aboutsummaryrefslogtreecommitdiff
path: root/libstdc++/stl/function.h
blob: e4f4713235b902cb71fb93ef8e8ea7bbc3721990 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1996
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

#ifndef __SGI_STL_FUNCTION_H
#define __SGI_STL_FUNCTION_H

#include <stddef.h>
#include <stl_config.h>

template <class T>
inline bool operator!=(const T& x, const T& y) {
    return !(x == y);
}

template <class T>
inline bool operator>(const T& x, const T& y) {
    return y < x;
}

template <class T>
inline bool operator<=(const T& x, const T& y) {
    return !(y < x);
}

template <class T>
inline bool operator>=(const T& x, const T& y) {
    return !(x < y);
}

template <class Arg, class Result>
struct unary_function {
    typedef Arg argument_type;
    typedef Result result_type;
};

template <class Arg1, class Arg2, class Result>
struct binary_function {
    typedef Arg1 first_argument_type;
    typedef Arg2 second_argument_type;
    typedef Result result_type;
};      

template <class T>
struct plus : public binary_function<T, T, T> {
    T operator()(const T& x, const T& y) const { return x + y; }
};

template <class T>
struct minus : public binary_function<T, T, T> {
    T operator()(const T& x, const T& y) const { return x - y; }
};

template <class T>
struct multiplies : public binary_function<T, T, T> {
    T operator()(const T& x, const T& y) const { return x * y; }
};

template <class T>
struct divides : public binary_function<T, T, T> {
    T operator()(const T& x, const T& y) const { return x / y; }
};

template <class T> inline T identity_element(plus<T>) { return T(0); }

template <class T> inline T identity_element(multiplies<T>) { return T(1); }

template <class T>
struct modulus : public binary_function<T, T, T> {
    T operator()(const T& x, const T& y) const { return x % y; }
};

template <class T>
struct negate : public unary_function<T, T> {
    T operator()(const T& x) const { return -x; }
};

template <class T>
struct equal_to : public binary_function<T, T, bool> {
    bool operator()(const T& x, const T& y) const { return x == y; }
};

template <class T>
struct not_equal_to : public binary_function<T, T, bool> {
    bool operator()(const T& x, const T& y) const { return x != y; }
};

template <class T>
struct greater : public binary_function<T, T, bool> {
    bool operator()(const T& x, const T& y) const { return x > y; }
};

template <class T>
struct less : public binary_function<T, T, bool> {
    bool operator()(const T& x, const T& y) const { return x < y; }
};

template <class T>
struct greater_equal : public binary_function<T, T, bool> {
    bool operator()(const T& x, const T& y) const { return x >= y; }
};

template <class T>
struct less_equal : public binary_function<T, T, bool> {
    bool operator()(const T& x, const T& y) const { return x <= y; }
};

template <class T>
struct logical_and : public binary_function<T, T, bool> {
    bool operator()(const T& x, const T& y) const { return x && y; }
};

template <class T>
struct logical_or : public binary_function<T, T, bool> {
    bool operator()(const T& x, const T& y) const { return x || y; }
};

template <class T>
struct logical_not : public unary_function<T, bool> {
    bool operator()(const T& x) const { return !x; }
};

template <class Predicate>
class unary_negate
  : public unary_function<typename Predicate::argument_type, bool> {
protected:
    Predicate pred;
public:
    explicit unary_negate(const Predicate& x) : pred(x) {}
    bool operator()(const argument_type& x) const { return !pred(x); }
};

template <class Predicate>
inline unary_negate<Predicate> not1(const Predicate& pred) {
  return unary_negate<Predicate>(pred);
}

template <class Predicate> 
class binary_negate 
    : public binary_function<typename Predicate::first_argument_type,
			     typename Predicate::second_argument_type,
                             bool> {
protected:
    Predicate pred;
public:
    explicit binary_negate(const Predicate& x) : pred(x) {}
    bool operator()(const first_argument_type& x, 
		    const second_argument_type& y) const {
	return !pred(x, y); 
    }
};

template <class Predicate>
inline binary_negate<Predicate> not2(const Predicate& pred) {
  return binary_negate<Predicate>(pred);
}

template <class Operation> 
class binder1st
  : public unary_function<typename Operation::second_argument_type,
                          typename Operation::result_type> {
protected:
    Operation op;
    typename Operation::first_argument_type value;
public:
    binder1st(const Operation& x,
              const typename Operation::first_argument_type& y)
      : op(x), value(y) {}
    result_type operator()(const argument_type& x) const {
	return op(value, x); 
    }
};

template <class Operation, class T>
inline binder1st<Operation> bind1st(const Operation& op, const T& x) {
  typedef typename Operation::first_argument_type arg1_type;
  return binder1st<Operation>(op, arg1_type(x));
}

