scan++; // skip ',' continue; } if (*scan != ':') { KMP_WARNING( SyntaxErrorUsing, var, "\"threads\"" ); return FALSE; } scan++; // skip ':' // // Read count parameter // SKIP_WS(scan); if ((*scan < '0') || (*scan > '9')) { KMP_WARNING( SyntaxErrorUsing, var, "\"threads\"" ); return FALSE; } next = scan; SKIP_DIGITS(next); count = __kmp_str_to_int(scan, *next); KMP_ASSERT(count >= 0); scan = next; // // valid follow sets are ',' ':' and EOL // SKIP_WS(scan); if (*scan == '\0') { break; } if (*scan == ',') { scan++; // skip ',' continue; } if (*scan != ':') { KMP_WARNING( SyntaxErrorUsing, var, "\"threads\"" ); return FALSE; } scan++; // skip ':' // // Read stride parameter // int sign = +1; for (;;) { SKIP_WS(scan); if (*scan == '+') { scan++; // skip '+' continue; } if (*scan == '-') { sign *= -1; scan++; // skip '-' continue; } break; } SKIP_WS(scan); if ((*scan < '0') || (*scan > '9')) { KMP_WARNING( SyntaxErrorUsing, var, "\"threads\"" ); return FALSE; } next = scan; SKIP_DIGITS(next); stride = __kmp_str_to_int(scan, *next); KMP_ASSERT(stride >= 0); scan = next; stride *= sign; // // valid follow sets are ',' and EOL // SKIP_WS(scan); if (*scan == '\0') { break; } if (*scan == ',') { scan++; // skip ',' continue; } KMP_WARNING( SyntaxErrorUsing, var, "\"threads\"" ); return FALSE; } { int len = scan - env; char *retlist = (char *)__kmp_allocate((len + 1) * sizeof(char)); KMP_MEMCPY_S(retlist, (len+1)*sizeof(char), env, len * sizeof(char)); retlist[len] = '\0'; *place_list = retlist; } return TRUE; } static void __kmp_stg_parse_places( char const * name, char const * value, void * data ) { int count; const char *scan = value; const char *next = scan; const char *kind = "\"threads\""; kmp_setting_t **rivals = (kmp_setting_t **) data; int rc; rc = __kmp_stg_check_rivals( name, value, rivals ); if ( rc ) { return; } // // If OMP_PROC_BIND is not specified but OMP_PLACES is, // then let OMP_PROC_BIND default to true. // if ( __kmp_nested_proc_bind.bind_types[0] == proc_bind_default ) { __kmp_nested_proc_bind.bind_types[0] = proc_bind_true; } //__kmp_affinity_num_places = 0; if ( __kmp_match_str( "threads", scan, &next ) ) { scan = next; __kmp_affinity_type = affinity_compact; __kmp_affinity_gran = affinity_gran_thread; __kmp_affinity_dups = FALSE; kind = "\"threads\""; } else if ( __kmp_match_str( "cores", scan, &next ) ) { scan = next; __kmp_affinity_type = affinity_compact; __kmp_affinity_gran = affinity_gran_core; __kmp_affinity_dups = FALSE; kind = "\"cores\""; } else if ( __kmp_match_str( "sockets", scan, &next ) ) { scan = next; __kmp_affinity_type = affinity_compact; __kmp_affinity_gran = affinity_gran_package; __kmp_affinity_dups = FALSE; kind = "\"sockets\""; } else { if ( __kmp_affinity_proclist != NULL ) { KMP_INTERNAL_FREE( (void *)__kmp_affinity_proclist ); __kmp_affinity_proclist = NULL; } if ( __kmp_parse_place_list( name, value, &__kmp_affinity_proclist ) ) { __kmp_affinity_type = affinity_explicit; __kmp_affinity_gran = affinity_gran_fine; __kmp_affinity_dups = FALSE; if ( __kmp_nested_proc_bind.bind_types[0] == proc_bind_default ) { __kmp_nested_proc_bind.bind_types[0] = proc_bind_true; } } return; } if ( __kmp_nested_proc_bind.bind_types[0] == proc_bind_default ) { __kmp_nested_proc_bind.bind_types[0] = proc_bind_true; } SKIP_WS(scan); if ( *scan == '\0' ) { return; } // // Parse option count parameter in parentheses // if ( *scan != '(' ) { KMP_WARNING( SyntaxErrorUsing, name, kind ); return; } scan++; // skip '(' SKIP_WS(scan); next = scan; SKIP_DIGITS(next); count = __kmp_str_to_int(scan, *next); KMP_ASSERT(count >= 0); scan = next; SKIP_WS(scan); if ( *scan != ')' ) { KMP_WARNING( SyntaxErrorUsing, name, kind ); return; } scan++; // skip ')' SKIP_WS(scan); if ( *scan != '\0' ) { KMP_WARNING( ParseExtraCharsWarn, name, scan ); } __kmp_affinity_num_places = count; } static void __kmp_stg_print_places( kmp_str_buf_t * buffer, char const * name, void * data ) { if( __kmp_env_format ) { KMP_STR_BUF_PRINT_NAME; } else { __kmp_str_buf_print( buffer, " %s", name ); } if ( ( __kmp_nested_proc_bind.used == 0 ) || ( __kmp_nested_proc_bind.bind_types == NULL ) || ( __kmp_nested_proc_bind.bind_types[0] == proc_bind_false ) ) { __kmp_str_buf_print( buffer, ": %s\n", KMP_I18N_STR( NotDefined ) ); } else if ( __kmp_affinity_type == affinity_explicit ) { if ( __kmp_affinity_proclist != NULL ) { __kmp_str_buf_print( buffer, "='%s'\n", __kmp_affinity_proclist ); } else { __kmp_str_buf_print( buffer, ": %s\n", KMP_I18N_STR( NotDefined ) ); } } else if ( __kmp_affinity_type == affinity_compact ) { int num; if ( __kmp_affinity_num_masks > 0 ) { num = __kmp_affinity_num_masks; } else if ( __kmp_affinity_num_places > 0 ) { num = __kmp_affinity_num_places; } else { num = 0; } if ( __kmp_affinity_gran == affinity_gran_thread ) { if ( num > 0 ) { __kmp_str_buf_print( buffer, "='threads(%d)'\n", num ); } else { __kmp_str_buf_print( buffer, "='threads'\n" ); } } else if ( __kmp_affinity_gran == affinity_gran_core ) { if ( num > 0 ) { __kmp_str_buf_print( buffer, "='cores(%d)' \n", num ); } else { __kmp_str_buf_print( buffer, "='cores'\n" ); } } else if ( __kmp_affinity_gran == affinity_gran_package ) { if ( num > 0 ) { __kmp_str_buf_print( buffer, "='sockets(%d)'\n", num ); } else { __kmp_str_buf_print( buffer, "='sockets'\n" ); } } else { __kmp_str_buf_print( buffer, ": %s\n", KMP_I18N_STR( NotDefined ) ); } } else { __kmp_str_buf_print( buffer, ": %s\n", KMP_I18N_STR( NotDefined ) ); } } # endif /* OMP_40_ENABLED */ # if (! OMP_40_ENABLED) static void __kmp_stg_parse_proc_bind( char const * name, char const * value, void * data ) { int enabled; kmp_setting_t **rivals = (kmp_setting_t **) data; int rc; rc = __kmp_stg_check_rivals( name, value, rivals ); if ( rc ) { return; } // // in OMP 3.1, OMP_PROC_BIND is strictly a boolean // __kmp_stg_parse_bool( name, value, & enabled ); if ( enabled ) { // // OMP_PROC_BIND => granularity=fine,scatter on MIC // OMP_PROC_BIND => granularity=core,scatter elsewhere // __kmp_affinity_type = affinity_scatter; # if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) if( __kmp_mic_type != non_mic ) __kmp_affinity_gran = affinity_gran_fine; else # endif __kmp_affinity_gran = affinity_gran_core; } else { __kmp_affinity_type = affinity_none; } } // __kmp_parse_proc_bind # endif /* if (! OMP_40_ENABLED) */ static void __kmp_stg_parse_topology_method( char const * name, char const * value, void * data ) { if ( __kmp_str_match( "all", 1, value ) ) { __kmp_affinity_top_method = affinity_top_method_all; } # if KMP_ARCH_X86 || KMP_ARCH_X86_64 else if ( __kmp_str_match( "x2apic id", 9, value ) || __kmp_str_match( "x2apic_id", 9, value ) || __kmp_str_match( "x2apic-id", 9, value ) || __kmp_str_match( "x2apicid", 8, value ) || __kmp_str_match( "cpuid leaf 11", 13, value ) || __kmp_str_match( "cpuid_leaf_11", 13, value ) || __kmp_str_match( "cpuid-leaf-11", 13, value ) || __kmp_str_match( "cpuid leaf11", 12, value ) || __kmp_str_match( "cpuid_leaf11", 12, value ) || __kmp_str_match( "cpuid-leaf11", 12, value ) || __kmp_str_match( "cpuidleaf 11", 12, value ) || __kmp_str_match( "cpuidleaf_11", 12, value ) || __kmp_str_match( "cpuidleaf-11", 12, value ) || __kmp_str_match( "cpuidleaf11", 11, value ) || __kmp_str_match( "cpuid 11", 8, value ) || __kmp_str_match( "cpuid_11", 8, value ) || __kmp_str_match( "cpuid-11", 8, value ) || __kmp_str_match( "cpuid11", 7, value ) || __kmp_str_match( "leaf 11", 7, value ) || __kmp_str_match( "leaf_11", 7, value ) || __kmp_str_match( "leaf-11", 7, value ) || __kmp_str_match( "leaf11", 6, value ) ) { __kmp_affinity_top_method = affinity_top_method_x2apicid; } else if ( __kmp_str_match( "apic id", 7, value ) || __kmp_str_match( "apic_id", 7, value ) || __kmp_str_match( "apic-id", 7, value ) || __kmp_str_match( "apicid", 6, value ) || __kmp_str_match( "cpuid leaf 4", 12, value ) || __kmp_str_match( "cpuid_leaf_4", 12, value ) || __kmp_str_match( "cpuid-leaf-4", 12, value ) || __kmp_str_match( "cpuid leaf4", 11, value ) || __kmp_str_match( "cpuid_leaf4", 11, value ) || __kmp_str_match( "cpuid-leaf4", 11, value ) || __kmp_str_match( "cpuidleaf 4", 11, value ) || __kmp_str_match( "cpuidleaf_4", 11, value ) || __kmp_str_match( "cpuidleaf-4", 11, value ) || __kmp_str_match( "cpuidleaf4", 10, value ) || __kmp_str_match( "cpuid 4", 7, value ) || __kmp_str_match( "cpuid_4", 7, value ) || __kmp_str_match( "cpuid-4", 7, value ) || __kmp_str_match( "cpuid4", 6, value ) || __kmp_str_match( "leaf 4", 6, value ) || __kmp_str_match( "leaf_4", 6, value ) || __kmp_str_match( "leaf-4", 6, value ) || __kmp_str_match( "leaf4", 5, value ) ) { __kmp_affinity_top_method = affinity_top_method_apicid; } # endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ else if ( __kmp_str_match( "/proc/cpuinfo", 2, value ) || __kmp_str_match( "cpuinfo", 5, value )) { __kmp_affinity_top_method = affinity_top_method_cpuinfo; } # if KMP_GROUP_AFFINITY else if ( __kmp_str_match( "group", 1, value ) ) { __kmp_affinity_top_method = affinity_top_method_group; } # endif /* KMP_GROUP_AFFINITY */ else if ( __kmp_str_match( "flat", 1, value ) ) { __kmp_affinity_top_method = affinity_top_method_flat; } # if KMP_USE_HWLOC else if ( __kmp_str_match( "hwloc", 1, value) ) { __kmp_affinity_top_method = affinity_top_method_hwloc; } # endif else { KMP_WARNING( StgInvalidValue, name, value ); } } // __kmp_stg_parse_topology_method static void __kmp_stg_print_topology_method( kmp_str_buf_t * buffer, char const * name, void * data ) { # if KMP_DEBUG char const * value = NULL; switch ( __kmp_affinity_top_method ) { case affinity_top_method_default: value = "default"; break; case affinity_top_method_all: value = "all"; break; # if KMP_ARCH_X86 || KMP_ARCH_X86_64 case affinity_top_method_x2apicid: value = "x2APIC id"; break; case affinity_top_method_apicid: value = "APIC id"; break; # endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ case affinity_top_method_cpuinfo: value = "cpuinfo"; break; # if KMP_GROUP_AFFINITY case affinity_top_method_group: value = "group"; break; # endif /* KMP_GROUP_AFFINITY */ case affinity_top_method_flat: value = "flat"; break; } if ( value != NULL ) { __kmp_stg_print_str( buffer, name, value ); } # endif /* KMP_DEBUG */ } // __kmp_stg_print_topology_method #endif /* KMP_AFFINITY_SUPPORTED */ #if OMP_40_ENABLED // // OMP_PROC_BIND / bind-var is functional on all 4.0 builds, including OS X* // OMP_PLACES / place-partition-var is not. // static void __kmp_stg_parse_proc_bind( char const * name, char const * value, void * data ) { kmp_setting_t **rivals = (kmp_setting_t **) data; int rc; rc = __kmp_stg_check_rivals( name, value, rivals ); if ( rc ) { return; } // // in OMP 4.0 OMP_PROC_BIND is a vector of proc_bind types. // KMP_DEBUG_ASSERT( (__kmp_nested_proc_bind.bind_types != NULL) && ( __kmp_nested_proc_bind.used > 0 ) ); const char *buf = value; const char *next; int num; SKIP_WS( buf ); if ( (*buf >= '0') && (*buf <= '9') ) { next = buf; SKIP_DIGITS( next ); num = __kmp_str_to_int( buf, *next ); KMP_ASSERT( num >= 0 ); buf = next; SKIP_WS( buf ); } else { num = -1; } next = buf; if ( __kmp_match_str( "disabled", buf, &next ) ) { buf = next; SKIP_WS( buf ); # if KMP_AFFINITY_SUPPORTED __kmp_affinity_type = affinity_disabled; # endif /* KMP_AFFINITY_SUPPORTED */ __kmp_nested_proc_bind.used = 1; __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; } else if ( ( num == (int)proc_bind_false ) || __kmp_match_str( "false", buf, &next ) ) { buf = next; SKIP_WS( buf ); # if KMP_AFFINITY_SUPPORTED __kmp_affinity_type = affinity_none; # endif /* KMP_AFFINITY_SUPPORTED */ __kmp_nested_proc_bind.used = 1; __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; } else if ( ( num == (int)proc_bind_true ) || __kmp_match_str( "true", buf, &next ) ) { buf = next; SKIP_WS( buf ); __kmp_nested_proc_bind.used = 1; __kmp_nested_proc_bind.bind_types[0] = proc_bind_true; } else { // // Count the number of values in the env var string // const char *scan; int nelem = 1; for ( scan = buf; *scan != '\0'; scan++ ) { if ( *scan == ',' ) { nelem++; } } // // Create / expand the nested proc_bind array as needed // if ( __kmp_nested_proc_bind.size < nelem ) { __kmp_nested_proc_bind.bind_types = (kmp_proc_bind_t *) KMP_INTERNAL_REALLOC( __kmp_nested_proc_bind.bind_types, sizeof(kmp_proc_bind_t) * nelem ); if ( __kmp_nested_proc_bind.bind_types == NULL ) { KMP_FATAL( MemoryAllocFailed ); } __kmp_nested_proc_bind.size = nelem; } __kmp_nested_proc_bind.used = nelem; // // Save values in the nested proc_bind array // int i = 0; for (;;) { enum kmp_proc_bind_t bind; if ( ( num == (int)proc_bind_master ) || __kmp_match_str( "master", buf, &next ) ) { buf = next; SKIP_WS( buf ); bind = proc_bind_master; } else if ( ( num == (int)proc_bind_close ) || __kmp_match_str( "close", buf, &next ) ) { buf = next; SKIP_WS( buf ); bind = proc_bind_close; } else if ( ( num == (int)proc_bind_spread ) || __kmp_match_str( "spread", buf, &next ) ) { buf = next; SKIP_WS( buf ); bind = proc_bind_spread; } else { KMP_WARNING( StgInvalidValue, name, value ); __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; __kmp_nested_proc_bind.used = 1; return; } __kmp_nested_proc_bind.bind_types[i++] = bind; if ( i >= nelem ) { break; } KMP_DEBUG_ASSERT( *buf == ',' ); buf++; SKIP_WS( buf ); // // Read next value if it was specified as an integer // if ( (*buf >= '0') && (*buf <= '9') ) { next = buf; SKIP_DIGITS( next ); num = __kmp_str_to_int( buf, *next ); KMP_ASSERT( num >= 0 ); buf = next; SKIP_WS( buf ); } else { num = -1; } } SKIP_WS( buf ); } if ( *buf != '\0' ) { KMP_WARNING( ParseExtraCharsWarn, name, buf ); } } static void __kmp_stg_print_proc_bind( kmp_str_buf_t * buffer, char const * name, void * data ) { int nelem = __kmp_nested_proc_bind.used; if( __kmp_env_format ) { KMP_STR_BUF_PRINT_NAME; } else { __kmp_str_buf_print( buffer, " %s", name ); } if ( nelem == 0 ) { __kmp_str_buf_print( buffer, ": %s\n", KMP_I18N_STR( NotDefined ) ); } else { int i; __kmp_str_buf_print( buffer, "='", name ); for ( i = 0; i < nelem; i++ ) { switch ( __kmp_nested_proc_bind.bind_types[i] ) { case proc_bind_false: __kmp_str_buf_print( buffer, "false" ); break; case proc_bind_true: __kmp_str_buf_print( buffer, "true" ); break; case proc_bind_master: __kmp_str_buf_print( buffer, "master" ); break; case proc_bind_close: __kmp_str_buf_print( buffer, "close" ); break; case proc_bind_spread: __kmp_str_buf_print( buffer, "spread" ); break; case proc_bind_intel: __kmp_str_buf_print( buffer, "intel" ); break; case proc_bind_default: __kmp_str_buf_print( buffer, "default" ); break; } if ( i < nelem - 1 ) { __kmp_str_buf_print( buffer, "," ); } } __kmp_str_buf_print( buffer, "'\n" ); } } #endif /* OMP_40_ENABLED */ // ------------------------------------------------------------------------------------------------- // OMP_DYNAMIC // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_omp_dynamic( char const * name, char const * value, void * data ) { __kmp_stg_parse_bool( name, value, & (__kmp_global.g.g_dynamic) ); } // __kmp_stg_parse_omp_dynamic static void __kmp_stg_print_omp_dynamic( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_bool( buffer, name, __kmp_global.g.g_dynamic ); } // __kmp_stg_print_omp_dynamic static void __kmp_stg_parse_kmp_dynamic_mode( char const * name, char const * value, void * data ) { if ( TCR_4(__kmp_init_parallel) ) { KMP_WARNING( EnvParallelWarn, name ); __kmp_env_toPrint( name, 0 ); return; } #ifdef USE_LOAD_BALANCE else if ( __kmp_str_match( "load balance", 2, value ) || __kmp_str_match( "load_balance", 2, value ) || __kmp_str_match( "load-balance", 2, value ) || __kmp_str_match( "loadbalance", 2, value ) || __kmp_str_match( "balance", 1, value ) ) { __kmp_global.g.g_dynamic_mode = dynamic_load_balance; } #endif /* USE_LOAD_BALANCE */ else if ( __kmp_str_match( "thread limit", 1, value ) || __kmp_str_match( "thread_limit", 1, value ) || __kmp_str_match( "thread-limit", 1, value ) || __kmp_str_match( "threadlimit", 1, value ) || __kmp_str_match( "limit", 2, value ) ) { __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; } else if ( __kmp_str_match( "random", 1, value ) ) { __kmp_global.g.g_dynamic_mode = dynamic_random; } else { KMP_WARNING( StgInvalidValue, name, value ); } } //__kmp_stg_parse_kmp_dynamic_mode static void __kmp_stg_print_kmp_dynamic_mode( kmp_str_buf_t * buffer, char const * name, void * data ) { #if KMP_DEBUG if ( __kmp_global.g.g_dynamic_mode == dynamic_default ) { __kmp_str_buf_print( buffer, " %s: %s \n", name, KMP_I18N_STR( NotDefined ) ); } # ifdef USE_LOAD_BALANCE else if ( __kmp_global.g.g_dynamic_mode == dynamic_load_balance ) { __kmp_stg_print_str( buffer, name, "load balance" ); } # endif /* USE_LOAD_BALANCE */ else if ( __kmp_global.g.g_dynamic_mode == dynamic_thread_limit ) { __kmp_stg_print_str( buffer, name, "thread limit" ); } else if ( __kmp_global.g.g_dynamic_mode == dynamic_random ) { __kmp_stg_print_str( buffer, name, "random" ); } else { KMP_ASSERT(0); } #endif /* KMP_DEBUG */ } // __kmp_stg_print_kmp_dynamic_mode #ifdef USE_LOAD_BALANCE // ------------------------------------------------------------------------------------------------- // KMP_LOAD_BALANCE_INTERVAL // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_ld_balance_interval( char const * name, char const * value, void * data ) { double interval = __kmp_convert_to_double( value ); if ( interval >= 0 ) { __kmp_load_balance_interval = interval; } else { KMP_WARNING( StgInvalidValue, name, value ); }; // if } // __kmp_stg_parse_load_balance_interval static void __kmp_stg_print_ld_balance_interval( kmp_str_buf_t * buffer, char const * name, void * data ) { #if KMP_DEBUG __kmp_str_buf_print( buffer, " %s=%8.6f\n", name, __kmp_load_balance_interval ); #endif /* KMP_DEBUG */ } // __kmp_stg_print_load_balance_interval #endif /* USE_LOAD_BALANCE */ // ------------------------------------------------------------------------------------------------- // KMP_INIT_AT_FORK // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_init_at_fork( char const * name, char const * value, void * data ) { __kmp_stg_parse_bool( name, value, & __kmp_need_register_atfork ); if ( __kmp_need_register_atfork ) { __kmp_need_register_atfork_specified = TRUE; }; } // __kmp_stg_parse_init_at_fork static void __kmp_stg_print_init_at_fork( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_bool( buffer, name, __kmp_need_register_atfork_specified ); } // __kmp_stg_print_init_at_fork // ------------------------------------------------------------------------------------------------- // KMP_SCHEDULE // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_schedule( char const * name, char const * value, void * data ) { if ( value != NULL ) { size_t length = KMP_STRLEN( value ); if ( length > INT_MAX ) { KMP_WARNING( LongValue, name ); } else { char *semicolon; if( value[ length - 1 ] == '"' || value[ length -1 ] == '\'' ) KMP_WARNING( UnbalancedQuotes, name ); do { char sentinel; semicolon = (char *) strchr( value, ';' ); if( *value && semicolon != value ) { char *comma = (char *) strchr( value, ',' ); if ( comma ) { ++comma; sentinel = ','; } else sentinel = ';'; if ( !__kmp_strcasecmp_with_sentinel( "static", value, sentinel ) ) { if( !__kmp_strcasecmp_with_sentinel( "greedy", comma, ';' ) ) { __kmp_static = kmp_sch_static_greedy; continue; } else if( !__kmp_strcasecmp_with_sentinel( "balanced", comma, ';' ) ) { __kmp_static = kmp_sch_static_balanced; continue; } } else if ( !__kmp_strcasecmp_with_sentinel( "guided", value, sentinel ) ) { if ( !__kmp_strcasecmp_with_sentinel( "iterative", comma, ';' ) ) { __kmp_guided = kmp_sch_guided_iterative_chunked; continue; } else if ( !__kmp_strcasecmp_with_sentinel( "analytical", comma, ';' ) ) { /* analytical not allowed for too many threads */ __kmp_guided = kmp_sch_guided_analytical_chunked; continue; } } KMP_WARNING( InvalidClause, name, value ); } else KMP_WARNING( EmptyClause, name ); } while ( (value = semicolon ? semicolon + 1 : NULL) ); } }; // if } // __kmp_stg_parse__schedule static void __kmp_stg_print_schedule( kmp_str_buf_t * buffer, char const * name, void * data ) { if( __kmp_env_format ) { KMP_STR_BUF_PRINT_NAME_EX(name); } else { __kmp_str_buf_print( buffer, " %s='", name ); } if ( __kmp_static == kmp_sch_static_greedy ) { __kmp_str_buf_print( buffer, "%s", "static,greedy"); } else if ( __kmp_static == kmp_sch_static_balanced ) { __kmp_str_buf_print ( buffer, "%s", "static,balanced"); } if ( __kmp_guided == kmp_sch_guided_iterative_chunked ) { __kmp_str_buf_print( buffer, ";%s'\n", "guided,iterative"); } else if ( __kmp_guided == kmp_sch_guided_analytical_chunked ) { __kmp_str_buf_print( buffer, ";%s'\n", "guided,analytical"); } } // __kmp_stg_print_schedule // ------------------------------------------------------------------------------------------------- // OMP_SCHEDULE // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_omp_schedule( char const * name, char const * value, void * data ) { size_t length; if( value ) { length = KMP_STRLEN( value ); if( length ) { char *comma = (char *) strchr( value, ',' ); if( value[ length - 1 ] == '"' || value[ length -1 ] == '\'') KMP_WARNING( UnbalancedQuotes, name ); /* get the specified scheduling style */ if (!__kmp_strcasecmp_with_sentinel("dynamic", value, ',')) /* DYNAMIC */ __kmp_sched = kmp_sch_dynamic_chunked; else if (!__kmp_strcasecmp_with_sentinel("guided", value, ',')) /* GUIDED */ __kmp_sched = kmp_sch_guided_chunked; // AC: TODO: add AUTO schedule, and pprobably remove TRAPEZOIDAL (OMP 3.0 does not allow it) else if (!