//===- X86AvoidStoreForwardingBlockis.cpp - Avoid HW Store Forward Block --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // If a load follows a store and reloads data that the store has written to // memory, Intel microarchitectures can in many cases forward the data directly // from the store to the load, This "store forwarding" saves cycles by enabling // the load to directly obtain the data instead of accessing the data from // cache or memory. // A "store forward block" occurs in cases that a store cannot be forwarded to // the load. The most typical case of store forward block on Intel Core // microarchitecture that a small store cannot be forwarded to a large load. // The estimated penalty for a store forward block is ~13 cycles. // // This pass tries to recognize and handle cases where "store forward block" // is created by the compiler when lowering memcpy calls to a sequence // of a load and a store. // // The pass currently only handles cases where memcpy is lowered to // XMM/YMM registers, it tries to break the memcpy into smaller copies. // breaking the memcpy should be possible since there is no atomicity // guarantee for loads and stores to XMM/YMM. // // It could be better for performance to solve the problem by loading // to XMM/YMM then inserting the partial store before storing back from XMM/YMM // to memory, but this will result in a more conservative optimization since it // requires we prove that all memory accesses between the blocking store and the // load must alias/don't alias before we can move the store, whereas the // transformation done here is correct regardless to other memory accesses. //===----------------------------------------------------------------------===// #include "X86InstrInfo.h" #include "X86Subtarget.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Function.h" #include "llvm/MC/MCInstrDesc.h" using namespace llvm; #define DEBUG_TYPE "x86-avoid-SFB" namespace llvm { void initializeX86AvoidSFBPassPass(PassRegistry &); } // end namespace llvm static cl::opt DisableX86AvoidStoreForwardBlocks( "x86-disable-avoid-SFB", cl::Hidden, cl::desc("X86: Disable Store Forwarding Blocks fixup."), cl::init(false)); static cl::opt X86AvoidSFBInspectionLimit( "x86-sfb-inspection-limit", cl::desc("X86: Number of instructions backward to " "inspect for store forwarding blocks."), cl::init(20), cl::Hidden); namespace { using DisplacementSizeMap = std::map; class X86AvoidSFBPass : public MachineFunctionPass { public: static char ID; X86AvoidSFBPass() : MachineFunctionPass(ID) { initializeX86AvoidSFBPassPass(*PassRegistry::getPassRegistry()); } StringRef getPassName() const override { return "X86 Avoid Store Forwarding Blocks"; } bool runOnMachineFunction(MachineFunction &MF) override; void getAnalysisUsage(AnalysisUsage &AU) const override { MachineFunctionPass::getAnalysisUsage(AU); AU.addRequired(); } private: MachineRegisterInfo *MRI; const X86InstrInfo *TII; const X86RegisterInfo *TRI; SmallVector, 2> BlockedLoadsStoresPairs; SmallVector ForRemoval; AliasAnalysis *AA; /// Returns couples of Load then Store to memory which look /// like a memcpy. void findPotentiallylBlockedCopies(MachineFunction &MF); /// Break the memcpy's load and store into smaller copies /// such that each memory load that was blocked by a smaller store /// would now be copied separately. void breakBlockedCopies(MachineInstr *LoadInst, MachineInstr *StoreInst, const DisplacementSizeMap &BlockingStoresDispSizeMap); /// Break a copy of size Size to smaller copies. void buildCopies(int Size, MachineInstr *LoadInst, int64_t LdDispImm, MachineInstr *StoreInst, int64_t StDispImm, int64_t LMMOffset, int64_t SMMOffset); void buildCopy(MachineInstr *LoadInst, unsigned NLoadOpcode, int64_t LoadDisp, MachineInstr *StoreInst, unsigned NStoreOpcode, int64_t StoreDisp, unsigned Size, int64_t LMMOffset, int64_t SMMOffset); bool alias(const MachineMemOperand &Op1, const MachineMemOperand &Op2) const; unsigned getRegSizeInBytes(MachineInstr *Inst); }; } // end anonymous namespace char X86AvoidSFBPass::ID = 0; INITIALIZE_PASS_BEGIN(X86AvoidSFBPass, DEBUG_TYPE, "Machine code sinking", false, false) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_END(X86AvoidSFBPass, DEBUG_TYPE, "Machine code sinking", false, false) FunctionPass *llvm::createX86AvoidStoreForwardingBlocks() { return new X86AvoidSFBPass(); } static bool isXMMLoadOpcode(unsigned Opcode) { return Opcode == X86::MOVUPSrm || Opcode == X86::MOVAPSrm || Opcode == X86::VMOVUPSrm || Opcode == X86::VMOVAPSrm || Opcode == X86::VMOVUPDrm || Opcode == X86::VMOVAPDrm || Opcode == X86::VMOVDQUrm || Opcode == X86::VMOVDQArm || Opcode == X86::VMOVUPSZ128rm || Opcode == X86::VMOVAPSZ128rm || Opcode == X86::VMOVUPDZ128rm || Opcode == X86::VMOVAPDZ128rm || Opcode == X86::VMOVDQU64Z128rm || Opcode == X86::VMOVDQA64Z128rm || Opcode == X86::VMOVDQU32Z128rm || Opcode == X86::VMOVDQA32Z128rm; } static bool isYMMLoadOpcode(unsigned Opcode) { return Opcode == X86::VMOVUPSYrm || Opcode == X86::VMOVAPSYrm || Opcode == X86::VMOVUPDYrm || Opcode == X86::VMOVAPDYrm || Opcode == X86::VMOVDQUYrm || Opcode == X86::VMOVDQAYrm || Opcode == X86::VMOVUPSZ256rm || Opcode == X86::VMOVAPSZ256rm || Opcode == X86::VMOVUPDZ256rm || Opcode == X86::VMOVAPDZ256rm || Opcode == X86::VMOVDQU64Z256rm || Opcode == X86::VMOVDQA64Z256rm || Opcode == X86::VMOVDQU32Z256rm || Opcode == X86::VMOVDQA32Z256rm; } static bool isPotentialBlockedMemCpyLd(unsigned Opcode) { return isXMMLoadOpcode(Opcode) || isYMMLoadOpcode(Opcode); } static bool isPotentialBlockedMemCpyPair(int LdOpcode, int StOpcode) { switch (LdOpcode) { case X86::MOVUPSrm: case X86::MOVAPSrm: return StOpcode == X86::MOVUPSmr || StOpcode == X86::MOVAPSmr; case X86::VMOVUPSrm: case X86::VMOVAPSrm: return StOpcode == X86::VMOVUPSmr || StOpcode == X86::VMOVAPSmr; case X86::VMOVUPDrm: case X86::VMOVAPDrm: return StOpcode == X86::VMOVUPDmr || StOpcode == X86::VMOVAPDmr; case X86::VMOVDQUrm: case X86::VMOVDQArm: return StOpcode == X86::VMOVDQUmr || StOpcode == X86::VMOVDQAmr; case X86::VMOVUPSZ128rm: case X86::VMOVAPSZ128rm: return StOpcode == X86::VMOVUPSZ128mr || StOpcode == X86::VMOVAPSZ128mr; case X86::VMOVUPDZ128rm: case X86::VMOVAPDZ128rm: return StOpcode == X86::VMOVUPDZ128mr || StOpcode == X86::VMOVAPDZ128mr; case X86::VMOVUPSYrm: case X86::VMOVAPSYrm: return StOpcode == X86::VMOVUPSYmr || StOpcode == X86::VMOVAPSYmr; case X86::VMOVUPDYrm: case X86::VMOVAPDYrm: return StOpcode == X86::VMOVUPDYmr || StOpcode == X86::VMOVAPDYmr; case X86::VMOVDQUYrm: case X86::VMOVDQAYrm: return StOpcode == X86::VMOVDQUYmr || StOpcode == X86::VMOVDQAYmr; case X86::VMOVUPSZ256rm: case X86::VMOVAPSZ256rm: return StOpcode == X86::VMOVUPSZ256mr || StOpcode == X86::VMOVAPSZ256mr; case X86::VMOVUPDZ256rm: case X86::VMOVAPDZ256rm: return StOpcode == X86::VMOVUPDZ256mr || StOpcode == X86::VMOVAPDZ256mr; case X86::VMOVDQU64Z128rm: case X86::VMOVDQA64Z128rm: return StOpcode == X86::VMOVDQU64Z128mr || StOpcode == X86::VMOVDQA64Z128mr; case X86::VMOVDQU32Z128rm: case X86::VMOVDQA32Z128rm: return StOpcode == X86::VMOVDQU32Z128mr || StOpcode == X86::VMOVDQA32Z128mr; case X86::VMOVDQU64Z256rm: case X86::VMOVDQA64Z256rm: return StOpcode == X86::VMOVDQU64Z256mr || StOpcode == X86::VMOVDQA64Z256mr; case X86::VMOVDQU32Z256rm: case X86::VMOVDQA32Z256rm: return StOpcode == X86::VMOVDQU32Z256mr || StOpcode == X86::VMOVDQA32Z256mr; default: return false; } } static bool isPotentialBlockingStoreInst(int Opcode, int LoadOpcode) { bool PBlock = false; PBlock |= Opcode == X86::MOV64mr || Opcode == X86::MOV64mi32 || Opcode == X86::MOV32mr || Opcode == X86::MOV32mi || Opcode == X86::MOV16mr || Opcode == X86::MOV16mi || Opcode == X86::MOV8mr || Opcode == X86::MOV8mi; if (isYMMLoadOpcode(LoadOpcode)) PBlock |= Opcode == X86::VMOVUPSmr || Opcode == X86::VMOVAPSmr || Opcode == X86::VMOVUPDmr || Opcode == X86::VMOVAPDmr || Opcode == X86::VMOVDQUmr || Opcode == X86::VMOVDQAmr || Opcode == X86::VMOVUPSZ128mr || Opcode == X86::VMOVAPSZ128mr || Opcode == X86::VMOVUPDZ128mr || Opcode == X86::VMOVAPDZ128mr || Opcode == X86::VMOVDQU64Z128mr || Opcode == X86::VMOVDQA64Z128mr || Opcode == X86::VMOVDQU32Z128mr || Opcode == X86::VMOVDQA32Z128mr; return PBlock; } static const int MOV128SZ = 16; static const int MOV64SZ = 8; static const int MOV32SZ = 4; static const int MOV16SZ = 2; static const int MOV8SZ = 1; static unsigned getYMMtoXMMLoadOpcode(unsigned LoadOpcode) { switch (LoadOpcode) { case X86::VMOVUPSYrm: case X86::VMOVAPSYrm: return X86::VMOVUPSrm; case X86::VMOVUPDYrm: case X86::VMOVAPDYrm: return X86::VMOVUPDrm; case X86::VMOVDQUYrm: case X86::VMOVDQAYrm: return X86::VMOVDQUrm; case X86::VMOVUPSZ256rm: case X86::VMOVAPSZ256rm: return X86::VMOVUPSZ128rm; case X86::VMOVUPDZ256rm: case X86::VMOVAPDZ256rm: return X86::VMOVUPDZ128rm; case X86::VMOVDQU64Z256rm: case X86::VMOVDQA64Z256rm: return X86::VMOVDQU64Z128rm; case X86::VMOVDQU32Z256rm: case X86::VMOVDQA32Z256rm: return X86::VMOVDQU32Z128rm; default: llvm_unreachable("Unexpected Load Instruction Opcode"); } return 0; } static unsigned getYMMtoXMMStoreOpcode(unsigned StoreOpcode) { switch (StoreOpcode) { case X86::VMOVUPSYmr: case