aboutsummaryrefslogtreecommitdiff
path: root/libstdc++/stl/stl_alloc.h
blob: 0f2ba28bb98e4b77eb74957679484f2d0389682d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
/*
 * Copyright (c) 1996-1997
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/* NOTE: This is an internal header file, included by other STL headers.
 *   You should not attempt to use it directly.
 */

#ifndef __SGI_STL_INTERNAL_ALLOC_H
#define __SGI_STL_INTERNAL_ALLOC_H

#ifdef __SUNPRO_CC
#  define __PRIVATE public
   // Extra access restrictions prevent us from really making some things
   // private.
#else
#  define __PRIVATE private
#endif

#ifdef __STL_STATIC_TEMPLATE_MEMBER_BUG
#  define __USE_MALLOC
#endif


// This implements some standard node allocators.  These are
// NOT the same as the allocators in the C++ draft standard or in
// in the original STL.  They do not encapsulate different pointer
// types; indeed we assume that there is only one pointer type.
// The allocation primitives are intended to allocate individual objects,
// not larger arenas as with the original STL allocators.

#if 0
#   include <new>
#   define __THROW_BAD_ALLOC throw bad_alloc
#elif !defined(__THROW_BAD_ALLOC)
#   include <iostream.h>
#   define __THROW_BAD_ALLOC cerr << "out of memory" << endl; exit(1)
#endif

#ifndef __ALLOC
#   define __ALLOC alloc
#endif
#ifdef __STL_WIN32THREADS
#   include <windows.h>
#endif

#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#ifndef __RESTRICT
#  define __RESTRICT
#endif

#if !defined(__STL_PTHREADS) && !defined(_NOTHREADS) \
 && !defined(__STL_SGI_THREADS) && !defined(__STL_WIN32THREADS)
#   define _NOTHREADS
#endif

# ifdef __STL_PTHREADS
    // POSIX Threads
    // This is dubious, since this is likely to be a high contention
    // lock.   Performance may not be adequate.
#   include <pthread.h>
#   define __NODE_ALLOCATOR_LOCK \
        if (threads) pthread_mutex_lock(&__node_allocator_lock)
#   define __NODE_ALLOCATOR_UNLOCK \
        if (threads) pthread_mutex_unlock(&__node_allocator_lock)
#   define __NODE_ALLOCATOR_THREADS true
#   define __VOLATILE volatile  // Needed at -O3 on SGI
# endif
# ifdef __STL_WIN32THREADS
    // The lock needs to be initialized by constructing an allocator
    // objects of the right type.  We do that here explicitly for alloc.
#   define __NODE_ALLOCATOR_LOCK \
        EnterCriticalSection(&__node_allocator_lock)
#   define __NODE_ALLOCATOR_UNLOCK \
        LeaveCriticalSection(&__node_allocator_lock)
#   define __NODE_ALLOCATOR_THREADS true
#   define __VOLATILE volatile  // may not be needed
# endif /* WIN32THREADS */
# ifdef __STL_SGI_THREADS
    // This should work without threads, with sproc threads, or with
    // pthreads.  It is suboptimal in all cases.
    // It is unlikely to even compile on nonSGI machines.

    extern "C" {
      extern int __us_rsthread_malloc;
    }
	// The above is copied from malloc.h.  Including <malloc.h>
	// would be cleaner but fails with certain levels of standard
	// conformance.
#   define __NODE_ALLOCATOR_LOCK if (threads && __us_rsthread_malloc) \
                { __lock(&__node_allocator_lock); }
#   define __NODE_ALLOCATOR_UNLOCK if (threads && __us_rsthread_malloc) \
                { __unlock(&__node_allocator_lock); }
#   define __NODE_ALLOCATOR_THREADS true
#   define __VOLATILE volatile  // Needed at -O3 on SGI
# endif
# ifdef _NOTHREADS
//  Thread-unsafe
#   define __NODE_ALLOCATOR_LOCK
#   define __NODE_ALLOCATOR_UNLOCK
#   define __NODE_ALLOCATOR_THREADS false
#   define __VOLATILE
# endif

__STL_BEGIN_NAMESPACE

#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#endif

// Malloc-based allocator.  Typically slower than default alloc below.
// Typically thread-safe and more storage efficient.
#ifdef __STL_STATIC_TEMPLATE_MEMBER_BUG
# ifdef __DECLARE_GLOBALS_HERE
    void (* __malloc_alloc_oom_handler)() = 0;
    // g++ 2.7.2 does not handle static template data members.
# else
    extern void (* __malloc_alloc_oom_handler)();
# endif
#endif

template <int inst>
class __malloc_alloc_template {

private:

static void *oom_malloc(size_t);

static void *oom_realloc(void *, size_t);