template <class Operation> 
class binder2nd
  : public unary_function<typename Operation::first_argument_type,
			  typename Operation::result_type> {
protected:
    Operation op;
    typename Operation::second_argument_type value;
public:
    binder2nd(const Operation& x,
              const typename Operation::second_argument_type& y) 
	: op(x), value(y) {}
    result_type operator()(const argument_type& x) const {
	return op(x, value); 
    }
};

template <class Operation, class T>
inline binder2nd<Operation> bind2nd(const Operation& op, const T& x) {
  typedef typename Operation::second_argument_type arg2_type;
  return binder2nd<Operation>(op, arg2_type(x));
}

template <class Operation1, class Operation2>
class unary_compose : public unary_function<typename Operation2::argument_type,
                                            typename Operation1::result_type> {
protected:
    Operation1 op1;
    Operation2 op2;
public:
    unary_compose(const Operation1& x, const Operation2& y) : op1(x), op2(y) {}
    result_type operator()(const argument_type& x) const {
	return op1(op2(x));
    }
};

template <class Operation1, class Operation2>
inline unary_compose<Operation1, Operation2> compose1(const Operation1& op1, 
                                                      const Operation2& op2) {
  return unary_compose<Operation1, Operation2>(op1, op2);
}

template <class Operation1, class Operation2, class Operation3>
class binary_compose
  : public unary_function<typename Operation2::argument_type,
                          typename Operation1::result_type> {
protected:
    Operation1 op1;
    Operation2 op2;
    Operation3 op3;
public:
    binary_compose(const Operation1& x, const Operation2& y, 
		   const Operation3& z) : op1(x), op2(y), op3(z) { }
    result_type operator()(const argument_type& x) const {
	return op1(op2(x), op3(x));
    }
};

template <class Operation1, class Operation2, class Operation3>
inline binary_compose<Operation1, Operation2, Operation3> 
compose2(const Operation1& op1, const Operation2& op2, const Operation3& op3) {
  return binary_compose<Operation1, Operation2, Operation3>(op1, op2, op3);
}

template <class Arg, class Result>
class pointer_to_unary_function : public unary_function<Arg, Result> {
protected:
    Result (*ptr)(Arg);
public:
    pointer_to_unary_function() {}
    explicit pointer_to_unary_function(Result (*x)(Arg)) : ptr(x) {}
    Result operator()(Arg x) const { return ptr(x); }
};

template <class Arg, class Result>
inline pointer_to_unary_function<Arg, Result> ptr_fun(Result (*x)(Arg)) {
  return pointer_to_unary_function<Arg, Result>(x);
}

template <class Arg1, class Arg2, class Result>
class pointer_to_binary_function : public binary_function<Arg1, Arg2, Result> {
protected:
    Result (*ptr)(Arg1, Arg2);
public:
    pointer_to_binary_function() {}
    explicit pointer_to_binary_function(Result (*x)(Arg1, Arg2)) : ptr(x) {}
    Result operator()(Arg1 x, Arg2 y) const { return ptr(x, y); }
};

template <class Arg1, class Arg2, class Result>
inline pointer_to_binary_function<Arg1, Arg2, Result> 
ptr_fun(Result (*x)(Arg1, Arg2)) {
  return pointer_to_binary_function<Arg1, Arg2, Result>(x);
}

template <class T>
struct identity : public unary_function<T, T> {
    const T& operator()(const T& x) const { return x; }
};

template <class Pair>
struct select1st : public unary_function<Pair, typename Pair::first_type> {
  const typename Pair::first_type& operator()(const Pair& x) const
  {
    return x.first;
  }
};

template <class Pair>
struct select2nd : public unary_function<Pair, typename Pair::second_type> {
  const typename Pair::second_type& operator()(const Pair& x) const
  {
    return x.second;
  }
};

template <class Arg1, class Arg2>
struct project1st : public binary_function<Arg1, Arg2, Arg1> {
  Arg1 operator()(const Arg1& x, const Arg2&) const { return x; }
};

template <class Arg1, class Arg2>
struct project2nd : public binary_function<Arg1, Arg2, Arg2> {
  Arg2 operator()(const Arg1&, const Arg2& y) const { return y; }
};

template <class Result>
struct constant_void_fun
{
  typedef Result result_type;
  result_type val;
  constant_void_fun(const result_type& v) : val(v) {}
  const result_type& operator()() const { return val; }
};  

#ifndef __STL_LIMITED_DEFAULT_TEMPLATES
template <class Result, class Argument = Result>
#else
template <class Result, class Argument>
#endif
struct constant_unary_fun : public unary_function<Argument, Result> {
  result_type val;
  constant_unary_fun(const result_type& v) : val(v) {}
  const result_type& operator()(const argument_type&) const { return val; }
};