__kmp_strcasecmp_with_sentinel("auto", value, ',')) { /* AUTO */ __kmp_sched = kmp_sch_auto; if( comma ) { __kmp_msg( kmp_ms_warning, KMP_MSG( IgnoreChunk, name, comma ), __kmp_msg_null ); comma = NULL; } } else if (!__kmp_strcasecmp_with_sentinel("trapezoidal", value, ',')) /* TRAPEZOIDAL */ __kmp_sched = kmp_sch_trapezoidal; else if (!__kmp_strcasecmp_with_sentinel("static", value, ',')) /* STATIC */ __kmp_sched = kmp_sch_static; #ifdef KMP_STATIC_STEAL_ENABLED else if (KMP_ARCH_X86_64 && !__kmp_strcasecmp_with_sentinel("static_steal", value, ',')) __kmp_sched = kmp_sch_static_steal; #endif else { KMP_WARNING( StgInvalidValue, name, value ); value = NULL; /* skip processing of comma */ } if( value && comma ) { __kmp_env_chunk = TRUE; if(__kmp_sched == kmp_sch_static) __kmp_sched = kmp_sch_static_chunked; ++comma; __kmp_chunk = __kmp_str_to_int( comma, 0 ); if ( __kmp_chunk < 1 ) { __kmp_chunk = KMP_DEFAULT_CHUNK; __kmp_msg( kmp_ms_warning, KMP_MSG( InvalidChunk, name, comma ), __kmp_msg_null ); KMP_INFORM( Using_int_Value, name, __kmp_chunk ); // AC: next block commented out until KMP_DEFAULT_CHUNK != KMP_MIN_CHUNK (to improve code coverage :) // The default chunk size is 1 according to standard, thus making KMP_MIN_CHUNK not 1 we would introduce mess: // wrong chunk becomes 1, but it will be impossible to explicitely set 1, because it becomes KMP_MIN_CHUNK... // } else if ( __kmp_chunk < KMP_MIN_CHUNK ) { // __kmp_chunk = KMP_MIN_CHUNK; } else if ( __kmp_chunk > KMP_MAX_CHUNK ) { __kmp_chunk = KMP_MAX_CHUNK; __kmp_msg( kmp_ms_warning, KMP_MSG( LargeChunk, name, comma ), __kmp_msg_null ); KMP_INFORM( Using_int_Value, name, __kmp_chunk ); } } else __kmp_env_chunk = FALSE; } else KMP_WARNING( EmptyString, name ); } K_DIAG(1, ("__kmp_static == %d\n", __kmp_static)) K_DIAG(1, ("__kmp_guided == %d\n", __kmp_guided)) K_DIAG(1, ("__kmp_sched == %d\n", __kmp_sched)) K_DIAG(1, ("__kmp_chunk == %d\n", __kmp_chunk)) } // __kmp_stg_parse_omp_schedule static void __kmp_stg_print_omp_schedule( kmp_str_buf_t * buffer, char const * name, void * data ) { if( __kmp_env_format ) { KMP_STR_BUF_PRINT_NAME_EX(name); } else { __kmp_str_buf_print( buffer, " %s='", name ); } if ( __kmp_chunk ) { switch ( __kmp_sched ) { case kmp_sch_dynamic_chunked: __kmp_str_buf_print( buffer, "%s,%d'\n", "dynamic", __kmp_chunk); break; case kmp_sch_guided_iterative_chunked: case kmp_sch_guided_analytical_chunked: __kmp_str_buf_print( buffer, "%s,%d'\n", "guided", __kmp_chunk); break; case kmp_sch_trapezoidal: __kmp_str_buf_print( buffer, "%s,%d'\n", "trapezoidal", __kmp_chunk); break; case kmp_sch_static: case kmp_sch_static_chunked: case kmp_sch_static_balanced: case kmp_sch_static_greedy: __kmp_str_buf_print( buffer, "%s,%d'\n", "static", __kmp_chunk); break; case kmp_sch_static_steal: __kmp_str_buf_print( buffer, "%s,%d'\n", "static_steal", __kmp_chunk); break; case kmp_sch_auto: __kmp_str_buf_print( buffer, "%s,%d'\n", "auto", __kmp_chunk); break; } } else { switch ( __kmp_sched ) { case kmp_sch_dynamic_chunked: __kmp_str_buf_print( buffer, "%s'\n", "dynamic"); break; case kmp_sch_guided_iterative_chunked: case kmp_sch_guided_analytical_chunked: __kmp_str_buf_print( buffer, "%s'\n", "guided"); break; case kmp_sch_trapezoidal: __kmp_str_buf_print( buffer, "%s'\n", "trapezoidal"); break; case kmp_sch_static: case kmp_sch_static_chunked: case kmp_sch_static_balanced: case kmp_sch_static_greedy: __kmp_str_buf_print( buffer, "%s'\n", "static"); break; case kmp_sch_static_steal: __kmp_str_buf_print( buffer, "%s'\n", "static_steal"); break; case kmp_sch_auto: __kmp_str_buf_print( buffer, "%s'\n", "auto"); break; } } } // __kmp_stg_print_omp_schedule // ------------------------------------------------------------------------------------------------- // KMP_ATOMIC_MODE // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_atomic_mode( char const * name, char const * value, void * data ) { // Modes: 0 -- do not change default; 1 -- Intel perf mode, 2 -- GOMP compatibility mode. int mode = 0; int max = 1; #ifdef KMP_GOMP_COMPAT max = 2; #endif /* KMP_GOMP_COMPAT */ __kmp_stg_parse_int( name, value, 0, max, & mode ); // TODO; parse_int is not very suitable for this case. In case of overflow it is better to use // 0 rather that max value. if ( mode > 0 ) { __kmp_atomic_mode = mode; }; // if } // __kmp_stg_parse_atomic_mode static void __kmp_stg_print_atomic_mode( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_int( buffer, name, __kmp_atomic_mode ); } // __kmp_stg_print_atomic_mode // ------------------------------------------------------------------------------------------------- // KMP_CONSISTENCY_CHECK // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_consistency_check( char const * name, char const * value, void * data ) { if ( ! __kmp_strcasecmp_with_sentinel( "all", value, 0 ) ) { // Note, this will not work from kmp_set_defaults because th_cons stack was not allocated // for existed thread(s) thus the first __kmp_push_ will break with assertion. // TODO: allocate th_cons if called from kmp_set_defaults. __kmp_env_consistency_check = TRUE; } else if ( ! __kmp_strcasecmp_with_sentinel( "none", value, 0 ) ) { __kmp_env_consistency_check = FALSE; } else { KMP_WARNING( StgInvalidValue, name, value ); }; // if } // __kmp_stg_parse_consistency_check static void __kmp_stg_print_consistency_check( kmp_str_buf_t * buffer, char const * name, void * data ) { #if KMP_DEBUG const char *value = NULL; if ( __kmp_env_consistency_check ) { value = "all"; } else { value = "none"; } if ( value != NULL ) { __kmp_stg_print_str( buffer, name, value ); } #endif /* KMP_DEBUG */ } // __kmp_stg_print_consistency_check #if USE_ITT_BUILD // ------------------------------------------------------------------------------------------------- // KMP_ITT_PREPARE_DELAY // ------------------------------------------------------------------------------------------------- #if USE_ITT_NOTIFY static void __kmp_stg_parse_itt_prepare_delay( char const * name, char const * value, void * data ) { // Experimental code: KMP_ITT_PREPARE_DELAY specifies numbert of loop iterations. int delay = 0; __kmp_stg_parse_int( name, value, 0, INT_MAX, & delay ); __kmp_itt_prepare_delay = delay; } // __kmp_str_parse_itt_prepare_delay static void __kmp_stg_print_itt_prepare_delay( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_uint64( buffer, name, __kmp_itt_prepare_delay ); } // __kmp_str_print_itt_prepare_delay #endif // USE_ITT_NOTIFY #endif /* USE_ITT_BUILD */ // ------------------------------------------------------------------------------------------------- // KMP_MALLOC_POOL_INCR // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_malloc_pool_incr( char const * name, char const * value, void * data ) { __kmp_stg_parse_size( name, value, KMP_MIN_MALLOC_POOL_INCR, KMP_MAX_MALLOC_POOL_INCR, NULL, & __kmp_malloc_pool_incr, 1 ); } // __kmp_stg_parse_malloc_pool_incr static void __kmp_stg_print_malloc_pool_incr( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_size( buffer, name, __kmp_malloc_pool_incr ); } // _kmp_stg_print_malloc_pool_incr #ifdef KMP_DEBUG // ------------------------------------------------------------------------------------------------- // KMP_PAR_RANGE // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_par_range_env( char const * name, char const * value, void * data ) { __kmp_stg_parse_par_range( name, value, & __kmp_par_range, __kmp_par_range_routine, __kmp_par_range_filename, & __kmp_par_range_lb, & __kmp_par_range_ub ); } // __kmp_stg_parse_par_range_env static void __kmp_stg_print_par_range_env( kmp_str_buf_t * buffer, char const * name, void * data ) { if (__kmp_par_range != 0) { __kmp_stg_print_str( buffer, name, par_range_to_print ); } } // __kmp_stg_print_par_range_env // ------------------------------------------------------------------------------------------------- // KMP_YIELD_CYCLE, KMP_YIELD_ON, KMP_YIELD_OFF // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_yield_cycle( char const * name, char const * value, void * data ) { int flag = __kmp_yield_cycle; __kmp_stg_parse_bool( name, value, & flag ); __kmp_yield_cycle = flag; } // __kmp_stg_parse_yield_cycle static void __kmp_stg_print_yield_cycle( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_bool( buffer, name, __kmp_yield_cycle ); } // __kmp_stg_print_yield_cycle static void __kmp_stg_parse_yield_on( char const * name, char const * value, void * data ) { __kmp_stg_parse_int( name, value, 2, INT_MAX, & __kmp_yield_on_count ); } // __kmp_stg_parse_yield_on static void __kmp_stg_print_yield_on( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_int( buffer, name, __kmp_yield_on_count ); } // __kmp_stg_print_yield_on static void __kmp_stg_parse_yield_off( char const * name, char const * value, void * data ) { __kmp_stg_parse_int( name, value, 2, INT_MAX, & __kmp_yield_off_count ); } // __kmp_stg_parse_yield_off static void __kmp_stg_print_yield_off( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_int( buffer, name, __kmp_yield_off_count ); } // __kmp_stg_print_yield_off #endif // ------------------------------------------------------------------------------------------------- // KMP_INIT_WAIT, KMP_NEXT_WAIT // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_init_wait( char const * name, char const * value, void * data ) { int wait; KMP_ASSERT( ( __kmp_init_wait & 1 ) == 0 ); wait = __kmp_init_wait / 2; __kmp_stg_parse_int( name, value, KMP_MIN_INIT_WAIT, KMP_MAX_INIT_WAIT, & wait ); __kmp_init_wait = wait * 2; KMP_ASSERT( ( __kmp_init_wait & 1 ) == 0 ); __kmp_yield_init = __kmp_init_wait; } // __kmp_stg_parse_init_wait static void __kmp_stg_print_init_wait( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_int( buffer, name, __kmp_init_wait ); } // __kmp_stg_print_init_wait static void __kmp_stg_parse_next_wait( char const * name, char const * value, void * data ) { int wait; KMP_ASSERT( ( __kmp_next_wait & 1 ) == 0 ); wait = __kmp_next_wait / 2; __kmp_stg_parse_int( name, value, KMP_MIN_NEXT_WAIT, KMP_MAX_NEXT_WAIT, & wait ); __kmp_next_wait = wait * 2; KMP_ASSERT( ( __kmp_next_wait & 1 ) == 0 ); __kmp_yield_next = __kmp_next_wait; } // __kmp_stg_parse_next_wait static void __kmp_stg_print_next_wait( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_int( buffer, name, __kmp_next_wait ); } //__kmp_stg_print_next_wait // ------------------------------------------------------------------------------------------------- // KMP_GTID_MODE // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_gtid_mode( char const * name, char const * value, void * data ) { // // Modes: // 0 -- do not change default // 1 -- sp search // 2 -- use "keyed" TLS var, i.e. // pthread_getspecific(Linux* OS/OS X*) or TlsGetValue(Windows* OS) // 3 -- __declspec(thread) TLS var in tdata section // int mode = 0; int max = 2; #ifdef KMP_TDATA_GTID max = 3; #endif /* KMP_TDATA_GTID */ __kmp_stg_parse_int( name, value, 0, max, & mode ); // TODO; parse_int is not very suitable for this case. In case of overflow it is better to use // 0 rather that max value. if ( mode == 0 ) { __kmp_adjust_gtid_mode = TRUE; } else { __kmp_gtid_mode = mode; __kmp_adjust_gtid_mode = FALSE; }; // if } // __kmp_str_parse_gtid_mode static void __kmp_stg_print_gtid_mode( kmp_str_buf_t * buffer, char const * name, void * data ) { if ( __kmp_adjust_gtid_mode ) { __kmp_stg_print_int( buffer, name, 0 ); } else { __kmp_stg_print_int( buffer, name, __kmp_gtid_mode ); } } // __kmp_stg_print_gtid_mode // ------------------------------------------------------------------------------------------------- // KMP_NUM_LOCKS_IN_BLOCK // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_lock_block( char const * name, char const * value, void * data ) { __kmp_stg_parse_int( name, value, 0, KMP_INT_MAX, & __kmp_num_locks_in_block ); } // __kmp_str_parse_lock_block static void __kmp_stg_print_lock_block( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_int( buffer, name, __kmp_num_locks_in_block ); } // __kmp_stg_print_lock_block // ------------------------------------------------------------------------------------------------- // KMP_LOCK_KIND // ------------------------------------------------------------------------------------------------- #if KMP_USE_DYNAMIC_LOCK # define KMP_STORE_LOCK_SEQ(a) (__kmp_user_lock_seq = lockseq_##a) #else # define KMP_STORE_LOCK_SEQ(a) #endif static void __kmp_stg_parse_lock_kind( char const * name, char const * value, void * data ) { if ( __kmp_init_user_locks ) { KMP_WARNING( EnvLockWarn, name ); return; } if ( __kmp_str_match( "tas", 2, value ) || __kmp_str_match( "test and set", 2, value ) || __kmp_str_match( "test_and_set", 2, value ) || __kmp_str_match( "test-and-set", 2, value ) || __kmp_str_match( "test andset", 2, value ) || __kmp_str_match( "test_andset", 2, value ) || __kmp_str_match( "test-andset", 2, value ) || __kmp_str_match( "testand set", 2, value ) || __kmp_str_match( "testand_set", 2, value ) || __kmp_str_match( "testand-set", 2, value ) || __kmp_str_match( "testandset", 2, value ) ) { __kmp_user_lock_kind = lk_tas; KMP_STORE_LOCK_SEQ(tas); } #if KMP_USE_FUTEX else if ( __kmp_str_match( "futex", 1, value ) ) { if ( __kmp_futex_determine_capable() ) { __kmp_user_lock_kind = lk_futex; KMP_STORE_LOCK_SEQ(futex); } else { KMP_WARNING( FutexNotSupported, name, value ); } } #endif else if ( __kmp_str_match( "ticket", 2, value ) ) { __kmp_user_lock_kind = lk_ticket; KMP_STORE_LOCK_SEQ(ticket); } else if ( __kmp_str_match( "queuing", 1, value ) || __kmp_str_match( "queue", 1, value ) ) { __kmp_user_lock_kind = lk_queuing; KMP_STORE_LOCK_SEQ(queuing); } else if ( __kmp_str_match( "drdpa ticket", 1, value ) || __kmp_str_match( "drdpa_ticket", 1, value ) || __kmp_str_match( "drdpa-ticket", 1, value ) || __kmp_str_match( "drdpaticket", 1, value ) || __kmp_str_match( "drdpa", 1, value ) ) { __kmp_user_lock_kind = lk_drdpa; KMP_STORE_LOCK_SEQ(drdpa); } #if KMP_USE_ADAPTIVE_LOCKS else if ( __kmp_str_match( "adaptive", 1, value ) ) { if( __kmp_cpuinfo.rtm ) { // ??? Is cpuinfo available here? __kmp_user_lock_kind = lk_adaptive; KMP_STORE_LOCK_SEQ(adaptive); } else { KMP_WARNING( AdaptiveNotSupported, name, value ); __kmp_user_lock_kind = lk_queuing; KMP_STORE_LOCK_SEQ(queuing); } } #endif // KMP_USE_ADAPTIVE_LOCKS #if KMP_USE_DYNAMIC_LOCK && KMP_USE_TSX else if ( __kmp_str_match("rtm", 1, value) ) { if ( __kmp_cpuinfo.rtm ) { __kmp_user_lock_kind = lk_rtm; KMP_STORE_LOCK_SEQ(rtm); } else { KMP_WARNING( AdaptiveNotSupported, name, value ); __kmp_user_lock_kind = lk_queuing; KMP_STORE_LOCK_SEQ(queuing); } } else if ( __kmp_str_match("hle", 1, value) ) { __kmp_user_lock_kind = lk_hle; KMP_STORE_LOCK_SEQ(hle); } #endif else { KMP_WARNING( StgInvalidValue, name, value ); } } static void __kmp_stg_print_lock_kind( kmp_str_buf_t * buffer, char const * name, void * data ) { const char *value = NULL; switch ( __kmp_user_lock_kind ) { case lk_default: value = "default"; break; case lk_tas: value = "tas"; break; #if KMP_USE_FUTEX case lk_futex: value = "futex"; break; #endif #if KMP_USE_DYNAMIC_LOCK && KMP_USE_TSX case lk_rtm: value = "rtm"; break; case lk_hle: value = "hle"; break; #endif case lk_ticket: value = "ticket"; break; case lk_queuing: value = "queuing"; break; case lk_drdpa: value = "drdpa"; break; #if KMP_USE_ADAPTIVE_LOCKS case lk_adaptive: value = "adaptive"; break; #endif } if ( value != NULL ) { __kmp_stg_print_str( buffer, name, value ); } } // ------------------------------------------------------------------------------------------------- // KMP_SPIN_BACKOFF_PARAMS // ------------------------------------------------------------------------------------------------- // KMP_SPIN_BACKOFF_PARAMS=max_backoff[,min_tick] (max backoff size, min tick for machine pause) static void __kmp_stg_parse_spin_backoff_params(const char* name, const char* value, void* data) { const char *next = value; int total = 0; // Count elements that were set. It'll be used as an array size int prev_comma = FALSE; // For correct processing sequential commas int i; kmp_uint32 max_backoff = __kmp_spin_backoff_params.max_backoff; kmp_uint32 min_tick = __kmp_spin_backoff_params.min_tick; // Run only 3 iterations because it is enough to read two values or find a syntax error for ( i = 0; i < 3 ; i++) { SKIP_WS( next ); if ( *next == '\0' ) { break; } // Next character is not an integer or not a comma OR number of values > 2 => end of list if ( ( ( *next < '0' || *next > '9' ) && *next !=',' ) || total > 2 ) { KMP_WARNING( EnvSyntaxError, name, value ); return; } // The next character is ',' if ( *next == ',' ) { // ',' is the fisrt character if ( total == 0 || prev_comma ) { total++; } prev_comma = TRUE; next++; //skip ',' SKIP_WS( next ); } // Next character is a digit if ( *next >= '0' && *next <= '9' ) { int num; const char *buf = next; char const * msg = NULL; prev_comma = FALSE; SKIP_DIGITS( next ); total++; const char *tmp = next; SKIP_WS( tmp ); if ( ( *next == ' ' || *next == '\t' ) && ( *tmp >= '0' && *tmp <= '9' ) ) { KMP_WARNING( EnvSpacesNotAllowed, name, value ); return; } num = __kmp_str_to_int( buf, *next ); if ( num <= 0 ) { // The number of retries should be > 0 msg = KMP_I18N_STR( ValueTooSmall ); num = 1; } else if ( num > KMP_INT_MAX ) { msg = KMP_I18N_STR( ValueTooLarge ); num = KMP_INT_MAX; } if ( msg != NULL ) { // Message is not empty. Print warning. KMP_WARNING( ParseSizeIntWarn, name, value, msg ); KMP_INFORM( Using_int_Value, name, num ); } if( total == 1 ) { max_backoff = num; } else if( total == 2 ) { min_tick = num; } } } KMP_DEBUG_ASSERT( total > 0 ); if( total <= 0 ) { KMP_WARNING( EnvSyntaxError, name, value ); return; } __kmp_spin_backoff_params.max_backoff = max_backoff; __kmp_spin_backoff_params.min_tick = min_tick; } static void __kmp_stg_print_spin_backoff_params(kmp_str_buf_t *buffer, char const* name, void* data) { if( __kmp_env_format ) { KMP_STR_BUF_PRINT_NAME_EX(name); } else { __kmp_str_buf_print( buffer, " %s='", name ); } __kmp_str_buf_print( buffer, "%d,%d'\n", __kmp_spin_backoff_params.max_backoff, __kmp_spin_backoff_params.min_tick ); } #if KMP_USE_ADAPTIVE_LOCKS // ------------------------------------------------------------------------------------------------- // KMP_ADAPTIVE_LOCK_PROPS, KMP_SPECULATIVE_STATSFILE // ------------------------------------------------------------------------------------------------- // Parse out values for the tunable parameters from a string of the form // KMP_ADAPTIVE_LOCK_PROPS=max_soft_retries[,max_badness] static void __kmp_stg_parse_adaptive_lock_props( const char *name, const char *value, void *data ) { int max_retries = 0; int max_badness = 0; const char *next = value; int total = 0; // Count elements that were set. It'll be used as an array size int prev_comma = FALSE; // For correct processing sequential commas int i; // Save values in the structure __kmp_speculative_backoff_params // Run only 3 iterations because it is enough to read two values or find a syntax error for ( i = 0; i < 3 ; i++) { SKIP_WS( next ); if ( *next == '\0' ) { break; } // Next character is not an integer or not a comma OR number of values > 2 => end of list if ( ( ( *next < '0' || *next > '9' ) && *next !=',' ) || total > 2 ) { KMP_WARNING( EnvSyntaxError, name, value ); return; } // The next character is ',' if ( *next == ',' ) { // ',' is the fisrt character if ( total == 0 || prev_comma ) { total++; } prev_comma = TRUE; next++; //skip ',' SKIP_WS( next ); } // Next character is a digit if ( *next >= '0' && *next <= '9' ) { int num; const char *buf = next; char const * msg = NULL; prev_comma = FALSE; SKIP_DIGITS( next ); total++; const char *tmp = next; SKIP_WS( tmp ); if ( ( *next == ' ' || *next == '\t' ) && ( *tmp >= '0' && *tmp <= '9' ) ) { KMP_WARNING( EnvSpacesNotAllowed, name, value ); return; } num = __kmp_str_to_int( buf, *next ); if ( num < 0 ) { // The number of retries should be >= 0 msg = KMP_I18N_STR( ValueTooSmall ); num = 1; } else if ( num > KMP_INT_MAX ) { msg = KMP_I18N_STR( ValueTooLarge ); num = KMP_INT_MAX; } if ( msg != NULL ) { // Message is not empty. Print warning. KMP_WARNING( ParseSizeIntWarn, name, value, msg ); KMP_INFORM( Using_int_Value, name, num ); } if( total == 1 ) { max_retries = num; } else if( total == 2 ) { max_badness = num; } } } KMP_DEBUG_ASSERT( total > 0 ); if( total <= 0 ) { KMP_WARNING( EnvSyntaxError, name, value ); return; } __kmp_adaptive_backoff_params.max_soft_retries = max_retries; __kmp_adaptive_backoff_params.max_badness = max_badness; } static void __kmp_stg_print_adaptive_lock_props(kmp_str_buf_t * buffer, char const * name, void * data ) { if( __kmp_env_format ) { KMP_STR_BUF_PRINT_NAME_EX(name); } else { __kmp_str_buf_print( buffer, " %s='", name ); } __kmp_str_buf_print( buffer, "%d,%d'\n", __kmp_adaptive_backoff_params.max_soft_retries, __kmp_adaptive_backoff_params.max_badness ); } // __kmp_stg_print_adaptive_lock_props #if KMP_DEBUG_ADAPTIVE_LOCKS static void __kmp_stg_parse_speculative_statsfile( char const * name, char const * value, void * data ) { __kmp_stg_parse_file( name, value, "", & __kmp_speculative_statsfile ); } // __kmp_stg_parse_speculative_statsfile static void __kmp_stg_print_speculative_statsfile( kmp_str_buf_t * buffer, char const * name, void * data ) { if ( __kmp_str_match( "-", 0, __kmp_speculative_statsfile ) ) { __kmp_stg_print_str( buffer, name, "stdout" ); } else { __kmp_stg_print_str( buffer, name, __kmp_speculative_statsfile ); } } // __kmp_stg_print_speculative_statsfile #endif // KMP_DEBUG_ADAPTIVE_LOCKS #endif // KMP_USE_ADAPTIVE_LOCKS // ------------------------------------------------------------------------------------------------- // KMP_HW_SUBSET (was