#ifndef __STL_STATIC_TEMPLATE_MEMBER_BUG
    static void (* __malloc_alloc_oom_handler)();
#endif

public:

static void * allocate(size_t n)
{
    void *result = malloc(n);
    if (0 == result) result = oom_malloc(n);
    return result;
}

static void deallocate(void *p, size_t /* n */)
{
    free(p);
}

static void * reallocate(void *p, size_t /* old_sz */, size_t new_sz)
{
    void * result = realloc(p, new_sz);
    if (0 == result) result = oom_realloc(p, new_sz);
    return result;
}

static void (* set_malloc_handler(void (*f)()))()
{
    void (* old)() = __malloc_alloc_oom_handler;
    __malloc_alloc_oom_handler = f;
    return(old);
}

};

// malloc_alloc out-of-memory handling

#ifndef __STL_STATIC_TEMPLATE_MEMBER_BUG
template <int inst>
void (* __malloc_alloc_template<inst>::__malloc_alloc_oom_handler)() = 0;
#endif

template <int inst>
void * __malloc_alloc_template<inst>::oom_malloc(size_t n)
{
    void (* my_malloc_handler)();
    void *result;

    for (;;) {
        my_malloc_handler = __malloc_alloc_oom_handler;
        if (0 == my_malloc_handler) { __THROW_BAD_ALLOC; }
        (*my_malloc_handler)();
        result = malloc(n);
        if (result) return(result);
    }
}

template <int inst>
void * __malloc_alloc_template<inst>::oom_realloc(void *p, size_t n)
{
    void (* my_malloc_handler)();
    void *result;

    for (;;) {
        my_malloc_handler = __malloc_alloc_oom_handler;
        if (0 == my_malloc_handler) { __THROW_BAD_ALLOC; }
        (*my_malloc_handler)();
        result = realloc(p, n);
        if (result) return(result);
    }
}

typedef __malloc_alloc_template<0> malloc_alloc;

template<class T, class Alloc>
class simple_alloc {

public:
    static T *allocate(size_t n)
                { return 0 == n? 0 : (T*) Alloc::allocate(n * sizeof (T)); }
    static T *allocate(void)
                { return (T*) Alloc::allocate(sizeof (T)); }
    static void deallocate(T *p, size_t n)
                { if (0 != n) Alloc::deallocate(p, n * sizeof (T)); }
    static void deallocate(T *p)
                { Alloc::deallocate(p, sizeof (T)); }
};

// Allocator adaptor to check size arguments for debugging.
// Reports errors using assert.  Checking can be disabled with
// NDEBUG, but it's far better to just use the underlying allocator
// instead when no checking is desired.
// There is some evidence that this can confuse Purify.
template <class Alloc>
class debug_alloc {

private:

enum {extra = 8};       // Size of space used to store size.  Note
                        // that this must be large enough to preserve
                        // alignment.

public:

static void * allocate(size_t n)
{
    char *result = (char *)Alloc::allocate(n + extra);
    *(size_t *)result = n;
    return result + extra;
}

static void deallocate(void *p, size_t n)
{
    char * real_p = (char *)p - extra;
    assert(*(size_t *)real_p == n);
    Alloc::deallocate(real_p, n + extra);
}

static void * reallocate(void *p, size_t old_sz, size_t new_sz)
{
    char * real_p = (char *)p - extra;
    assert(*(size_t *)real_p == old_sz);
    char * result = (char *)
                  Alloc::reallocate(real_p, old_sz + extra, new_sz + extra);
    *(size_t *)result = new_sz;
    return result + extra;
}


};


# ifdef __USE_MALLOC

typedef malloc_alloc alloc;
typedef malloc_alloc single_client_alloc;

# else


// Default node allocator.
// With a reasonable compiler, this should be roughly as fast as the
// original STL class-specific allocators, but with less fragmentation.
// Default_alloc_template parameters are experimental and MAY
// DISAPPEAR in the future.  Clients should just use alloc for now.
//
// Important implementation properties:
// 1. If the client request an object of size > __MAX_BYTES, the resulting
//    object will be obtained directly from malloc.
// 2. In all other cases, we allocate an object of size exactly
//    ROUND_UP(requested_size).  Thus the client has enough size
//    information that we can return the object to the proper free list
//    without permanently losing part of the object.
//