#ifndef __STL_LIMITED_DEFAULT_TEMPLATES
template <class Result, class Arg1 = Result, class Arg2 = Arg1>
#else
template <class Result, class Arg1, class Arg2>
#endif
struct constant_binary_fun : public binary_function<Arg1, Arg2, Result> {
  result_type val;
  constant_binary_fun(const result_type& v) : val(v) {}
  const result_type& operator()(const first_argument_type&, 
                                const second_argument_type&) const {
    return val;
  }
};

template <class Result>
inline constant_void_fun<Result> constant0(const Result& val)
{
  return constant_void_fun<Result>(val);
}

template <class Result>
inline constant_unary_fun<Result,Result> constant1(const Result& val)
{
  return constant_unary_fun<Result,Result>(val);
}

template <class Result>
inline constant_binary_fun<Result,Result,Result> constant2(const Result& val)
{
  return constant_binary_fun<Result,Result,Result>(val);
}

// Note: this code assumes that int is 32 bits.
class subtractive_rng : public unary_function<unsigned int, unsigned int> {
private:
  unsigned int table[55];
  size_t index1;
  size_t index2;
public:
  unsigned int operator()(unsigned int limit) {
    index1 = (index1 + 1) % 55;
    index2 = (index2 + 1) % 55;
    table[index1] = table[index1] - table[index2];
    return table[index1] % limit;
  }

  void initialize(unsigned int seed)
  {
    unsigned int k = 1;
    table[54] = seed;
    size_t i;
    for (i = 0; i < 54; i++) {
        size_t ii = (21 * (i + 1) % 55) - 1;
        table[ii] = k;
        k = seed - k;
        seed = table[ii];
    }
    for (int loop = 0; loop < 4; loop++) {
        for (i = 0; i < 55; i++)
            table[i] = table[i] - table[(1 + i + 30) % 55];
    }
    index1 = 0;
    index2 = 31;
  }

  subtractive_rng(unsigned int seed) { initialize(seed); }
  subtractive_rng() { initialize(161803398u); }
};


// Adaptor function objects: pointers to member functions.

// There are a total of 16 = 2^4 function objects in this family.
//  (1) Member functions taking no arguments vs member functions taking
//       one argument.
//  (2) Call through pointer vs call through reference.
//  (3) Member function with void return type vs member function with
//      non-void return type.
//  (4) Const vs non-const member function.

// Note that choice (4) is not present in the 8/97 draft C++ standard, 
//  which only allows these adaptors to be used with non-const functions.
//  This is likely to be recified before the standard becomes final.
// Note also that choice (3) is nothing more than a workaround: according
//  to the draft, compilers should handle void and non-void the same way.
//  This feature is not yet widely implemented, though.  You can only use
//  member functions returning void if your compiler supports partial
//  specialization.

// All of this complexity is in the function objects themselves.  You can
//  ignore it by using the helper function mem_fun, mem_fun_ref,
//  mem_fun1, and mem_fun1_ref, which create whichever type of adaptor
//  is appropriate.


template <class S, class T>
class mem_fun_t : public unary_function<T*, S> {
public:
  explicit mem_fun_t(S (T::*pf)()) : f(pf) {}
  S operator()(T* p) const { return (p->*f)(); }
private:
  S (T::*f)();
};

template <class S, class T>
class const_mem_fun_t : public unary_function<const T*, S> {
public:
  explicit const_mem_fun_t(S (T::*pf)() const) : f(pf) {}
  S operator()(const T* p) const { return (p->*f)(); }
private:
  S (T::*f)() const;
};


template <class S, class T>
class mem_fun_ref_t : public unary_function<T, S> {
public:
  explicit mem_fun_ref_t(S (T::*pf)()) : f(pf) {}
  S operator()(T& r) const { return (r.*f)(); }
private:
  S (T::*f)();
};

template <class S, class T>
class const_mem_fun_ref_t : public unary_function<T, S> {
public:
  explicit const_mem_fun_ref_t(S (T::*pf)() const) : f(pf) {}
  S operator()(const T& r) const { return (r.*f)(); }
private:
  S (T::*f)() const;
};

template <class S, class T, class A>
class mem_fun1_t : public binary_function<T*, A, S> {
public:
  explicit mem_fun1_t(S (T::*pf)(A)) : f(pf) {}
  S operator()(T* p, A x) const { return (p->*f)(x); }
private:
  S (T::*f)(A);
};

template <class S, class T, class A>
class const_mem_fun1_t : public binary_function<const T*, A, S> {
public:
  explicit const_mem_fun1_t(S (T::*pf)(A) const) : f(pf) {}
  S operator()(const T* p, A x) const { return (p->*f)(x); }
private:
  S (T::*f)(A) const;
};