X86::VMOVAPSYmr: return X86::VMOVUPSmr; case X86::VMOVUPDYmr: case X86::VMOVAPDYmr: return X86::VMOVUPDmr; case X86::VMOVDQUYmr: case X86::VMOVDQAYmr: return X86::VMOVDQUmr; case X86::VMOVUPSZ256mr: case X86::VMOVAPSZ256mr: return X86::VMOVUPSZ128mr; case X86::VMOVUPDZ256mr: case X86::VMOVAPDZ256mr: return X86::VMOVUPDZ128mr; case X86::VMOVDQU64Z256mr: case X86::VMOVDQA64Z256mr: return X86::VMOVDQU64Z128mr; case X86::VMOVDQU32Z256mr: case X86::VMOVDQA32Z256mr: return X86::VMOVDQU32Z128mr; default: llvm_unreachable("Unexpected Load Instruction Opcode"); } return 0; } static int getAddrOffset(MachineInstr *MI) { const MCInstrDesc &Descl = MI->getDesc(); int AddrOffset = X86II::getMemoryOperandNo(Descl.TSFlags); assert(AddrOffset != -1 && "Expected Memory Operand"); AddrOffset += X86II::getOperandBias(Descl); return AddrOffset; } static MachineOperand &getBaseOperand(MachineInstr *MI) { int AddrOffset = getAddrOffset(MI); return MI->getOperand(AddrOffset + X86::AddrBaseReg); } static MachineOperand &getDispOperand(MachineInstr *MI) { int AddrOffset = getAddrOffset(MI); return MI->getOperand(AddrOffset + X86::AddrDisp); } // Relevant addressing modes contain only base register and immediate // displacement or frameindex and immediate displacement. // TODO: Consider expanding to other addressing modes in the future static bool isRelevantAddressingMode(MachineInstr *MI) { int AddrOffset = getAddrOffset(MI); MachineOperand &Base = getBaseOperand(MI); MachineOperand &Disp = getDispOperand(MI); MachineOperand &Scale = MI->getOperand(AddrOffset + X86::AddrScaleAmt); MachineOperand &Index = MI->getOperand(AddrOffset + X86::AddrIndexReg); MachineOperand &Segment = MI->getOperand(AddrOffset + X86::AddrSegmentReg); if (!((Base.isReg() && Base.getReg() != X86::NoRegister) || Base.isFI())) return false; if (!Disp.isImm()) return false; if (Scale.getImm() != 1) return false; if (!(Index.isReg() && Index.getReg() == X86::NoRegister)) return false; if (!(Segment.isReg() && Segment.getReg() == X86::NoRegister)) return false; return true; } // Collect potentially blocking stores. // Limit the number of instructions backwards we want to inspect // since the effect of store block won't be visible if the store // and load instructions have enough instructions in between to // keep the core busy. static SmallVector findPotentialBlockers(MachineInstr *LoadInst) { SmallVector PotentialBlockers; unsigned BlockCount = 0; const unsigned InspectionLimit = X86AvoidSFBInspectionLimit; for (auto PBInst = std::next(MachineBasicBlock::reverse_iterator(LoadInst)), E = LoadInst->getParent()->rend(); PBInst != E; ++PBInst) { BlockCount++; if (BlockCount >= InspectionLimit) break; MachineInstr &MI = *PBInst; if (MI.getDesc().isCall()) return PotentialBlockers; PotentialBlockers.push_back(&MI); } // If we didn't get to the instructions limit try predecessing blocks. // Ideally we should traverse the predecessor blocks in depth with some // coloring algorithm, but for now let's just look at the first order // predecessors. if (BlockCount < InspectionLimit) { MachineBasicBlock *MBB = LoadInst->getParent(); int LimitLeft = InspectionLimit - BlockCount; for (MachineBasicBlock::pred_iterator PB = MBB->pred_begin(), PE = MBB->pred_end(); PB != PE; ++PB) { MachineBasicBlock *PMBB = *PB; int PredCount = 0; for (MachineBasicBlock::reverse_iterator PBInst = PMBB->rbegin(), PME = PMBB->rend(); PBInst != PME; ++PBInst) { PredCount++; if (PredCount >= LimitLeft) break; if (PBInst->getDesc().isCall()) break; PotentialBlockers.push_back(&*PBInst); } } } return PotentialBlockers; } void X86AvoidSFBPass::buildCopy(MachineInstr *LoadInst, unsigned NLoadOpcode, int64_t LoadDisp, MachineInstr *StoreInst, unsigned NStoreOpcode, int64_t StoreDisp, unsigned Size, int64_t LMMOffset, int64_t SMMOffset) { MachineOperand &LoadBase = getBaseOperand(LoadInst); MachineOperand &StoreBase = getBaseOperand(StoreInst); MachineBasicBlock *MBB = LoadInst->getParent(); MachineMemOperand *LMMO = *LoadInst->memoperands_begin(); MachineMemOperand *SMMO = *StoreInst->memoperands_begin(); unsigned Reg1 = MRI->createVirtualRegister( TII->getRegClass(TII->get(NLoadOpcode), 0, TRI, *(MBB->getParent()))); MachineInstr *NewLoad = BuildMI(*MBB, LoadInst, LoadInst->getDebugLoc(), TII->get(NLoadOpcode), Reg1) .add(LoadBase) .addImm(1) .addReg(X86::NoRegister) .addImm(LoadDisp) .addReg(X86::NoRegister) .addMemOperand( MBB->getParent()->getMachineMemOperand(LMMO, LMMOffset, Size)); if (LoadBase.isReg()) getBaseOperand(NewLoad).setIsKill(false); LLVM_DEBUG(NewLoad->dump()); // If the load and store are consecutive, use the loadInst location to // reduce register pressure. MachineInstr *StInst = StoreInst; if (StoreInst->getPrevNode() == LoadInst) StInst = LoadInst; MachineInstr *NewStore = BuildMI(*MBB, StInst, StInst->getDebugLoc(), TII->get(NStoreOpcode)) .add(StoreBase) .addImm(1) .addReg(X86::NoRegister) .addImm(StoreDisp) .addReg(X86::NoRegister) .addReg(Reg1) .addMemOperand( MBB->getParent()->getMachineMemOperand(SMMO, SMMOffset, Size)); if (StoreBase.isReg()) getBaseOperand(NewStore).setIsKill(false); MachineOperand &StoreSrcVReg = StoreInst->getOperand(X86::AddrNumOperands); assert(StoreSrcVReg.isReg() && "Expected virtual register"); NewStore->getOperand(X86::AddrNumOperands).setIsKill(StoreSrcVReg.isKill()); LLVM_DEBUG(NewStore->dump()); } void X86AvoidSFBPass::buildCopies(int Size, MachineInstr *LoadInst, int64_t LdDispImm, MachineInstr *StoreInst, int64_t StDispImm, int64_t LMMOffset, int64_t SMMOffset) { int LdDisp = LdDispImm; int StDisp = StDispImm; while (Size > 0) { if ((Size - MOV128SZ >= 0) && isYMMLoadOpcode(LoadInst->getOpcode())) { Size = Size - MOV128SZ; buildCopy(LoadInst, getYMMtoXMMLoadOpcode(LoadInst->getOpcode()), LdDisp, StoreInst, getYMMtoXMMStoreOpcode(StoreInst->getOpcode()), StDisp, MOV128SZ, LMMOffset, SMMOffset); LdDisp += MOV128SZ; StDisp += MOV128SZ; LMMOffset += MOV128SZ; SMMOffset += MOV128SZ; continue; } if (Size - MOV64SZ >= 0) { Size = Size - MOV64SZ; buildCopy(LoadInst, X86::MOV64rm, LdDisp, StoreInst, X86::MOV64mr, StDisp, MOV64SZ, LMMOffset, SMMOffset); LdDisp += MOV64SZ; StDisp += MOV64SZ; LMMOffset += MOV64SZ; SMMOffset += MOV64SZ; continue; } if (Size - MOV32SZ >= 0) { Size = Size - MOV32SZ; buildCopy(LoadInst, X86::MOV32rm, LdDisp, StoreInst, X86::MOV32mr, StDisp, MOV32SZ, LMMOffset, SMMOffset); LdDisp += MOV32SZ; StDisp += MOV32SZ; LMMOffset += MOV32SZ; SMMOffset += MOV32SZ; continue; } if (Size - MOV16SZ >= 0) { Size = Size - MOV16SZ; buildCopy(LoadInst, X86::MOV16rm, LdDisp, StoreInst, X86::MOV16mr, StDisp, MOV16SZ, LMMOffset, SMMOffset); LdDisp += MOV16SZ; StDisp += MOV16SZ; LMMOffset += MOV16SZ; SMMOffset += MOV16SZ; continue; } if (Size - MOV8SZ >= 0) { Size = Size - MOV8SZ; buildCopy(LoadInst, X86::MOV8rm, LdDisp, StoreInst, X86::MOV8mr, StDisp, MOV8SZ, LMMOffset, SMMOffset); LdDisp += MOV8SZ; StDisp += MOV8SZ; LMMOffset += MOV8SZ; SMMOffset += MOV8SZ; continue; } } assert(Size == 0 && "Wrong size division"); } static void updateKillStatus(MachineInstr *LoadInst, MachineInstr *StoreInst) { MachineOperand &LoadBase = getBaseOperand(LoadInst); MachineOperand &StoreBase = getBaseOperand(StoreInst); if (LoadBase.isReg()) { MachineInstr *LastLoad = LoadInst->getPrevNode(); // If the original load and store to xmm/ymm were consecutive // then the partial copies were also created in // a consecutive order to reduce register pressure, // and the location of the last load is before the last store. if (StoreInst->getPrevNode() == LoadInst) LastLoad = LoadInst->getPrevNode()->getPrevNode(); getBaseOperand(LastLoad).setIsKill(LoadBase.isKill()); } if (StoreBase.isReg()) { MachineInstr *StInst = StoreInst; if (StoreInst->getPrevNode() == LoadInst) StInst = LoadInst; getBaseOperand(StInst->getPrevNode()).setIsKill(StoreBase.isKill()); } } bool X86AvoidSFBPass::alias(const MachineMemOperand &Op1, const MachineMemOperand &Op2) const { if (!Op1.getValue() || !Op2.getValue()) return true; int64_t MinOffset = std::min(Op1.getOffset(), Op2.getOffset()); int64_t Overlapa = Op1.getSize() + Op1.getOffset() - MinOffset; int64_t Overlapb = Op2.getSize() + Op2.getOffset() - MinOffset; AliasResult AAResult = AA->alias(MemoryLocation(Op1.getValue(), Overlapa, Op1.getAAInfo()), MemoryLocation(Op2.getValue(), Overlapb, Op2.getAAInfo())); return AAResult != NoAlias; } void X86AvoidSFBPass::findPotentiallylBlockedCopies(MachineFunction &MF) { for (auto &MBB : MF) for (auto &MI : MBB) { if (!isPotentialBlockedMemCpyLd(MI.getOpcode())) continue; int DefVR = MI.getOperand(0).getReg(); if (!MRI->hasOneUse(DefVR)) continue; for (auto UI = MRI->use_nodbg_begin(DefVR), UE = MRI->use_nodbg_end(); UI != UE;) { MachineOperand &StoreMO = *UI++; MachineInstr &StoreMI = *StoreMO.getParent(); // Skip cases where the memcpy may overlap. if (StoreMI.getParent() == MI.getParent() && isPotentialBlockedMemCpyPair(MI.getOpcode(), StoreMI.getOpcode()) && isRelevantAddressingMode(&MI) && isRelevantAddressingMode(&StoreMI)) { assert(MI.hasOneMemOperand() && "Expected one memory operand for load instruction"); assert(StoreMI.hasOneMemOperand() && "Expected one memory operand for store