KMP_PLACE_THREADS) // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_hw_subset( char const * name, char const * value, void * data ) { // Value example: 5Cx2Tx15O // Which means "use 5 cores with offset 15, 2 threads per core" // AC: extended to sockets level, examples of // "use 2 sockets with offset 6, 2 cores with offset 2 per socket, 2 threads per core": // 2s,6o,2c,2o,2t; 2s,6o,2c,2t,2o; 2s@6,2c@2,2t // To not break legacy code core-offset can be last; // postfix "o" or prefix @ can be offset designator. // Note: not all syntax errors are analyzed, some may be skipped. #define CHECK_DELIM(_x) (*(_x) == ',' || *(_x) == 'x') static int parsed = 0; int num; int single_warning = 0; int flagS = 0, flagC = 0, flagT = 0, flagSO = 0, flagCO = 0; const char *next = value; const char *prev; if( strcmp(name, "KMP_PLACE_THREADS") == 0 ) { KMP_INFORM(EnvVarDeprecated,name,"KMP_HW_SUBSET"); if( parsed == 1 ) { return; // already parsed KMP_HW_SUBSET } } parsed = 1; SKIP_WS(next); // skip white spaces if (*next == '\0') return; // no data provided, retain default values if( strcmp(name, "KMP_PLACE_THREADS") == 0 ) { KMP_INFORM(EnvVarDeprecated,name,"KMP_HW_SUBSET"); if( parsed == 1 ) { return; // already parsed KMP_HW_SUBSET } } parsed = 1; SKIP_WS(next); // skip white spaces if (*next == '\0') return; // no data provided, retain default values // Get num_sockets first (or whatever specified) if (*next >= '0' && *next <= '9') { prev = next; SKIP_DIGITS(next); num = __kmp_str_to_int(prev, *next); SKIP_WS(next); if (*next == 's' || *next == 'S') { // e.g. "2s" __kmp_place_num_sockets = num; flagS = 1; // got num sockets next++; if (*next == '@') { // socket offset, e.g. "2s@4" flagSO = 1; prev = ++next; // don't allow spaces for simplicity if (!(*next >= '0' && *next <= '9')) { KMP_WARNING(AffHWSubsetInvalid, name, value); return; } SKIP_DIGITS(next); num = __kmp_str_to_int(prev, *next); __kmp_place_socket_offset = num; } } else if (*next == 'c' || *next == 'C') { __kmp_place_num_cores = num; flagS = flagC = 1; // sockets were not specified - use default next++; if (*next == '@') { // core offset, e.g. "2c@6" flagCO = 1; prev = ++next; // don't allow spaces for simplicity if (!(*next >= '0' && *next <= '9')) { KMP_WARNING(AffHWSubsetInvalid, name, value); return; } SKIP_DIGITS(next); num = __kmp_str_to_int(prev, *next); __kmp_place_core_offset = num; } } else if (CHECK_DELIM(next)) { __kmp_place_num_cores = num; // no letter-designator - num cores flagS = flagC = 1; // sockets were not specified - use default next++; } else if (*next == 't' || *next == 'T') { __kmp_place_num_threads_per_core = num; // sockets, cores were not specified - use default return; // we ignore offset value in case all cores are used } else if (*next == '\0') { __kmp_place_num_cores = num; return; // the only value provided - set num cores } else { KMP_WARNING(AffHWSubsetInvalid, name, value); return; } } else { KMP_WARNING(AffHWSubsetInvalid, name, value); return; } KMP_DEBUG_ASSERT(flagS); // num sockets should already be set here SKIP_WS(next); if (*next == '\0') return; // " n " - something like this if (CHECK_DELIM(next)) { next++; // skip delimiter SKIP_WS(next); } // Get second value (could be offset, num_cores, num_threads) if (*next >= '0' && *next <= '9') { prev = next; SKIP_DIGITS(next); num = __kmp_str_to_int(prev, *next); SKIP_WS(next); if (*next == 'c' || *next == 'C') { KMP_DEBUG_ASSERT(flagC == 0); __kmp_place_num_cores = num; flagC = 1; next++; if (*next == '@') { // core offset, e.g. "2c@6" flagCO = 1; prev = ++next; // don't allow spaces for simplicity if (!(*next >= '0' && *next <= '9')) { KMP_WARNING(AffHWSubsetInvalid, name, value); return; } SKIP_DIGITS(next); num = __kmp_str_to_int(prev, *next); __kmp_place_core_offset = num; } } else if (*next == 'o' || *next == 'O') { // offset specified KMP_WARNING(AffHWSubsetDeprecated); single_warning = 1; if (flagC) { // whether num_cores already specified (sockets skipped) KMP_DEBUG_ASSERT(!flagCO); // either "o" or @, not both __kmp_place_core_offset = num; } else { KMP_DEBUG_ASSERT(!flagSO); // either "o" or @, not both __kmp_place_socket_offset = num; } next++; } else if (*next == 't' || *next == 'T') { KMP_DEBUG_ASSERT(flagT == 0); __kmp_place_num_threads_per_core = num; flagC = 1; // num_cores could be skipped ? flagT = 1; next++; // can have core-offset specified after num threads } else if (*next == '\0') { KMP_DEBUG_ASSERT(flagC); // 4x2 means 4 cores 2 threads per core __kmp_place_num_threads_per_core = num; return; // two values provided without letter-designator } else { KMP_WARNING(AffHWSubsetInvalid, name, value); return; } } else { KMP_WARNING(AffHWSubsetInvalid, name, value); return; } SKIP_WS(next); if (*next == '\0') return; // " Ns,Nc " - something like this if (CHECK_DELIM(next)) { next++; // skip delimiter SKIP_WS(next); } // Get third value (could be core-offset, num_cores, num_threads) if (*next >= '0' && *next <= '9') { prev = next; SKIP_DIGITS(next); num = __kmp_str_to_int(prev, *next); SKIP_WS(next); if (*next == 't' || *next == 'T') { KMP_DEBUG_ASSERT(flagT == 0); __kmp_place_num_threads_per_core = num; if (flagC == 0) return; // num_cores could be skipped (e.g. 2s,4o,2t) flagT = 1; next++; // can have core-offset specified later (e.g. 2s,1c,2t,3o) } else if (*next == 'c' || *next == 'C') { KMP_DEBUG_ASSERT(flagC == 0); __kmp_place_num_cores = num; flagC = 1; next++; //KMP_DEBUG_ASSERT(*next != '@'); // socket offset used "o" designator } else if (*next == 'o' || *next == 'O') { KMP_WARNING(AffHWSubsetDeprecated); single_warning = 1; KMP_DEBUG_ASSERT(flagC); //KMP_DEBUG_ASSERT(!flagSO); // socket offset couldn't use @ designator __kmp_place_core_offset = num; next++; } else { KMP_WARNING(AffHWSubsetInvalid, name, value); return; } } else { KMP_WARNING(AffHWSubsetInvalid, name, value); return; } KMP_DEBUG_ASSERT(flagC); SKIP_WS(next); if ( *next == '\0' ) return; if (CHECK_DELIM(next)) { next++; // skip delimiter SKIP_WS(next); } // Get 4-th value (could be core-offset, num_threads) if (*next >= '0' && *next <= '9') { prev = next; SKIP_DIGITS(next); num = __kmp_str_to_int(prev, *next); SKIP_WS(next); if (*next == 'o' || *next == 'O') { if (!single_warning) { // warn once KMP_WARNING(AffHWSubsetDeprecated); } KMP_DEBUG_ASSERT(!flagSO); // socket offset couldn't use @ designator __kmp_place_core_offset = num; next++; } else if (*next == 't' || *next == 'T') { KMP_DEBUG_ASSERT(flagT == 0); __kmp_place_num_threads_per_core = num; flagT = 1; next++; // can have core-offset specified after num threads } else { KMP_WARNING(AffHWSubsetInvalid, name, value); return; } } else { KMP_WARNING(AffHWSubsetInvalid, name, value); return; } SKIP_WS(next); if ( *next == '\0' ) return; if (CHECK_DELIM(next)) { next++; // skip delimiter SKIP_WS(next); } // Get 5-th value (could be core-offset, num_threads) if (*next >= '0' && *next <= '9') { prev = next; SKIP_DIGITS(next); num = __kmp_str_to_int(prev, *next); SKIP_WS(next); if (*next == 'o' || *next == 'O') { if (!single_warning) { // warn once KMP_WARNING(AffHWSubsetDeprecated); } KMP_DEBUG_ASSERT(flagT); KMP_DEBUG_ASSERT(!flagSO); // socket offset couldn't use @ designator __kmp_place_core_offset = num; } else if (*next == 't' || *next == 'T') { KMP_DEBUG_ASSERT(flagT == 0); __kmp_place_num_threads_per_core = num; } else { KMP_WARNING(AffHWSubsetInvalid, name, value); } } else { KMP_WARNING(AffHWSubsetInvalid, name, value); } return; #undef CHECK_DELIM } static void __kmp_stg_print_hw_subset( kmp_str_buf_t * buffer, char const * name, void * data ) { if (__kmp_place_num_sockets + __kmp_place_num_cores + __kmp_place_num_threads_per_core) { int comma = 0; kmp_str_buf_t buf; __kmp_str_buf_init(&buf); if(__kmp_env_format) KMP_STR_BUF_PRINT_NAME_EX(name); else __kmp_str_buf_print(buffer, " %s='", name); if (__kmp_place_num_sockets) { __kmp_str_buf_print(&buf, "%ds", __kmp_place_num_sockets); if (__kmp_place_socket_offset) __kmp_str_buf_print(&buf, "@%d", __kmp_place_socket_offset); comma = 1; } if (__kmp_place_num_cores) { __kmp_str_buf_print(&buf, "%s%dc", comma?",":"", __kmp_place_num_cores); if (__kmp_place_core_offset) __kmp_str_buf_print(&buf, "@%d", __kmp_place_core_offset); comma = 1; } if (__kmp_place_num_threads_per_core) __kmp_str_buf_print(&buf, "%s%dt", comma?",":"", __kmp_place_num_threads_per_core); __kmp_str_buf_print(buffer, "%s'\n", buf.str ); __kmp_str_buf_free(&buf); /* } else { __kmp_str_buf_print( buffer, " %s: %s \n", name, KMP_I18N_STR( NotDefined ) ); */ } } #if USE_ITT_BUILD // ------------------------------------------------------------------------------------------------- // KMP_FORKJOIN_FRAMES // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_forkjoin_frames( char const * name, char const * value, void * data ) { __kmp_stg_parse_bool( name, value, & __kmp_forkjoin_frames ); } // __kmp_stg_parse_forkjoin_frames static void __kmp_stg_print_forkjoin_frames( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_bool( buffer, name, __kmp_forkjoin_frames ); } // __kmp_stg_print_forkjoin_frames // ------------------------------------------------------------------------------------------------- // KMP_FORKJOIN_FRAMES_MODE // ------------------------------------------------------------------------------------------------- static void __kmp_stg_parse_forkjoin_frames_mode( char const * name, char const * value, void * data ) { __kmp_stg_parse_int( name, value, 0, 3, & __kmp_forkjoin_frames_mode ); } // __kmp_stg_parse_forkjoin_frames static void __kmp_stg_print_forkjoin_frames_mode( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_int( buffer, name, __kmp_forkjoin_frames_mode ); } // __kmp_stg_print_forkjoin_frames #endif /* USE_ITT_BUILD */ // ------------------------------------------------------------------------------------------------- // OMP_DISPLAY_ENV // ------------------------------------------------------------------------------------------------- #if OMP_40_ENABLED static void __kmp_stg_parse_omp_display_env( char const * name, char const * value, void * data ) { if ( __kmp_str_match( "VERBOSE", 1, value ) ) { __kmp_display_env_verbose = TRUE; } else { __kmp_stg_parse_bool( name, value, & __kmp_display_env ); } } // __kmp_stg_parse_omp_display_env static void __kmp_stg_print_omp_display_env( kmp_str_buf_t * buffer, char const * name, void * data ) { if ( __kmp_display_env_verbose ) { __kmp_stg_print_str( buffer, name, "VERBOSE" ); } else { __kmp_stg_print_bool( buffer, name, __kmp_display_env ); } } // __kmp_stg_print_omp_display_env static void __kmp_stg_parse_omp_cancellation( char const * name, char const * value, void * data ) { if ( TCR_4(__kmp_init_parallel) ) { KMP_WARNING( EnvParallelWarn, name ); return; } // read value before first parallel only __kmp_stg_parse_bool( name, value, & __kmp_omp_cancellation ); } // __kmp_stg_parse_omp_cancellation