template <class S, class T, class A>
class mem_fun1_ref_t : public binary_function<T, A, S> {
public:
  explicit mem_fun1_ref_t(S (T::*pf)(A)) : f(pf) {}
  S operator()(T& r, A x) const { return (r.*f)(x); }
private:
  S (T::*f)(A);
};

template <class S, class T, class A>
class const_mem_fun1_ref_t : public binary_function<T, A, S> {
public:
  explicit const_mem_fun1_ref_t(S (T::*pf)(A) const) : f(pf) {}
  S operator()(const T& r, A x) const { return (r.*f)(x); }
private:
  S (T::*f)(A) const;
};

#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION

template <class T>
class mem_fun_t<void, T> : public unary_function<T*, void> {
public:
  explicit mem_fun_t(void (T::*pf)()) : f(pf) {}
  void operator()(T* p) const { (p->*f)(); }
private:
  void (T::*f)();
};

template <class T>
class const_mem_fun_t<void, T> : public unary_function<const T*, void> {
public:
  explicit const_mem_fun_t(void (T::*pf)() const) : f(pf) {}
  void operator()(const T* p) const { (p->*f)(); }
private:
  void (T::*f)() const;
};

template <class T>
class mem_fun_ref_t<void, T> : public unary_function<T, void> {
public:
  explicit mem_fun_ref_t(void (T::*pf)()) : f(pf) {}
  void operator()(T& r) const { (r.*f)(); }
private:
  void (T::*f)();
};

template <class T>
class const_mem_fun_ref_t<void, T> : public unary_function<T, void> {
public:
  explicit const_mem_fun_ref_t(void (T::*pf)() const) : f(pf) {}
  void operator()(const T& r) const { (r.*f)(); }
private:
  void (T::*f)() const;
};

template <class T, class A>
class mem_fun1_t<void, T, A> : public binary_function<T*, A, void> {
public:
  explicit mem_fun1_t(void (T::*pf)(A)) : f(pf) {}
  void operator()(T* p, A x) const { (p->*f)(x); }
private:
  void (T::*f)(A);
};

template <class T, class A>
class const_mem_fun1_t<void, T, A> : public binary_function<const T*, A, void> {
public:
  explicit const_mem_fun1_t(void (T::*pf)(A) const) : f(pf) {}
  void operator()(const T* p, A x) const { (p->*f)(x); }
private:
  void (T::*f)(A) const;
};

template <class T, class A>
class mem_fun1_ref_t<void, T, A> : public binary_function<T, A, void> {
public:
  explicit mem_fun1_ref_t(void (T::*pf)(A)) : f(pf) {}
  void operator()(T& r, A x) const { (r.*f)(x); }
private:
  void (T::*f)(A);
};

template <class T, class A>
class const_mem_fun1_ref_t<void, T, A> : public binary_function<T, A, void> {
public:
  explicit const_mem_fun1_ref_t(void (T::*pf)(A) const) : f(pf) {}
  void operator()(const T& r, A x) const { (r.*f)(x); }
private:
  void (T::*f)(A) const;
};

#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */

// Mem_fun adaptor helper functions.  There are only four:
//  mem_fun, mem_fun_ref, mem_fun1, mem_fun1_ref.

template <class S, class T>
inline mem_fun_t<S,T> mem_fun(S (T::*f)()) { 
  return mem_fun_t<S,T>(f);
}

template <class S, class T>
inline const_mem_fun_t<S,T> mem_fun(S (T::*f)() const) {
  return const_mem_fun_t<S,T>(f);
}

template <class S, class T>
inline mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)()) { 
  return mem_fun_ref_t<S,T>(f);
}

template <class S, class T>
inline const_mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)() const) {
  return const_mem_fun_ref_t<S,T>(f);
}

template <class S, class T, class A>
inline mem_fun1_t<S,T,A> mem_fun1(S (T::*f)(A)) { 
  return mem_fun1_t<S,T,A>(f);
}

template <class S, class T, class A>
inline const_mem_fun1_t<S,T,A> mem_fun1(S (T::*f)(A) const) {
  return const_mem_fun1_t<S,T,A>(f);
}

template <class S, class T, class A>
inline mem_fun1_ref_t<S,T,A> mem_fun1_ref(S (T::*f)(A)) { 
  return mem_fun1_ref_t<S,T,A>(f);
}

template <class S, class T, class A>
inline const_mem_fun1_ref_t<S,T,A> mem_fun1_ref(S (T::*f)(A) const) {
  return const_mem_fun1_ref_t<S,T,A>(f);
}

#endif /* __SGI_STL_FUNCTION_H */