// The first template parameter specifies whether more than one thread
// may use this allocator.  It is safe to allocate an object from
// one instance of a default_alloc and deallocate it with another
// one.  This effectively transfers its ownership to the second one.
// This may have undesirable effects on reference locality.
// The second parameter is unreferenced and serves only to allow the
// creation of multiple default_alloc instances.
// Node that containers built on different allocator instances have
// different types, limiting the utility of this approach.
#ifdef __SUNPRO_CC
// breaks if we make these template class members:
  enum {__ALIGN = 8};
  enum {__MAX_BYTES = 128};
  enum {__NFREELISTS = __MAX_BYTES/__ALIGN};
#endif

template <bool threads, int inst>
class __default_alloc_template {

private:
  // Really we should use static const int x = N
  // instead of enum { x = N }, but few compilers accept the former.
# ifndef __SUNPRO_CC
    enum {__ALIGN = 8};
    enum {__MAX_BYTES = 128};
    enum {__NFREELISTS = __MAX_BYTES/__ALIGN};
# endif
  static size_t ROUND_UP(size_t bytes) {
        return (((bytes) + __ALIGN-1) & ~(__ALIGN - 1));
  }
__PRIVATE:
  union obj {
        union obj * free_list_link;
        char client_data[1];    /* The client sees this.        */
  };
private:
# ifdef __SUNPRO_CC
    static obj * __VOLATILE free_list[]; 
        // Specifying a size results in duplicate def for 4.1
# else
    static obj * __VOLATILE free_list[__NFREELISTS]; 
# endif
  static  size_t FREELIST_INDEX(size_t bytes) {
        return (((bytes) + __ALIGN-1)/__ALIGN - 1);
  }

  // Returns an object of size n, and optionally adds to size n free list.
  static void *refill(size_t n);
  // Allocates a chunk for nobjs of size size.  nobjs may be reduced
  // if it is inconvenient to allocate the requested number.
  static char *chunk_alloc(size_t size, int &nobjs);

  // Chunk allocation state.
  static char *start_free;
  static char *end_free;
  static size_t heap_size;

# ifdef __STL_SGI_THREADS
    static volatile unsigned long __node_allocator_lock;
    static void __lock(volatile unsigned long *); 
    static inline void __unlock(volatile unsigned long *);
# endif

# ifdef __STL_PTHREADS
    static pthread_mutex_t __node_allocator_lock;
# endif

# ifdef __STL_WIN32THREADS
    static CRITICAL_SECTION __node_allocator_lock;
    static bool __node_allocator_lock_initialized;

  public:
    __default_alloc_template() {
	// This assumes the first constructor is called before threads
	// are started.
        if (!__node_allocator_lock_initialized) {
            InitializeCriticalSection(&__node_allocator_lock);
            __node_allocator_lock_initialized = true;
        }
    }
  private:
# endif

    class lock {
        public:
            lock() { __NODE_ALLOCATOR_LOCK; }
            ~lock() { __NODE_ALLOCATOR_UNLOCK; }
    };
    friend class lock;

public:

  /* n must be > 0      */
  static void * allocate(size_t n)
  {
    obj * __VOLATILE * my_free_list;
    obj * __RESTRICT result;

    if (n > (size_t) __MAX_BYTES) {
        return(malloc_alloc::allocate(n));
    }
    my_free_list = free_list + FREELIST_INDEX(n);
    // Acquire the lock here with a constructor call.
    // This ensures that it is released in exit or during stack
    // unwinding.
#       ifndef _NOTHREADS
        /*REFERENCED*/
        lock lock_instance;
#       endif
    result = *my_free_list;
    if (result == 0) {
        void *r = refill(ROUND_UP(n));
        return r;
    }
    *my_free_list = result -> free_list_link;
    return (result);
  };

  /* p may not be 0 */
  static void deallocate(void *p, size_t n)
  {
    obj *q = (obj *)p;
    obj * __VOLATILE * my_free_list;

    if (n > (size_t) __MAX_BYTES) {
        malloc_alloc::deallocate(p, n);
        return;
    }
    my_free_list = free_list + FREELIST_INDEX(n);
    // acquire lock
#       ifndef _NOTHREADS
        /*REFERENCED*/
        lock lock_instance;
#       endif /* _NOTHREADS */
    q -> free_list_link = *my_free_list;
    *my_free_list = q;
    // lock is released here
  }

  static void * reallocate(void *p, size_t old_sz, size_t new_sz);