static void __kmp_stg_print_omp_cancellation( kmp_str_buf_t * buffer, char const * name, void * data ) { __kmp_stg_print_bool( buffer, name, __kmp_omp_cancellation ); } // __kmp_stg_print_omp_cancellation #endif // ------------------------------------------------------------------------------------------------- // Table. // ------------------------------------------------------------------------------------------------- static kmp_setting_t __kmp_stg_table[] = { { "KMP_ALL_THREADS", __kmp_stg_parse_all_threads, __kmp_stg_print_all_threads, NULL, 0, 0 }, { "KMP_BLOCKTIME", __kmp_stg_parse_blocktime, __kmp_stg_print_blocktime, NULL, 0, 0 }, { "KMP_DUPLICATE_LIB_OK", __kmp_stg_parse_duplicate_lib_ok, __kmp_stg_print_duplicate_lib_ok, NULL, 0, 0 }, { "KMP_LIBRARY", __kmp_stg_parse_wait_policy, __kmp_stg_print_wait_policy, NULL, 0, 0 }, { "KMP_MAX_THREADS", __kmp_stg_parse_all_threads, NULL, NULL, 0, 0 }, // For backward compatibility { "KMP_MONITOR_STACKSIZE", __kmp_stg_parse_monitor_stacksize, __kmp_stg_print_monitor_stacksize, NULL, 0, 0 }, { "KMP_SETTINGS", __kmp_stg_parse_settings, __kmp_stg_print_settings, NULL, 0, 0 }, { "KMP_STACKOFFSET", __kmp_stg_parse_stackoffset, __kmp_stg_print_stackoffset, NULL, 0, 0 }, { "KMP_STACKSIZE", __kmp_stg_parse_stacksize, __kmp_stg_print_stacksize, NULL, 0, 0 }, { "KMP_STACKPAD", __kmp_stg_parse_stackpad, __kmp_stg_print_stackpad, NULL, 0, 0 }, { "KMP_VERSION", __kmp_stg_parse_version, __kmp_stg_print_version, NULL, 0, 0 }, { "KMP_WARNINGS", __kmp_stg_parse_warnings, __kmp_stg_print_warnings, NULL, 0, 0 }, { "OMP_NESTED", __kmp_stg_parse_nested, __kmp_stg_print_nested, NULL, 0, 0 }, { "OMP_NUM_THREADS", __kmp_stg_parse_num_threads, __kmp_stg_print_num_threads, NULL, 0, 0 }, { "OMP_STACKSIZE", __kmp_stg_parse_stacksize, __kmp_stg_print_stacksize, NULL, 0, 0 }, { "KMP_TASKING", __kmp_stg_parse_tasking, __kmp_stg_print_tasking, NULL, 0, 0 }, { "KMP_TASK_STEALING_CONSTRAINT", __kmp_stg_parse_task_stealing, __kmp_stg_print_task_stealing, NULL, 0, 0 }, { "OMP_MAX_ACTIVE_LEVELS", __kmp_stg_parse_max_active_levels, __kmp_stg_print_max_active_levels, NULL, 0, 0 }, #if OMP_45_ENABLED { "OMP_MAX_TASK_PRIORITY", __kmp_stg_parse_max_task_priority, __kmp_stg_print_max_task_priority, NULL, 0, 0 }, #endif { "OMP_THREAD_LIMIT", __kmp_stg_parse_all_threads, __kmp_stg_print_all_threads, NULL, 0, 0 }, { "OMP_WAIT_POLICY", __kmp_stg_parse_wait_policy, __kmp_stg_print_wait_policy, NULL, 0, 0 }, { "KMP_DISP_NUM_BUFFERS", __kmp_stg_parse_disp_buffers, __kmp_stg_print_disp_buffers, NULL, 0, 0 }, #if KMP_NESTED_HOT_TEAMS { "KMP_HOT_TEAMS_MAX_LEVEL", __kmp_stg_parse_hot_teams_level, __kmp_stg_print_hot_teams_level, NULL, 0, 0 }, { "KMP_HOT_TEAMS_MODE", __kmp_stg_parse_hot_teams_mode, __kmp_stg_print_hot_teams_mode, NULL, 0, 0 }, #endif // KMP_NESTED_HOT_TEAMS #if KMP_HANDLE_SIGNALS { "KMP_HANDLE_SIGNALS", __kmp_stg_parse_handle_signals, __kmp_stg_print_handle_signals, NULL, 0, 0 }, #endif #if KMP_ARCH_X86 || KMP_ARCH_X86_64 { "KMP_INHERIT_FP_CONTROL", __kmp_stg_parse_inherit_fp_control, __kmp_stg_print_inherit_fp_control, NULL, 0, 0 }, #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ #ifdef KMP_GOMP_COMPAT { "GOMP_STACKSIZE", __kmp_stg_parse_stacksize, NULL, NULL, 0, 0 }, #endif #ifdef KMP_DEBUG { "KMP_A_DEBUG", __kmp_stg_parse_a_debug, __kmp_stg_print_a_debug, NULL, 0, 0 }, { "KMP_B_DEBUG", __kmp_stg_parse_b_debug, __kmp_stg_print_b_debug, NULL, 0, 0 }, { "KMP_C_DEBUG", __kmp_stg_parse_c_debug, __kmp_stg_print_c_debug, NULL, 0, 0 }, { "KMP_D_DEBUG", __kmp_stg_parse_d_debug, __kmp_stg_print_d_debug, NULL, 0, 0 }, { "KMP_E_DEBUG", __kmp_stg_parse_e_debug, __kmp_stg_print_e_debug, NULL, 0, 0 }, { "KMP_F_DEBUG", __kmp_stg_parse_f_debug, __kmp_stg_print_f_debug, NULL, 0, 0 }, { "KMP_DEBUG", __kmp_stg_parse_debug, NULL, /* no print */ NULL, 0, 0 }, { "KMP_DEBUG_BUF", __kmp_stg_parse_debug_buf, __kmp_stg_print_debug_buf, NULL, 0, 0 }, { "KMP_DEBUG_BUF_ATOMIC", __kmp_stg_parse_debug_buf_atomic, __kmp_stg_print_debug_buf_atomic, NULL, 0, 0 }, { "KMP_DEBUG_BUF_CHARS", __kmp_stg_parse_debug_buf_chars, __kmp_stg_print_debug_buf_chars, NULL, 0, 0 }, { "KMP_DEBUG_BUF_LINES", __kmp_stg_parse_debug_buf_lines, __kmp_stg_print_debug_buf_lines, NULL, 0, 0 }, { "KMP_DIAG", __kmp_stg_parse_diag, __kmp_stg_print_diag, NULL, 0, 0 }, { "KMP_PAR_RANGE", __kmp_stg_parse_par_range_env, __kmp_stg_print_par_range_env, NULL, 0, 0 }, { "KMP_YIELD_CYCLE", __kmp_stg_parse_yield_cycle, __kmp_stg_print_yield_cycle, NULL, 0, 0 }, { "KMP_YIELD_ON", __kmp_stg_parse_yield_on, __kmp_stg_print_yield_on, NULL, 0, 0 }, { "KMP_YIELD_OFF", __kmp_stg_parse_yield_off, __kmp_stg_print_yield_off, NULL, 0, 0 }, #endif // KMP_DEBUG { "KMP_ALIGN_ALLOC", __kmp_stg_parse_align_alloc, __kmp_stg_print_align_alloc, NULL, 0, 0 }, { "KMP_PLAIN_BARRIER", __kmp_stg_parse_barrier_branch_bit, __kmp_stg_print_barrier_branch_bit, NULL, 0, 0 }, { "KMP_PLAIN_BARRIER_PATTERN", __kmp_stg_parse_barrier_pattern, __kmp_stg_print_barrier_pattern, NULL, 0, 0 }, { "KMP_FORKJOIN_BARRIER", __kmp_stg_parse_barrier_branch_bit, __kmp_stg_print_barrier_branch_bit, NULL, 0, 0 }, { "KMP_FORKJOIN_BARRIER_PATTERN", __kmp_stg_parse_barrier_pattern, __kmp_stg_print_barrier_pattern, NULL, 0, 0 }, #if KMP_FAST_REDUCTION_BARRIER { "KMP_REDUCTION_BARRIER", __kmp_stg_parse_barrier_branch_bit, __kmp_stg_print_barrier_branch_bit, NULL, 0, 0 }, { "KMP_REDUCTION_BARRIER_PATTERN", __kmp_stg_parse_barrier_pattern, __kmp_stg_print_barrier_pattern, NULL, 0, 0 }, #endif { "KMP_ABORT_DELAY", __kmp_stg_parse_abort_delay, __kmp_stg_print_abort_delay, NULL, 0, 0 }, { "KMP_CPUINFO_FILE", __kmp_stg_parse_cpuinfo_file, __kmp_stg_print_cpuinfo_file, NULL, 0, 0 }, { "KMP_FORCE_REDUCTION", __kmp_stg_parse_force_reduction, __kmp_stg_print_force_reduction, NULL, 0, 0 }, { "KMP_DETERMINISTIC_REDUCTION", __kmp_stg_parse_force_reduction, __kmp_stg_print_force_reduction, NULL, 0, 0 }, { "KMP_STORAGE_MAP", __kmp_stg_parse_storage_map, __kmp_stg_print_storage_map, NULL, 0, 0 }, { "KMP_ALL_THREADPRIVATE", __kmp_stg_parse_all_threadprivate, __kmp_stg_print_all_threadprivate, NULL, 0, 0 }, { "KMP_FOREIGN_THREADS_THREADPRIVATE", __kmp_stg_parse_foreign_threads_threadprivate, __kmp_stg_print_foreign_threads_threadprivate, NULL, 0, 0 }, #if KMP_AFFINITY_SUPPORTED { "KMP_AFFINITY", __kmp_stg_parse_affinity, __kmp_stg_print_affinity, NULL, 0, 0 }, # ifdef KMP_GOMP_COMPAT { "GOMP_CPU_AFFINITY", __kmp_stg_parse_gomp_cpu_affinity, NULL, /* no print */ NULL, 0, 0 }, # endif /* KMP_GOMP_COMPAT */ # if OMP_40_ENABLED { "OMP_PROC_BIND", __kmp_stg_parse_proc_bind, __kmp_stg_print_proc_bind, NULL, 0, 0 }, { "OMP_PLACES", __kmp_stg_parse_places, __kmp_stg_print_places, NULL, 0, 0 }, # else { "OMP_PROC_BIND", __kmp_stg_parse_proc_bind, NULL, /* no print */ NULL, 0, 0 }, # endif /* OMP_40_ENABLED */ { "KMP_TOPOLOGY_METHOD", __kmp_stg_parse_topology_method, __kmp_stg_print_topology_method, NULL, 0, 0 }, #else // // KMP_AFFINITY is not supported on OS X*, nor is OMP_PLACES. // OMP_PROC_BIND and proc-bind-var are supported, however. // # if OMP_40_ENABLED { "OMP_PROC_BIND", __kmp_stg_parse_proc_bind, __kmp_stg_print_proc_bind, NULL, 0, 0 }, # endif #endif // KMP_AFFINITY_SUPPORTED { "KMP_INIT_AT_FORK", __kmp_stg_parse_init_at_fork, __kmp_stg_print_init_at_fork, NULL, 0, 0 }, { "KMP_SCHEDULE", __kmp_stg_parse_schedule, __kmp_stg_print_schedule, NULL, 0, 0 }, { "OMP_SCHEDULE", __kmp_stg_parse_omp_schedule, __kmp_stg_print_omp_schedule, NULL, 0, 0 }, { "KMP_ATOMIC_MODE", __kmp_stg_parse_atomic_mode, __kmp_stg_print_atomic_mode, NULL, 0, 0 }, { "KMP_CONSISTENCY_CHECK", __kmp_stg_parse_consistency_check, __kmp_stg_print_consistency_check, NULL, 0, 0 }, #if USE_ITT_BUILD && USE_ITT_NOTIFY { "KMP_ITT_PREPARE_DELAY", __kmp_stg_parse_itt_prepare_delay, __kmp_stg_print_itt_prepare_delay, NULL, 0, 0 }, #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ { "KMP_MALLOC_POOL_INCR", __kmp_stg_parse_malloc_pool_incr, __kmp_stg_print_malloc_pool_incr, NULL, 0, 0 }, { "KMP_INIT_WAIT", __kmp_stg_parse_init_wait, __kmp_stg_print_init_wait, NULL, 0, 0 }, { "KMP_NEXT_WAIT", __kmp_stg_parse_next_wait, __kmp_stg_print_next_wait, NULL, 0, 0 }, { "KMP_GTID_MODE", __kmp_stg_parse_gtid_mode, __kmp_stg_print_gtid_mode, NULL, 0, 0 }, { "OMP_DYNAMIC", __kmp_stg_parse_omp_dynamic, __kmp_stg_print_omp_dynamic, NULL, 0, 0 }, { "KMP_DYNAMIC_MODE", __kmp_stg_parse_kmp_dynamic_mode, __kmp_stg_print_kmp_dynamic_mode, NULL, 0, 0 }, #ifdef USE_LOAD_BALANCE { "KMP_LOAD_BALANCE_INTERVAL", __kmp_stg_parse_ld_balance_interval,__kmp_stg_print_ld_balance_interval,NULL, 0, 0 }, #endif { "KMP_NUM_LOCKS_IN_BLOCK", __kmp_stg_parse_lock_block, __kmp_stg_print_lock_block, NULL, 0, 0 }, { "KMP_LOCK_KIND", __kmp_stg_parse_lock_kind, __kmp_stg_print_lock_kind, NULL, 0, 0 }, { "KMP_SPIN_BACKOFF_PARAMS", __kmp_stg_parse_spin_backoff_params, __kmp_stg_print_spin_backoff_params, NULL, 0, 0 }, #if KMP_USE_ADAPTIVE_LOCKS { "KMP_ADAPTIVE_LOCK_PROPS", __kmp_stg_parse_adaptive_lock_props,__kmp_stg_print_adaptive_lock_props, NULL, 0, 0 }, #if KMP_DEBUG_ADAPTIVE_LOCKS { "KMP_SPECULATIVE_STATSFILE", __kmp_stg_parse_speculative_statsfile,__kmp_stg_print_speculative_statsfile, NULL, 0, 0 }, #endif #endif // KMP_USE_ADAPTIVE_LOCKS { "KMP_PLACE_THREADS", __kmp_stg_parse_hw_subset, __kmp_stg_print_hw_subset, NULL, 0, 0 }, { "KMP_HW_SUBSET", __kmp_stg_parse_hw_subset, __kmp_stg_print_hw_subset, NULL, 0, 0 }, #if USE_ITT_BUILD { "KMP_FORKJOIN_FRAMES", __kmp_stg_parse_forkjoin_frames, __kmp_stg_print_forkjoin_frames, NULL, 0, 0 }, { "KMP_FORKJOIN_FRAMES_MODE", __kmp_stg_parse_forkjoin_frames_mode,__kmp_stg_print_forkjoin_frames_mode, NULL, 0, 0 }, #endif # if OMP_40_ENABLED { "OMP_DISPLAY_ENV", __kmp_stg_parse_omp_display_env, __kmp_stg_print_omp_display_env, NULL, 0, 0 }, { "OMP_CANCELLATION", __kmp_stg_parse_omp_cancellation, __kmp_stg_print_omp_cancellation, NULL, 0, 0 }, #endif { "", NULL, NULL, NULL, 0, 0 } }; // settings static int const __kmp_stg_count = sizeof( __kmp_stg_table ) / sizeof( kmp_setting_t ); static inline kmp_setting_t * __kmp_stg_find( char const * name ) { int i; if ( name != NULL ) { for ( i = 0; i < __kmp_stg_count; ++ i ) { if ( strcmp( __kmp_stg_table[ i ].name, name ) == 0 ) { return & __kmp_stg_table[ i ]; }; // if }; // for }; // if return NULL; } // __kmp_stg_find static int __kmp_stg_cmp( void const * _a, void const * _b ) { kmp_setting_t * a = (kmp_setting_t *) _a; kmp_setting_t * b = (kmp_setting_t *) _b; // // Process KMP_AFFINITY last. // It needs to come after OMP_PLACES and GOMP_CPU_AFFINITY. // if ( strcmp( a->name, "KMP_AFFINITY" ) == 0 ) { if ( strcmp( b->name, "KMP_AFFINITY" ) == 0 ) { return 0; } return 1; } else if ( strcmp( b->name, "KMP_AFFINITY" ) == 0 ) { return -1; } return strcmp( a->name, b->name ); } // __kmp_stg_cmp static void __kmp_stg_init( void ) { static