instruction"); if (!alias(**MI.memoperands_begin(), **StoreMI.memoperands_begin())) BlockedLoadsStoresPairs.push_back(std::make_pair(&MI, &StoreMI)); } } } } unsigned X86AvoidSFBPass::getRegSizeInBytes(MachineInstr *LoadInst) { auto TRC = TII->getRegClass(TII->get(LoadInst->getOpcode()), 0, TRI, *LoadInst->getParent()->getParent()); return TRI->getRegSizeInBits(*TRC) / 8; } void X86AvoidSFBPass::breakBlockedCopies( MachineInstr *LoadInst, MachineInstr *StoreInst, const DisplacementSizeMap &BlockingStoresDispSizeMap) { int64_t LdDispImm = getDispOperand(LoadInst).getImm(); int64_t StDispImm = getDispOperand(StoreInst).getImm(); int64_t LMMOffset = 0; int64_t SMMOffset = 0; int64_t LdDisp1 = LdDispImm; int64_t LdDisp2 = 0; int64_t StDisp1 = StDispImm; int64_t StDisp2 = 0; unsigned Size1 = 0; unsigned Size2 = 0; int64_t LdStDelta = StDispImm - LdDispImm; for (auto DispSizePair : BlockingStoresDispSizeMap) { LdDisp2 = DispSizePair.first; StDisp2 = DispSizePair.first + LdStDelta; Size2 = DispSizePair.second; // Avoid copying overlapping areas. if (LdDisp2 < LdDisp1) { int OverlapDelta = LdDisp1 - LdDisp2; LdDisp2 += OverlapDelta; StDisp2 += OverlapDelta; Size2 -= OverlapDelta; } Size1 = std::abs(std::abs(LdDisp2) - std::abs(LdDisp1)); // Build a copy for the point until the current blocking store's // displacement. buildCopies(Size1, LoadInst, LdDisp1, StoreInst, StDisp1, LMMOffset, SMMOffset); // Build a copy for the current blocking store. buildCopies(Size2, LoadInst, LdDisp2, StoreInst, StDisp2, LMMOffset + Size1, SMMOffset + Size1); LdDisp1 = LdDisp2 + Size2; StDisp1 = StDisp2 + Size2; LMMOffset += Size1 + Size2; SMMOffset += Size1 + Size2; } unsigned Size3 = (LdDispImm + getRegSizeInBytes(LoadInst)) - LdDisp1; buildCopies(Size3, LoadInst, LdDisp1, StoreInst, StDisp1, LMMOffset, LMMOffset); } static bool hasSameBaseOpValue(MachineInstr *LoadInst, MachineInstr *StoreInst) { MachineOperand &LoadBase = getBaseOperand(LoadInst); MachineOperand &StoreBase = getBaseOperand(StoreInst); if (LoadBase.isReg() != StoreBase.isReg()) return false; if (LoadBase.isReg()) return LoadBase.getReg() == StoreBase.getReg(); return LoadBase.getIndex() == StoreBase.getIndex(); } static bool isBlockingStore(int64_t LoadDispImm, unsigned LoadSize, int64_t StoreDispImm, unsigned StoreSize) { return ((StoreDispImm >= LoadDispImm) && (StoreDispImm <= LoadDispImm + (LoadSize - StoreSize))); } // Keep track of all stores blocking a load static void updateBlockingStoresDispSizeMap(DisplacementSizeMap &BlockingStoresDispSizeMap, int64_t DispImm, unsigned Size) { if (BlockingStoresDispSizeMap.count(DispImm)) { // Choose the smallest blocking store starting at this displacement. if (BlockingStoresDispSizeMap[DispImm] > Size) BlockingStoresDispSizeMap[DispImm] = Size; } else BlockingStoresDispSizeMap[DispImm] = Size; } // Remove blocking stores contained in each other. static void removeRedundantBlockingStores(DisplacementSizeMap &BlockingStoresDispSizeMap) { if (BlockingStoresDispSizeMap.size() <= 1) return; int64_t PrevDisp = BlockingStoresDispSizeMap.begin()->first; unsigned PrevSize = BlockingStoresDispSizeMap.begin()->second; SmallVector ForRemoval; for (auto DispSizePair = std::next(BlockingStoresDispSizeMap.begin()); DispSizePair != BlockingStoresDispSizeMap.end(); ++DispSizePair) { int64_t CurrDisp = DispSizePair->first; unsigned CurrSize = DispSizePair->second; if (CurrDisp + CurrSize <= PrevDisp + PrevSize) { ForRemoval.push_back(PrevDisp); } PrevDisp = CurrDisp; PrevSize = CurrSize; } for (auto Disp : ForRemoval) BlockingStoresDispSizeMap.erase(Disp); } bool X86AvoidSFBPass::runOnMachineFunction(MachineFunction &MF) { bool Changed = false; if (DisableX86AvoidStoreForwardBlocks || skipFunction(MF.getFunction()) || !MF.getSubtarget().is64Bit()) return false; MRI = &MF.getRegInfo(); assert(MRI->isSSA() && "Expected MIR to be in SSA form"); TII = MF.getSubtarget().getInstrInfo(); TRI = MF.getSubtarget().getRegisterInfo(); AA = &getAnalysis().getAAResults(); LLVM_DEBUG(dbgs() << "Start X86AvoidStoreForwardBlocks\n";); // Look for a load then a store to XMM/YMM which look like a memcpy findPotentiallylBlockedCopies(MF); for (auto LoadStoreInstPair : BlockedLoadsStoresPairs) { MachineInstr *LoadInst = LoadStoreInstPair.first; int64_t LdDispImm = getDispOperand(LoadInst).getImm(); DisplacementSizeMap BlockingStoresDispSizeMap; SmallVector PotentialBlockers = findPotentialBlockers(LoadInst); for (auto PBInst : PotentialBlockers) { if (!isPotentialBlockingStoreInst(PBInst->getOpcode(), LoadInst->getOpcode()) || !isRelevantAddressingMode(PBInst)) continue; int64_t PBstDispImm = getDispOperand(PBInst).getImm(); assert(PBInst->hasOneMemOperand() && "Expected One Memory Operand"); unsigned PBstSize = (*PBInst->memoperands_begin())->getSize(); // This check doesn't cover all cases, but it will suffice for now. // TODO: take branch probability into consideration, if the blocking // store is in an unreached block, breaking the memcopy could lose // performance. if (hasSameBaseOpValue(LoadInst, PBInst) && isBlockingStore(LdDispImm, getRegSizeInBytes(LoadInst), PBstDispImm, PBstSize)) updateBlockingStoresDispSizeMap(BlockingStoresDispSizeMap, PBstDispImm, PBstSize); } if (BlockingStoresDispSizeMap.empty()) continue; // We found a store forward block, break the memcpy's load and store // into smaller copies such that each smaller store that was causing // a store block would now be copied separately. MachineInstr *StoreInst = LoadStoreInstPair.second; LLVM_DEBUG(dbgs() << "Blocked load and store instructions: \n"); LLVM_DEBUG(LoadInst->dump()); LLVM_DEBUG(StoreInst->dump()); LLVM_DEBUG(dbgs() << "Replaced with:\n"); removeRedundantBlockingStores(BlockingStoresDispSizeMap); breakBlockedCopies(LoadInst, StoreInst, BlockingStoresDispSizeMap); updateKillStatus(LoadInst, StoreInst); ForRemoval.push_back(LoadInst); ForRemoval.push_back(StoreInst); } for (auto RemovedInst : ForRemoval) { RemovedInst->eraseFromParent(); } ForRemoval.clear(); BlockedLoadsStoresPairs.clear(); LLVM_DEBUG(dbgs() << "End X86AvoidStoreForwardBlocks\n";); return Changed; }