} ;

typedef __default_alloc_template<__NODE_ALLOCATOR_THREADS, 0> alloc;
typedef __default_alloc_template<false, 0> single_client_alloc;



/* We allocate memory in large chunks in order to avoid fragmenting     */
/* the malloc heap too much.                                            */
/* We assume that size is properly aligned.                             */
/* We hold the allocation lock.                                         */
template <bool threads, int inst>
char*
__default_alloc_template<threads, inst>::chunk_alloc(size_t size, int& nobjs)
{
    char * result;
    size_t total_bytes = size * nobjs;
    size_t bytes_left = end_free - start_free;

    if (bytes_left >= total_bytes) {
        result = start_free;
        start_free += total_bytes;
        return(result);
    } else if (bytes_left >= size) {
        nobjs = bytes_left/size;
        total_bytes = size * nobjs;
        result = start_free;
        start_free += total_bytes;
        return(result);
    } else {
        size_t bytes_to_get = 2 * total_bytes + ROUND_UP(heap_size >> 4);
        // Try to make use of the left-over piece.
        if (bytes_left > 0) {
            obj * __VOLATILE * my_free_list =
                        free_list + FREELIST_INDEX(bytes_left);

            ((obj *)start_free) -> free_list_link = *my_free_list;
            *my_free_list = (obj *)start_free;
        }
        start_free = (char *)malloc(bytes_to_get);
        if (0 == start_free) {
            int i;
            obj * __VOLATILE * my_free_list, *p;
            // Try to make do with what we have.  That can't
            // hurt.  We do not try smaller requests, since that tends
            // to result in disaster on multi-process machines.
            for (i = size; i <= __MAX_BYTES; i += __ALIGN) {
                my_free_list = free_list + FREELIST_INDEX(i);
                p = *my_free_list;
                if (0 != p) {
                    *my_free_list = p -> free_list_link;
                    start_free = (char *)p;
                    end_free = start_free + i;
                    return(chunk_alloc(size, nobjs));
                    // Any leftover piece will eventually make it to the
                    // right free list.
                }
            }
	    end_free = 0;	// In case of exception.
            start_free = (char *)malloc_alloc::allocate(bytes_to_get);
            // This should either throw an
            // exception or remedy the situation.  Thus we assume it
            // succeeded.
        }
        heap_size += bytes_to_get;
        end_free = start_free + bytes_to_get;
        return(chunk_alloc(size, nobjs));
    }
}


/* Returns an object of size n, and optionally adds to size n free list.*/
/* We assume that n is properly aligned.                                */
/* We hold the allocation lock.                                         */
template <bool threads, int inst>
void* __default_alloc_template<threads, inst>::refill(size_t n)
{
    int nobjs = 20;
    char * chunk = chunk_alloc(n, nobjs);
    obj * __VOLATILE * my_free_list;
    obj * result;
    obj * current_obj, * next_obj;
    int i;

    if (1 == nobjs) return(chunk);
    my_free_list = free_list + FREELIST_INDEX(n);

    /* Build free list in chunk */
      result = (obj *)chunk;
      *my_free_list = next_obj = (obj *)(chunk + n);
      for (i = 1; ; i++) {
        current_obj = next_obj;
        next_obj = (obj *)((char *)next_obj + n);
        if (nobjs - 1 == i) {
            current_obj -> free_list_link = 0;
            break;
        } else {
            current_obj -> free_list_link = next_obj;
        }
      }
    return(result);
}

template <bool threads, int inst>
void*
__default_alloc_template<threads, inst>::reallocate(void *p,
                                                    size_t old_sz,
                                                    size_t new_sz)
{
    void * result;
    size_t copy_sz;

    if (old_sz > (size_t) __MAX_BYTES && new_sz > (size_t) __MAX_BYTES) {
        return(realloc(p, new_sz));
    }
    if (ROUND_UP(old_sz) == ROUND_UP(new_sz)) return(p);
    result = allocate(new_sz);
    copy_sz = new_sz > old_sz? old_sz : new_sz;
    memcpy(result, p, copy_sz);
    deallocate(p, old_sz);
    return(result);
}