int initialized = 0; if ( ! initialized ) { // Sort table. qsort( __kmp_stg_table, __kmp_stg_count - 1, sizeof( kmp_setting_t ), __kmp_stg_cmp ); { // Initialize *_STACKSIZE data. kmp_setting_t * kmp_stacksize = __kmp_stg_find( "KMP_STACKSIZE" ); // 1st priority. #ifdef KMP_GOMP_COMPAT kmp_setting_t * gomp_stacksize = __kmp_stg_find( "GOMP_STACKSIZE" ); // 2nd priority. #endif kmp_setting_t * omp_stacksize = __kmp_stg_find( "OMP_STACKSIZE" ); // 3rd priority. // !!! volatile keyword is Intel (R) C Compiler bug CQ49908 workaround. // !!! Compiler does not understand rivals is used and optimizes out assignments // !!! rivals[ i ++ ] = ...; static kmp_setting_t * volatile rivals[ 4 ]; static kmp_stg_ss_data_t kmp_data = { 1, (kmp_setting_t **)rivals }; #ifdef KMP_GOMP_COMPAT static kmp_stg_ss_data_t gomp_data = { 1024, (kmp_setting_t **)rivals }; #endif static kmp_stg_ss_data_t omp_data = { 1024, (kmp_setting_t **)rivals }; int i = 0; rivals[ i ++ ] = kmp_stacksize; #ifdef KMP_GOMP_COMPAT if ( gomp_stacksize != NULL ) { rivals[ i ++ ] = gomp_stacksize; }; // if #endif rivals[ i ++ ] = omp_stacksize; rivals[ i ++ ] = NULL; kmp_stacksize->data = & kmp_data; #ifdef KMP_GOMP_COMPAT if ( gomp_stacksize != NULL ) { gomp_stacksize->data = & gomp_data; }; // if #endif omp_stacksize->data = & omp_data; } { // Initialize KMP_LIBRARY and OMP_WAIT_POLICY data. kmp_setting_t * kmp_library = __kmp_stg_find( "KMP_LIBRARY" ); // 1st priority. kmp_setting_t * omp_wait_policy = __kmp_stg_find( "OMP_WAIT_POLICY" ); // 2nd priority. // !!! volatile keyword is Intel (R) C Compiler bug CQ49908 workaround. static kmp_setting_t * volatile rivals[ 3 ]; static kmp_stg_wp_data_t kmp_data = { 0, (kmp_setting_t **)rivals }; static kmp_stg_wp_data_t omp_data = { 1, (kmp_setting_t **)rivals }; int i = 0; rivals[ i ++ ] = kmp_library; if ( omp_wait_policy != NULL ) { rivals[ i ++ ] = omp_wait_policy; }; // if rivals[ i ++ ] = NULL; kmp_library->data = & kmp_data; if ( omp_wait_policy != NULL ) { omp_wait_policy->data = & omp_data; }; // if } { // Initialize KMP_ALL_THREADS, KMP_MAX_THREADS, and OMP_THREAD_LIMIT data. kmp_setting_t * kmp_all_threads = __kmp_stg_find( "KMP_ALL_THREADS" ); // 1st priority. kmp_setting_t * kmp_max_threads = __kmp_stg_find( "KMP_MAX_THREADS" ); // 2nd priority. kmp_setting_t * omp_thread_limit = __kmp_stg_find( "OMP_THREAD_LIMIT" ); // 3rd priority. // !!! volatile keyword is Intel (R) C Compiler bug CQ49908 workaround. static kmp_setting_t * volatile rivals[ 4 ]; int i = 0; rivals[ i ++ ] = kmp_all_threads; rivals[ i ++ ] = kmp_max_threads; if ( omp_thread_limit != NULL ) { rivals[ i ++ ] = omp_thread_limit; }; // if rivals[ i ++ ] = NULL; kmp_all_threads->data = (void*)& rivals; kmp_max_threads->data = (void*)& rivals; if ( omp_thread_limit != NULL ) { omp_thread_limit->data = (void*)& rivals; }; // if } #if KMP_AFFINITY_SUPPORTED { // Initialize KMP_AFFINITY, GOMP_CPU_AFFINITY, and OMP_PROC_BIND data. kmp_setting_t * kmp_affinity = __kmp_stg_find( "KMP_AFFINITY" ); // 1st priority. KMP_DEBUG_ASSERT( kmp_affinity != NULL ); # ifdef KMP_GOMP_COMPAT kmp_setting_t * gomp_cpu_affinity = __kmp_stg_find( "GOMP_CPU_AFFINITY" ); // 2nd priority. KMP_DEBUG_ASSERT( gomp_cpu_affinity != NULL ); # endif kmp_setting_t * omp_proc_bind = __kmp_stg_find( "OMP_PROC_BIND" ); // 3rd priority. KMP_DEBUG_ASSERT( omp_proc_bind != NULL ); // !!! volatile keyword is Intel (R) C Compiler bug CQ49908 workaround. static kmp_setting_t * volatile rivals[ 4 ]; int i = 0; rivals[ i ++ ] = kmp_affinity; # ifdef KMP_GOMP_COMPAT rivals[ i ++ ] = gomp_cpu_affinity; gomp_cpu_affinity->data = (void*)& rivals; # endif rivals[ i ++ ] = omp_proc_bind; omp_proc_bind->data = (void*)& rivals; rivals[ i ++ ] = NULL; # if OMP_40_ENABLED static kmp_setting_t * volatile places_rivals[ 4 ]; i = 0; kmp_setting_t * omp_places = __kmp_stg_find( "OMP_PLACES" ); // 3rd priority. KMP_DEBUG_ASSERT( omp_places != NULL ); places_rivals[ i ++ ] = kmp_affinity; # ifdef KMP_GOMP_COMPAT places_rivals[ i ++ ] = gomp_cpu_affinity; # endif places_rivals[ i ++ ] = omp_places; omp_places->data = (void*)& places_rivals; places_rivals[ i ++ ] = NULL; # endif } #else // KMP_AFFINITY not supported, so OMP_PROC_BIND has no rivals. // OMP_PLACES not supported yet. #endif // KMP_AFFINITY_SUPPORTED { // Initialize KMP_DETERMINISTIC_REDUCTION and KMP_FORCE_REDUCTION data. kmp_setting_t * kmp_force_red = __kmp_stg_find( "KMP_FORCE_REDUCTION" ); // 1st priority. kmp_setting_t * kmp_determ_red = __kmp_stg_find( "KMP_DETERMINISTIC_REDUCTION" ); // 2nd priority. // !!! volatile keyword is Intel (R) C Compiler bug CQ49908 workaround. static kmp_setting_t * volatile rivals[ 3 ]; static kmp_stg_fr_data_t force_data = { 1, (kmp_setting_t **)rivals }; static kmp_stg_fr_data_t determ_data = { 0, (kmp_setting_t **)rivals }; int i = 0; rivals[ i ++ ] = kmp_force_red; if ( kmp_determ_red != NULL ) { rivals[ i ++ ] = kmp_determ_red; }; // if rivals[ i ++ ] = NULL; kmp_force_red->data = & force_data; if ( kmp_determ_red != NULL ) { kmp_determ_red->data = & determ_data; }; // if } initialized = 1; }; // if // Reset flags. int i; for ( i = 0; i < __kmp_stg_count; ++ i ) { __kmp_stg_table[ i ].set = 0; }; // for } // __kmp_stg_init static void __kmp_stg_parse( char const * name, char const * value ) { // On Windows* OS there are some nameless variables like "C:=C:\" (yeah, really nameless, they are // presented in environment block as "=C:=C\\\x00=D:=D:\\\x00...", so let us skip them. if ( name[ 0 ] == 0 ) { return; }; // if if ( value != NULL ) { kmp_setting_t * setting = __kmp_stg_find( name ); if ( setting != NULL ) { setting->parse( name, value, setting->data ); setting->defined = 1; }; // if }; // if } // __kmp_stg_parse static int __kmp_stg_check_rivals( // 0 -- Ok, 1 -- errors found. char const * name, // Name of variable. char const * value, // Value of the variable. kmp_setting_t * * rivals // List of rival settings (the list must include current one). ) { if ( rivals == NULL ) { return 0; } // Loop thru higher priority settings (listed before current). int i = 0; for ( ; strcmp( rivals[ i ]->name, name ) != 0; i++ ) { KMP_DEBUG_ASSERT( rivals[ i ] != NULL ); #if KMP_AFFINITY_SUPPORTED if ( rivals[ i ] == __kmp_affinity_notype ) { // // If KMP_AFFINITY is specified without a type name, // it does not rival OMP_PROC_BIND or GOMP_CPU_AFFINITY. // continue; } #endif if ( rivals[ i ]->set ) { KMP_WARNING( StgIgnored, name, rivals[ i ]->name ); return 1; }; // if }; // while ++ i; // Skip current setting. return 0; }; // __kmp_stg_check_rivals static int __kmp_env_toPrint( char const * name, int flag ) { int rc = 0; kmp_setting_t * setting = __kmp_stg_find( name ); if ( setting != NULL ) { rc = setting->defined; if ( flag >= 0 ) { setting->defined = flag; }; // if }; // if return rc; } static void __kmp_aux_env_initialize( kmp_env_blk_t* block ) { char const * value; /* OMP_NUM_THREADS */ value = __kmp_env_blk_var( block, "OMP_NUM_THREADS" ); if ( value ) { ompc_set_num_threads( __kmp_dflt_team_nth ); } /* KMP_BLOCKTIME */ value = __kmp_env_blk_var( block, "KMP_BLOCKTIME" ); if ( value ) { kmpc_set_blocktime( __kmp_dflt_blocktime ); } /* OMP_NESTED */ value = __kmp_env_blk_var( block, "OMP_NESTED" ); if ( value ) { ompc_set_nested( __kmp_dflt_nested ); } /* OMP_DYNAMIC */ value = __kmp_env_blk_var( block, "OMP_DYNAMIC" ); if ( value ) { ompc_set_dynamic( __kmp_global.g.g_dynamic ); } } void __kmp_env_initialize( char const * string ) { kmp_env_blk_t block; int i; __kmp_stg_init(); // Hack!!! if ( string == NULL ) { // __kmp_max_nth = __kmp_sys_max_nth; __kmp_threads_capacity = __kmp_initial_threads_capacity( __kmp_dflt_team_nth_ub ); }; // if __kmp_env_blk_init( & block, string ); // // update the set flag on all entries that have an env var // for ( i = 0; i < block.count; ++ i ) { if (( block.vars[ i ].name == NULL ) || ( *block.vars[ i ].name == '\0')) { continue; } if ( block.vars[ i ].value == NULL ) { continue; } kmp_setting_t * setting = __kmp_stg_find( block.vars[ i ].name ); if ( setting != NULL ) { setting->set = 1; } }; // for i // We need to know if blocktime was set when processing OMP_WAIT_POLICY blocktime_str = __kmp_env_blk_var( & block, "KMP_BLOCKTIME" ); // Special case. If we parse environment, not a string, process KMP_WARNINGS first. if ( string == NULL ) { char const * name = "KMP_WARNINGS"; char const * value = __kmp_env_blk_var( & block, name ); __kmp_stg_parse( name, value ); }; // if #if KMP_AFFINITY_SUPPORTED // // Special case. KMP_AFFINITY is not a rival to other affinity env vars // if no affinity type is specified. We want to allow // KMP_AFFINITY=[no],verbose/[no]warnings/etc. to be enabled when // specifying the affinity type via GOMP_CPU_AFFINITY or the OMP 4.0 // affinity mechanism. // __kmp_affinity_notype = NULL; char const *aff_str = __kmp_env_blk_var( & block, "KMP_AFFINITY" ); if ( aff_str != NULL ) { // // Check if the KMP_AFFINITY type is specified in the string. // We just search the string for "compact", "scatter", etc. // without really parsing the string. The syntax of the // KMP_AFFINITY env var is such that none of the affinity // type names can appear anywhere other that the type // specifier, even as substrings. // // I can't find a case-insensitive version of strstr on Windows* OS. // Use the case-sensitive version for now. // # if KMP_OS_WINDOWS # define FIND strstr # else # define FIND strcasestr # endif if ( ( FIND( aff_str, "none" ) == NULL ) && ( FIND( aff_str, "physical" ) == NULL ) && ( FIND( aff_str, "logical" ) == NULL ) && ( FIND( aff_str, "compact" ) == NULL ) && ( FIND( aff_str, "scatter" ) == NULL ) && ( FIND( aff_str, "explicit" ) == NULL ) && ( FIND( aff_str, "balanced" ) == NULL ) && ( FIND( aff_str, "disabled" ) == NULL ) ) { __kmp_affinity_notype = __kmp_stg_find( "KMP_AFFINITY" ); } else { // // A new affinity type is specified. // Reset the affinity flags to their default values, // in case this is called from kmp_set_defaults(). // __kmp_affinity_type = affinity_default; __kmp_affinity_gran = affinity_gran_default; __kmp_affinity_top_method = affinity_top_method_default; __kmp_affinity_respect_mask = affinity_respect_mask_default; } # undef FIND #if OMP_40_ENABLED // // Also reset the affinity flags if OMP_PROC_BIND is specified. // aff_str = __kmp_env_blk_var( & block, "OMP_PROC_BIND" ); if ( aff_str != NULL ) { __kmp_affinity_type = affinity_default; __kmp_affinity_gran = affinity_gran_default; __kmp_affinity_top_method = affinity_top_method_default; __kmp_affinity_respect_mask = affinity_respect_mask_default; } #endif /* OMP_40_ENABLED */ } #endif /* KMP_AFFINITY_SUPPORTED */ #if OMP_40_ENABLED // // Set up the nested proc bind type vector. // if ( __kmp_nested_proc_bind.bind_types == NULL ) { __kmp_nested_proc_bind.bind_types = (kmp_proc_bind_t *) KMP_INTERNAL_MALLOC( sizeof(kmp_proc_bind_t) ); if ( __kmp_nested_proc_bind.bind_types == NULL ) { KMP_FATAL( MemoryAllocFailed ); } __kmp_nested_proc_bind.size = 1; __kmp_nested_proc_bind.used = 1; # if KMP_AFFINITY_SUPPORTED __kmp_nested_proc_bind.bind_types[0] = proc_bind_default; # else // default proc bind is false if affinity not supported __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; # endif } #endif /* OMP_40_ENABLED */ // // Now process all of the settings. // for ( i = 0; i < block.count; ++ i ) { __kmp_stg_parse( block.vars[ i ].name, block.vars[ i ].value ); }; // for i // // If user locks have been allocated yet, don't reset the lock vptr table. // if ( ! __kmp_init_user_locks ) { if ( __kmp_user_lock_kind == lk_default ) { __kmp_user_lock_kind = lk_queuing; } #if KMP_USE_DYNAMIC_LOCK __kmp_init_dynamic_user_locks(); #else __kmp_set_user_lock_vptrs( __kmp_user_lock_kind ); #endif } else { KMP_DEBUG_ASSERT( string != NULL); // kmp_set_defaults() was called KMP_DEBUG_ASSERT( __kmp_user_lock_kind != lk_default ); // Binds lock functions again to follow the transition between different // KMP_CONSISTENCY_CHECK values. Calling this again is harmless as long // as we do not allow lock kind changes after making a call to any // user lock functions (true). #if KMP_USE_DYNAMIC_LOCK __kmp_init_dynamic_user_locks(); #else __kmp_set_user_lock_vptrs( __kmp_user_lock_kind ); #endif } #if KMP_AFFINITY_SUPPORTED if ( ! TCR_4(__kmp_init_middle) ) { // // Determine if the machine/OS is actually capable of supporting // affinity. // const char *var = "KMP_AFFINITY"; # if KMP_USE_HWLOC if(__kmp_hwloc_topology == NULL) { if(hwloc_topology_init(&__kmp_hwloc_topology) < 0) { __kmp_hwloc_error = TRUE; if(__kmp_affinity_verbose) KMP_WARNING(AffHwlocErrorOccurred, var, "hwloc_topology_init()"); } if(hwloc_topology_load(__kmp_hwloc_topology) < 0) { __kmp_hwloc_error = TRUE; if(__kmp_affinity_verbose) KMP_WARNING(AffHwlocErrorOccurred, var, "hwloc_topology_load()"); } } # endif if ( __kmp_affinity_type == affinity_disabled ) { KMP_AFFINITY_DISABLE(); } else if ( ! KMP_AFFINITY_CAPABLE() ) { # if KMP_USE_HWLOC const hwloc_topology_support* topology_support = hwloc_topology_get_support(__kmp_hwloc_topology); // Is the system capable of setting/getting this thread's affinity? // also, is topology discovery possible? (pu indicates ability to discover processing units) // and finally, were there no errors when calling any hwloc_* API functions? if(topology_support && topology_support->cpubind->set_thisthread_cpubind && topology_support->cpubind->get_thisthread_cpubind && topology_support->discovery->pu && !__kmp_hwloc_error) { // enables affinity according to KMP_AFFINITY_CAPABLE() macro KMP_AFFINITY_ENABLE(TRUE); } else { // indicate that hwloc didn't work and disable affinity __kmp_hwloc_error = TRUE; KMP_AFFINITY_DISABLE(); } # else __kmp_affinity_determine_capable( var ); # endif // KMP_USE_HWLOC if ( ! KMP_AFFINITY_CAPABLE() ) { if ( __kmp_affinity_verbose || ( __kmp_affinity_warnings && ( __kmp_affinity_type != affinity_default ) && ( __kmp_affinity_type != affinity_none ) && ( __kmp_affinity_type != affinity_disabled ) ) ) { KMP_WARNING( AffNotSupported, var ); } __kmp_affinity_type = affinity_disabled; __kmp_affinity_respect_mask = 0; __kmp_affinity_gran = affinity_gran_fine; } } # if OMP_40_ENABLED if ( __kmp_affinity_type == affinity_disabled ) { __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; } else if ( __kmp_nested_proc_bind.bind_types[0] == proc_bind_true ) { // // OMP_PROC_BIND=true maps to OMP_PROC_BIND=spread. // __kmp_nested_proc_bind.bind_types[0] = proc_bind_spread; } # endif /* OMP_40_ENABLED */ if ( KMP_AFFINITY_CAPABLE() ) { # if KMP_GROUP_AFFINITY // // Handle the Win 64 group affinity stuff if there are multiple // processor groups, or if the user requested it, and OMP 4.0 // affinity is not in effect. // if ( ( ( __kmp_num_proc_groups > 1 ) && ( __kmp_affinity_type == affinity_default ) # if OMP_40_ENABLED && ( __kmp_nested_proc_bind.bind_types[0] == proc_bind_default ) ) # endif || ( __kmp_affinity_top_method == affinity_top_method_group ) ) { if ( __kmp_affinity_respect_mask == affinity_respect_mask_default ) { __kmp_affinity_respect_mask = FALSE; } if ( __kmp_affinity_type == affinity_default ) { __kmp_affinity_type = affinity_compact; # if OMP_40_ENABLED __kmp_nested_proc_bind.bind_types[0] = proc_bind_intel; # endif } if ( __kmp_affinity_top_method == affinity_top_method_default ) { if ( __kmp_affinity_gran == affinity_gran_default ) { __kmp_affinity_top_method = affinity_top_method_group; __kmp_affinity_gran = affinity_gran_group; } else if ( __kmp_affinity_gran == affinity_gran_group ) { __kmp_affinity_top_method = affinity_top_method_group; } else { __kmp_affinity_top_method = affinity_top_method_all; } } else if ( __kmp_affinity_top_method == affinity_top_method_group ) { if ( __kmp_affinity_gran == affinity_gran_default ) { __kmp_affinity_gran = affinity_gran_group; } else if ( ( __kmp_affinity_gran != affinity_gran_group ) && ( __kmp_affinity_gran != affinity_gran_fine ) && ( __kmp_affinity_gran != affinity_gran_thread ) ) { const char *str = NULL; switch ( __kmp_affinity_gran ) { case affinity_gran_core: str = "core"; break; case affinity_gran_package: str = "package"; break; case affinity_gran_node: str = "node"; break; default: KMP_DEBUG_ASSERT( 0 ); } KMP_WARNING( AffGranTopGroup, var, str ); __kmp_affinity_gran = affinity_gran_fine; } } else { if ( __kmp_affinity_gran == affinity_gran_default ) { __kmp_affinity_gran = affinity_gran_core; } else if ( __kmp_affinity_gran == affinity_gran_group ) { const char *str = NULL; switch ( __kmp_affinity_type ) { case affinity_physical: str = "physical"; break; case affinity_logical: str = "logical"; break; case affinity_compact: str = "compact"; break; case affinity_scatter: str = "scatter"; break; case affinity_explicit: str = "explicit"; break; // No MIC on windows, so no affinity_balanced case default: KMP_DEBUG_ASSERT( 0 ); } KMP_WARNING( AffGranGroupType, var, str ); __kmp_affinity_gran = affinity_gran_core; } } } else # endif /* KMP_GROUP_AFFINITY */ { if ( __kmp_affinity_respect_mask == affinity_respect_mask_default ) { # if KMP_GROUP_AFFINITY if ( __kmp_num_proc_groups > 1 ) { __kmp_affinity_respect_mask = FALSE; } else # endif /* KMP_GROUP_AFFINITY */ { __kmp_affinity_respect_mask = TRUE; } } # if OMP_40_ENABLED if ( ( __kmp_nested_proc_bind.bind_types[0] != proc_bind_intel ) && ( __kmp_nested_proc_bind.bind_types[0] != proc_bind_default ) ) { if ( __kmp_affinity_type == affinity_default ) { __kmp_affinity_type = affinity_compact; __kmp_affinity_dups = FALSE; } } else # endif /* OMP_40_ENABLED */ if ( __kmp_affinity_type == affinity_default ) { #if OMP_40_ENABLED #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) if( __kmp_mic_type != non_mic ) { __kmp_nested_proc_bind.bind_types[0] = proc_bind_intel; } else #endif { __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; } #endif /* OMP_40_ENABLED */ #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) if( __kmp_mic_type != non_mic ) { __kmp_affinity_type = affinity_scatter; } else #endif { __kmp_affinity_type = affinity_none; } } if ( ( __kmp_affinity_gran == affinity_gran_default ) && ( __kmp_affinity_gran_levels < 0 ) ) { #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) if( __kmp_mic_type != non_mic ) { __kmp_affinity_gran = affinity_gran_fine; } else #endif { __kmp_affinity_gran = affinity_gran_core; } } if ( __kmp_affinity_top_method == affinity_top_method_default ) { __kmp_affinity_top_method = affinity_top_method_all; } } } K_DIAG( 1, ( "__kmp_affinity_type == %d\n", __kmp_affinity_type ) ); K_DIAG( 1, ( "__kmp_affinity_compact == %d\n", __kmp_affinity_compact ) ); K_DIAG( 1, ( "__kmp_affinity_offset == %d\n", __kmp_affinity_offset ) ); K_DIAG( 1, ( "__kmp_affinity_verbose == %d\n", __kmp_affinity_verbose ) ); K_DIAG( 1, ( "__kmp_affinity_warnings == %d\n", __kmp_affinity_warnings ) ); K_DIAG( 1, ( "__kmp_affinity_respect_mask == %d\n", __kmp_affinity_respect_mask ) ); K_DIAG( 1, ( "__kmp_affinity_gran == %d\n", __kmp_affinity_gran ) ); KMP_DEBUG_ASSERT( __kmp_affinity_type != affinity_default); # if OMP_40_ENABLED KMP_DEBUG_ASSERT( __kmp_nested_proc_bind.bind_types[0] != proc_bind_default ); # endif } #endif /* KMP_AFFINITY_SUPPORTED */ if ( __kmp_version ) { __kmp_print_version_1(); }; // if // Post-initialization step: some env. vars need their value's further processing if ( string != NULL) { // kmp_set_defaults() was called __kmp_aux_env_initialize( &block ); } __kmp_env_blk_free( & block ); KMP_MB(); } // __kmp_env_initialize void __kmp_env_print() { kmp_env_blk_t block; int i; kmp_str_buf_t buffer; __kmp_stg_init(); __kmp_str_buf_init( & buffer ); __kmp_env_blk_init( & block, NULL ); __kmp_env_blk_sort( & block ); // Print real environment values. __kmp_str_buf_print( & buffer, "\n%s\n\n", KMP_I18N_STR( UserSettings ) ); for ( i = 0; i < block.count; ++ i ) { char const * name = block.vars[ i ].name; char const * value = block.vars[ i ].value; if ( ( KMP_STRLEN( name ) > 4 && strncmp( name, "KMP_", 4 ) == 0 ) || strncmp( name, "OMP_", 4 ) == 0 #ifdef KMP_GOMP_COMPAT || strncmp( name, "GOMP_", 5 ) == 0 #endif // KMP_GOMP_COMPAT ) { __kmp_str_buf_print( & buffer, " %s=%s\n", name, value ); }; // if }; // for __kmp_str_buf_print( & buffer, "\n" ); // Print internal (effective) settings. __kmp_str_buf_print( & buffer, "%s\n\n", KMP_I18N_STR( EffectiveSettings ) ); for ( int i = 0; i < __kmp_stg_count; ++ i ) { if ( __kmp_stg_table[ i ].print != NULL ) { __kmp_stg_table[ i ].print( & buffer, __kmp_stg_table[ i ].name, __kmp_stg_table[ i ].data ); }; // if }; // for __kmp_printf( "%s", buffer.str ); __kmp_env_blk_free( & block ); __kmp_str_buf_free( & buffer ); __kmp_printf("\n"); } // __kmp_env_print #if OMP_40_ENABLED void __kmp_env_print_2() { kmp_env_blk_t block; kmp_str_buf_t buffer; __kmp_env_format = 1; __kmp_stg_init(); __kmp_str_buf_init( & buffer ); __kmp_env_blk_init( & block, NULL ); __kmp_env_blk_sort( & block ); __kmp_str_buf_print( & buffer, "\n%s\n", KMP_I18N_STR( DisplayEnvBegin ) ); __kmp_str_buf_print( & buffer, " _OPENMP='%d'\n", __kmp_openmp_version ); for ( int i = 0; i < __kmp_stg_count; ++ i ) { if ( __kmp_stg_table[ i ].print != NULL && ( ( __kmp_display_env && strncmp( __kmp_stg_table[ i ].name, "OMP_", 4 ) == 0 ) || __kmp_display_env_verbose ) ) { __kmp_stg_table[ i ].print( & buffer, __kmp_stg_table[ i ].name, __kmp_stg_table[ i ].data ); }; // if }; // for __kmp_str_buf_print( & buffer, "%s\n", KMP_I18N_STR( DisplayEnvEnd ) ); __kmp_str_buf_print( & buffer, "\n" ); __kmp_printf( "%s", buffer.str ); __kmp_env_blk_free( & block ); __kmp_str_buf_free( & buffer ); __kmp_printf("\n"); } // __kmp_env_print_2 #endif // OMP_40_ENABLED // end of file