; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py ; RUN: llc -mtriple=i686-unknown-linux-gnu < %s | FileCheck %s --check-prefixes=CHECK,X86 ; RUN: llc -mtriple=x86_64-unknown-linux-gnu < %s | FileCheck %s --check-prefixes=CHECK,X64 ;------------------------------------------------------------------------------; ; Odd divisors ;------------------------------------------------------------------------------; define i32 @test_urem_odd(i32 %X) nounwind { ; X86-LABEL: test_urem_odd: ; X86: # %bb.0: ; X86-NEXT: imull $-858993459, {{[0-9]+}}(%esp), %ecx # imm = 0xCCCCCCCD ; X86-NEXT: xorl %eax, %eax ; X86-NEXT: cmpl $858993460, %ecx # imm = 0x33333334 ; X86-NEXT: setb %al ; X86-NEXT: retl ; ; X64-LABEL: test_urem_odd: ; X64: # %bb.0: ; X64-NEXT: imull $-858993459, %edi, %ecx # imm = 0xCCCCCCCD ; X64-NEXT: xorl %eax, %eax ; X64-NEXT: cmpl $858993460, %ecx # imm = 0x33333334 ; X64-NEXT: setb %al ; X64-NEXT: retq %urem = urem i32 %X, 5 %cmp = icmp eq i32 %urem, 0 %ret = zext i1 %cmp to i32 ret i32 %ret } define i32 @test_urem_odd_25(i32 %X) nounwind { ; X86-LABEL: test_urem_odd_25: ; X86: # %bb.0: ; X86-NEXT: imull $-1030792151, {{[0-9]+}}(%esp), %ecx # imm = 0xC28F5C29 ; X86-NEXT: xorl %eax, %eax ; X86-NEXT: cmpl $171798692, %ecx # imm = 0xA3D70A4 ; X86-NEXT: setb %al ; X86-NEXT: retl ; ; X64-LABEL: test_urem_odd_25: ; X64: # %bb.0: ; X64-NEXT: imull $-1030792151, %edi, %ecx # imm = 0xC28F5C29 ; X64-NEXT: xorl %eax, %eax ; X64-NEXT: cmpl $171798692, %ecx # imm = 0xA3D70A4 ; X64-NEXT: setb %al ; X64-NEXT: retq %urem = urem i32 %X, 25 %cmp = icmp eq i32 %urem, 0 %ret = zext i1 %cmp to i32 ret i32 %ret } ; This is like test_urem_odd, except the divisor has bit 30 set. define i32 @test_urem_odd_bit30(i32 %X) nounwind { ; X86-LABEL: test_urem_odd_bit30: ; X86: # %bb.0: ; X86-NEXT: imull $1789569707, {{[0-9]+}}(%esp), %ecx # imm = 0x6AAAAAAB ; X86-NEXT: xorl %eax, %eax ; X86-NEXT: cmpl $4, %ecx ; X86-NEXT: setb %al ; X86-NEXT: retl ; ; X64-LABEL: test_urem_odd_bit30: ; X64: # %bb.0: ; X64-NEXT: imull $1789569707, %edi, %ecx # imm = 0x6AAAAAAB ; X64-NEXT: xorl %eax, %eax ; X64-NEXT: cmpl $4, %ecx ; X64-NEXT: setb %al ; X64-NEXT: retq %urem = urem i32 %X, 1073741827 %cmp = icmp eq i32 %urem, 0 %ret = zext i1 %cmp to i32 ret i32 %ret } ; This is like test_urem_odd, except the divisor has bit 31 set. define i32 @test_urem_odd_bit31(i32 %X) nounwind { ; X86-LABEL: test_urem_odd_bit31: ; X86: # %bb.0: ; X86-NEXT: imull $715827883, {{[0-9]+}}(%esp), %ecx # imm = 0x2AAAAAAB ; X86-NEXT: xorl %eax, %eax ; X86-NEXT: cmpl $2, %ecx ; X86-NEXT: setb %al ; X86-NEXT: retl ; ; X64-LABEL: test_urem_odd_bit31: ; X64: # %bb.0: ; X64-NEXT: imull $715827883, %edi, %ecx # imm = 0x2AAAAAAB ; X64-NEXT: xorl %eax, %eax ; X64-NEXT: cmpl $2, %ecx ; X64-NEXT: setb %al ; X64-NEXT: retq %urem = urem i32 %X, 2147483651 %cmp = icmp eq i32 %urem, 0 %ret = zext i1 %cmp to i32 ret i32 %ret } ;------------------------------------------------------------------------------; ; Even divisors ;------------------------------------------------------------------------------; define i16 @test_urem_even(i16 %X) nounwind { ; X86-LABEL: test_urem_even: ; X86: # %bb.0: ; X86-NEXT: imull $28087, {{[0-9]+}}(%esp), %eax # imm = 0x6DB7 ; X86-NEXT: rorw %ax ; X86-NEXT: movzwl %ax, %ecx ; X86-NEXT: xorl %eax, %eax ; X86-NEXT: cmpl $4681, %ecx # imm = 0x1249 ; X86-NEXT: seta %al ; X86-NEXT: # kill: def $ax killed $ax killed $eax ; X86-NEXT: retl ; ; X64-LABEL: test_urem_even: ; X64: # %bb.0: ; X64-NEXT: imull $28087, %edi, %eax # imm = 0x6DB7 ; X64-NEXT: rorw %ax ; X64-NEXT: movzwl %ax, %ecx ; X64-NEXT: xorl %eax, %eax ; X64-NEXT: cmpl $4681, %ecx # imm = 0x1249 ; X64-NEXT: seta %al ; X64-NEXT: # kill: def $ax killed $ax killed $eax ; X64-NEXT: retq %urem = urem i16 %X, 14 %cmp = icmp ne i16 %urem, 0 %ret = zext i1 %cmp to i16 ret i16 %ret } define i32 @test_urem_even_100(i32 %X) nounwind { ; X86-LABEL: test_urem_even_100: ; X86: # %bb.0: ; X86-NEXT: imull $-1030792151, {{[0-9]+}}(%esp), %ecx # imm = 0xC28F5C29 ; X86-NEXT: rorl $2, %ecx ; X86-NEXT: xorl %eax, %eax ; X86-NEXT: cmpl $42949673, %ecx # imm = 0x28F5C29 ; X86-NEXT: setb %al ; X86-NEXT: retl ; ; X64-LABEL: test_urem_even_100: ; X64: # %bb.0: ; X64-NEXT: imull $-1030792151, %edi, %ecx # imm = 0xC28F5C29 ; X64-NEXT: rorl $2, %ecx ; X64-NEXT: xorl %eax, %eax ; X64-NEXT: cmpl $42949673, %ecx # imm = 0x28F5C29 ; X64-NEXT: setb %al ; X64-NEXT: retq %urem = urem i32 %X, 100 %cmp = icmp eq i32 %urem, 0 %ret = zext i1 %cmp to i32 ret i32 %ret } ; This is like test_urem_even, except the divisor has bit 30 set. define i32 @test_urem_even_bit30(i32 %X) nounwind { ; X86-LABEL: test_urem_even_bit30: ; X86: # %bb.0: ; X86-NEXT: imull $-51622203, {{[0-9]+}}(%esp), %ecx # imm = 0xFCEC4EC5 ; X86-NEXT: rorl $3, %ecx ; X86-NEXT: xorl %eax, %eax ; X86-NEXT: cmpl $4, %ecx ; X86-NEXT: setb %al ; X86-NEXT: retl ; ; X64-LABEL: test_urem_even_bit30: ; X64: # %bb.0: ; X64-NEXT: imull $-51622203, %edi, %ecx # imm = 0xFCEC4EC5 ; X64-NEXT: rorl $3, %ecx ; X64-NEXT: xorl %eax, %eax ; X64-NEXT: cmpl $4, %ecx ; X64-NEXT: setb %al ; X64-NEXT: retq %urem = urem i32 %X, 1073741928 %cmp = icmp eq i32 %urem, 0 %ret = zext i1 %cmp to i32 ret i32 %ret } ; This is like test_urem_odd, except the divisor has bit 31 set. define i32 @test_urem_even_bit31(i32 %X) nounwind { ; X86-LABEL: test_urem_even_bit31: ; X86: # %bb.0: ; X86-NEXT: imull $-1157956869, {{[0-9]+}}(%esp), %ecx # imm = 0xBAFAFAFB ; X86-NEXT: rorl %ecx ; X86-NEXT: xorl %eax, %eax ; X86-NEXT: cmpl $2, %ecx ; X86-NEXT: setb %al ; X86-NEXT: retl ; ; X64-LABEL: test_urem_even_bit31: ; X64: # %bb.0: ; X64-NEXT: imull $-1157956869, %edi, %ecx # imm = 0xBAFAFAFB ; X64-NEXT: rorl %ecx ; X64-NEXT: xorl %eax, %eax ; X64-NEXT: cmpl $2, %ecx ; X64-NEXT: setb %al ; X64-NEXT: retq %urem = urem i32 %X, 2147483750 %cmp = icmp eq i32 %urem, 0 %ret = zext i1 %cmp to i32 ret i32 %ret } ;------------------------------------------------------------------------------; ; Special case ;------------------------------------------------------------------------------; ; 'NE' predicate is fine too. define i32 @test_urem_odd_setne(i32 %X) nounwind { ; X86-LABEL: test_urem_odd_setne: ; X86: # %bb.0: ; X86-NEXT: imull $-858993459, {{[0-9]+}}(%esp), %ecx # imm = 0xCCCCCCCD ; X86-NEXT: xorl %eax, %eax ; X86-NEXT: cmpl $858993459, %ecx # imm = 0x33333333 ; X86-NEXT: seta %al ; X86-NEXT: retl ; ; X64-LABEL: test_urem_odd_setne: ; X64: # %bb.0: ; X64-NEXT: imull $-858993459, %edi, %ecx # imm = 0xCCCCCCCD ; X64-NEXT: xorl %eax, %eax ; X64-NEXT: cmpl $858993459, %ecx # imm = 0x33333333 ; X64-NEXT: seta %al ; X64-NEXT: retq %urem = urem i32 %X, 5 %cmp = icmp ne i32 %urem, 0 %ret = zext i1 %cmp to i32 ret i32 %ret } ; The fold is only valid for positive divisors, negative-ones should be negated. define i32 @test_urem_negative_odd(i32 %X) nounwind { ; X86-LABEL: test_urem_negative_odd: ; X86: # %bb.0: ; X86-NEXT: imull $858993459, {{[0-9]+}}(%esp), %ecx # imm = 0x33333333 ; X86-NEXT: xorl %eax, %eax ; X86-NEXT: cmpl $1, %ecx ; X86-NEXT: seta %al ; X86-NEXT: retl ; ; X64-LABEL: test_urem_negative_odd: ; X64: # %bb.0: ; X64-NEXT: imull $858993459, %edi, %ecx # imm = 0x33333333 ; X64-NEXT: xorl %eax, %eax ; X64-NEXT: cmpl $1, %ecx ; X64-NEXT: seta %al ; X64-NEXT: retq %urem = urem i32 %X, -5 %cmp = icmp ne i32 %urem, 0 %ret = zext i1 %cmp to i32 ret i32 %ret } define i32 @test_urem_negative_even(i32 %X) nounwind { ; X86-LABEL: test_urem_negative_even: ; X86: # %bb.0: ; X86-NEXT: imull $-920350135, {{[0-9]+}}(%esp), %ecx # imm = 0xC9249249 ; X86-NEXT: rorl %ecx ; X86-NEXT: xorl %eax, %eax ; X86-NEXT: cmpl $1, %ecx ; X86-NEXT: seta %al ; X86-NEXT: retl ; ; X64-LABEL: test_urem_negative_even: ; X64: # %bb.0: ; X64-NEXT: imull $-920350135, %edi, %ecx # imm = 0xC9249249 ; X64-NEXT: rorl %ecx ; X64-NEXT: xorl %eax, %eax ; X64-NEXT: cmpl $1, %ecx ; X64-NEXT: seta %al ; X64-NEXT: retq %urem = urem i32 %X, -14 %cmp = icmp ne i32 %urem, 0 %ret = zext i1 %cmp to i32 ret i32 %ret } ;------------------------------------------------------------------------------; ; Negative tests ;------------------------------------------------------------------------------; ; We can lower remainder of division by one much better elsewhere. define i32 @test_urem_one(i32 %X) nounwind { ; CHECK-LABEL: test_urem_one: ; CHECK: # %bb.0: ; CHECK-NEXT: movl $1, %eax ; CHECK-NEXT: ret{{[l|q]}} %urem = urem i32 %X, 1 %cmp = icmp eq i32 %urem, 0 %ret = zext i1 %cmp to i32 ret i32 %ret } ; We can lower remainder of division by powers of two much better elsewhere. define i32 @test_urem_pow2(i32 %X) nounwind { ; X86-LABEL: test_urem_pow2: ; X86: # %bb.0: ; X86-NEXT: xorl %eax, %eax ; X86-NEXT: testb $15, {{[0-9]+}}(%esp) ; X86-NEXT: sete %al ; X86-NEXT: retl ; ; X64-LABEL: test_urem_pow2: ; X64: # %bb.0: ; X64-NEXT: xorl %eax, %eax ; X64-NEXT: testb $15, %dil ; X64-NEXT: sete %al ; X64-NEXT: retq %urem = urem i32 %X, 16 %cmp = icmp eq i32 %urem, 0 %ret = zext i1 %cmp to i32 ret i32 %ret } ; The fold is only valid for positive divisors, and we can't negate INT_MIN. define i32 @test_urem_int_min(i32 %X) nounwind { ; X86-LABEL: test_urem_int_min: ; X86: # %bb.0: ; X86-NEXT: xorl %eax, %eax ; X86-NEXT: testl $2147483647, {{[0-9]+}}(%esp) # imm = 0x7FFFFFFF ; X86-NEXT: sete %al ; X86-NEXT: retl ; ; X64-LABEL: test_urem_int_min: ; X64: # %bb.0: ; X64-NEXT: xorl %eax, %eax ; X64-NEXT: testl $2147483647, %edi # imm = 0x7FFFFFFF ; X64-NEXT: sete %al ; X64-NEXT: retq %urem = urem i32 %X, 2147483648 %cmp = icmp eq i32 %urem, 0 %ret = zext i1 %cmp to i32 ret i32 %ret } ; We can lower remainder of division by all-ones much better elsewhere. define i32 @test_urem_allones(i32 %X) nounwind { ; X86-LABEL: test_urem_allones: ; X86: # %bb.0: ; X86-NEXT: xorl %ecx, %ecx ; X86-NEXT: subl {{[0-9]+}}(%esp), %ecx ; X86-NEXT: xorl %eax, %eax ; X86-NEXT: cmpl $2, %ecx ; X86-NEXT: setb %al ; X86-NEXT: retl ; ; X64-LABEL: test_urem_allones: ; X64: # %bb.0: ; X64-NEXT: negl %edi ; X64-NEXT: xorl %eax, %eax ; X64-NEXT: cmpl $2, %edi ; X64-NEXT: setb %al ; X64-NEXT: retq %urem = urem i32 %X, 4294967295 %cmp = icmp eq i32 %urem, 0 %ret = zext i1 %cmp to i32 ret i32 %ret }