#ifdef __STL_PTHREADS
    template <bool threads, int inst>
    pthread_mutex_t
    __default_alloc_template<threads, inst>::__node_allocator_lock
        = PTHREAD_MUTEX_INITIALIZER;
#endif

#ifdef __STL_WIN32THREADS
    template <bool threads, int inst> CRITICAL_SECTION
    __default_alloc_template<threads, inst>::__node_allocator_lock;

    template <bool threads, int inst> bool
    __default_alloc_template<threads, inst>::__node_allocator_lock_initialized
	= false;
#endif

#ifdef __STL_SGI_THREADS
__STL_END_NAMESPACE
#include <mutex.h>
#include <time.h>
__STL_BEGIN_NAMESPACE
// Somewhat generic lock implementations.  We need only test-and-set
// and some way to sleep.  These should work with both SGI pthreads
// and sproc threads.  They may be useful on other systems.
template <bool threads, int inst>
volatile unsigned long
__default_alloc_template<threads, inst>::__node_allocator_lock = 0;

#if __mips < 3 || !(defined (_ABIN32) || defined(_ABI64)) || defined(__GNUC__)
#   define __test_and_set(l,v) test_and_set(l,v)
#endif

template <bool threads, int inst>
void 
__default_alloc_template<threads, inst>::__lock(volatile unsigned long *lock)
{
    const unsigned low_spin_max = 30;  // spin cycles if we suspect uniprocessor
    const unsigned high_spin_max = 1000; // spin cycles for multiprocessor
    static unsigned spin_max = low_spin_max;
    unsigned my_spin_max;
    static unsigned last_spins = 0;
    unsigned my_last_spins;
    static struct timespec ts = {0, 1000};
    unsigned junk;
#   define __ALLOC_PAUSE junk *= junk; junk *= junk; junk *= junk; junk *= junk
    int i;

    if (!__test_and_set((unsigned long *)lock, 1)) {
        return;
    }
    my_spin_max = spin_max;
    my_last_spins = last_spins;
    for (i = 0; i < my_spin_max; i++) {
        if (i < my_last_spins/2 || *lock) {
            __ALLOC_PAUSE;
            continue;
        }
        if (!__test_and_set((unsigned long *)lock, 1)) {
            // got it!
            // Spinning worked.  Thus we're probably not being scheduled
            // against the other process with which we were contending.
            // Thus it makes sense to spin longer the next time.
            last_spins = i;
            spin_max = high_spin_max;
            return;
        }
    }
    // We are probably being scheduled against the other process.  Sleep.
    spin_max = low_spin_max;
    for (;;) {
        if (!__test_and_set((unsigned long *)lock, 1)) {
            return;
        }
        nanosleep(&ts, 0);
    }
}

template <bool threads, int inst>
inline void
__default_alloc_template<threads, inst>::__unlock(volatile unsigned long *lock)
{
#   if defined(__GNUC__) && __mips >= 3
        asm("sync");
        *lock = 0;
#   elif __mips >= 3 && (defined (_ABIN32) || defined(_ABI64))
        __lock_release(lock);
#   else 
        *lock = 0;
        // This is not sufficient on many multiprocessors, since
        // writes to protected variables and the lock may be reordered.
#   endif
}
#endif

template <bool threads, int inst>
char *__default_alloc_template<threads, inst>::start_free = 0;

template <bool threads, int inst>
char *__default_alloc_template<threads, inst>::end_free = 0;

template <bool threads, int inst>
size_t __default_alloc_template<threads, inst>::heap_size = 0;

template <bool threads, int inst>
__default_alloc_template<threads, inst>::obj * __VOLATILE
__default_alloc_template<threads, inst> ::free_list[
# ifdef __SUNPRO_CC
    __NFREELISTS
# else
    __default_alloc_template<threads, inst>::__NFREELISTS
# endif
] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, };
// The 16 zeros are necessary to make version 4.1 of the SunPro
// compiler happy.  Otherwise it appears to allocate too little
// space for the array.

# ifdef __STL_WIN32THREADS
  // Create one to get critical section initialized.
  // We do this onece per file, but only the first constructor
  // does anything.
  static alloc __node_allocator_dummy_instance;
# endif

#endif /* ! __USE_MALLOC */

#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#endif

__STL_END_NAMESPACE

#undef __PRIVATE

#endif /* __SGI_STL_INTERNAL_ALLOC_H */

// Local Variables:
// mode:C++
// End: