aboutsummaryrefslogtreecommitdiff
path: root/libgcc/unwind-dw2-btree.h
blob: ae957e91fbd1d39b6811181c5f2415ab8a456cf6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
/* Lock-free btree for manually registered unwind frames.  */
/* Copyright (C) 2022-2023 Free Software Foundation, Inc.
   Contributed by Thomas Neumann

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */

#ifndef GCC_UNWIND_DW2_BTREE_H
#define GCC_UNWIND_DW2_BTREE_H

#include <stdbool.h>

// Common logic for version locks.
struct version_lock
{
  // The lock itself. The lowest bit indicates an exclusive lock,
  // the second bit indicates waiting threads. All other bits are
  // used as counter to recognize changes.
  // Overflows are okay here, we must only prevent overflow to the
  // same value within one lock_optimistic/validate
  // range. Even on 32 bit platforms that would require 1 billion
  // frame registrations within the time span of a few assembler
  // instructions.
  uintptr_type version_lock;
};

#ifdef __GTHREAD_HAS_COND
// We should never get contention within the tree as it rarely changes.
// But if we ever do get contention we use these for waiting.
static __gthread_mutex_t version_lock_mutex = __GTHREAD_MUTEX_INIT;
static __gthread_cond_t version_lock_cond = __GTHREAD_COND_INIT;
#endif

// Initialize in locked state.
static inline void
version_lock_initialize_locked_exclusive (struct version_lock *vl)
{
  vl->version_lock = 1;
}

// Try to lock the node exclusive.
static inline bool
version_lock_try_lock_exclusive (struct version_lock *vl)
{
  uintptr_type state = __atomic_load_n (&(vl->version_lock), __ATOMIC_SEQ_CST);
  if (state & 1)
    return false;
  return __atomic_compare_exchange_n (&(vl->version_lock), &state, state | 1,
				      false, __ATOMIC_SEQ_CST,
				      __ATOMIC_SEQ_CST);
}

// Lock the node exclusive, blocking as needed.
static void
version_lock_lock_exclusive (struct version_lock *vl)
{
#ifndef __GTHREAD_HAS_COND
restart:
#endif

  // We should virtually never get contention here, as frame
  // changes are rare.
  uintptr_type state = __atomic_load_n (&(vl->version_lock), __ATOMIC_SEQ_CST);
  if (!(state & 1))
    {
      if (__atomic_compare_exchange_n (&(vl->version_lock), &state, state | 1,
				       false, __ATOMIC_SEQ_CST,
				       __ATOMIC_SEQ_CST))
	return;
    }

    // We did get contention, wait properly.
#ifdef __GTHREAD_HAS_COND
  __gthread_mutex_lock (&version_lock_mutex);
  state = __atomic_load_n (&(vl->version_lock), __ATOMIC_SEQ_CST);
  while (true)
    {
      // Check if the lock is still held.
      if (!(state & 1))
	{
	  if (__atomic_compare_exchange_n (&(vl->version_lock), &state,
					   state | 1, false, __ATOMIC_SEQ_CST,
					   __ATOMIC_SEQ_CST))
	    {
	      __gthread_mutex_unlock (&version_lock_mutex);
	      return;
	    }
	  else
	    {
	      continue;
	    }
	}

      // Register waiting thread.
      if (!(state & 2))
	{
	  if (!__atomic_compare_exchange_n (&(vl->version_lock), &state,
					    state | 2, false, __ATOMIC_SEQ_CST,
					    __ATOMIC_SEQ_CST))
	    continue;
	}

      // And sleep.
      __gthread_cond_wait (&version_lock_cond, &version_lock_mutex);
      state = __atomic_load_n (&(vl->version_lock), __ATOMIC_SEQ_CST);
    }
#else
  // Spin if we do not have condition variables available.
  // We expect no contention here, spinning should be okay.
  goto restart;
#endif
}

// Release a locked node and increase the version lock.
static void
version_lock_unlock_exclusive (struct version_lock *vl)
{
  // increase version, reset exclusive lock bits
  uintptr_type state = __atomic_load_n (&(vl->version_lock), __ATOMIC_SEQ_CST);
  uintptr_type ns = (state + 4) & (~((uintptr_type) 3));
  state = __atomic_exchange_n (&(vl->version_lock), ns, __ATOMIC_SEQ_CST);

#ifdef __GTHREAD_HAS_COND
  if (state & 2)
    {
      // Wake up waiting threads. This should be extremely rare.
      __gthread_mutex_lock (&version_lock_mutex);
      __gthread_cond_broadcast (&version_lock_cond);
      __gthread_mutex_unlock (&version_lock_mutex);
    }
#endif
}

// Acquire an optimistic "lock". Note that this does not lock at all, it
// only allows for validation later.
static inline bool
version_lock_lock_optimistic (const struct version_lock *vl, uintptr_type *lock)
{
  uintptr_type state = __atomic_load_n (&(vl->version_lock), __ATOMIC_SEQ_CST);
  *lock = state;

  // Acquiring the lock fails when there is currently an exclusive lock.
  return !(state & 1);
}

// Validate a previously acquired "lock".
static inline bool
version_lock_validate (const struct version_lock *vl, uintptr_type lock)
{
  // Prevent the reordering of non-atomic loads behind the atomic load.
  // Hans Boehm, Can Seqlocks Get Along with Programming Language Memory
  // Models?, Section 4.
  __atomic_thread_fence (__ATOMIC_ACQUIRE);

  // Check that the node is still in the same state.
  uintptr_type state = __atomic_load_n (&(vl->version_lock), __ATOMIC_SEQ_CST);
  return (state == lock);
}

// The largest possible separator value.
static const uintptr_type max_separator = ~((uintptr_type) (0));

struct btree_node;

// Inner entry. The child tree contains all entries <= separator.
struct inner_entry
{
  uintptr_type separator;
  struct btree_node *child;
};

// Leaf entry. Stores an object entry.
struct leaf_entry
{
  uintptr_type base, size;
  struct object *ob;
};

// Node types.
enum node_type
{
  btree_node_inner,
  btree_node_leaf,
  btree_node_free
};

// Node sizes. Chosen such that the result size is roughly 256 bytes.
#define max_fanout_inner 15
#define max_fanout_leaf 10

// A btree node.
struct btree_node
{
  // The version lock used for optimistic lock coupling.
  struct version_lock version_lock;
  // The number of entries.
  unsigned entry_count;
  // The type.
  enum node_type type;
  // The payload.
  union
  {
    // The inner nodes have fence keys, i.e., the right-most entry includes a
    // separator.
    struct inner_entry children[max_fanout_inner];
    struct leaf_entry entries[max_fanout_leaf];
  } content;
};

// Is an inner node?
static inline bool
btree_node_is_inner (const struct btree_node *n)
{
  return n->type == btree_node_inner;
}

// Is a leaf node?
static inline bool
btree_node_is_leaf (const struct btree_node *n)
{
  return n->type == btree_node_leaf;
}

// Should the node be merged?
static inline bool
btree_node_needs_merge (const struct btree_node *n)
{
  return n->entry_count < (btree_node_is_inner (n) ? (max_fanout_inner / 2)
						   : (max_fanout_leaf / 2));
}

// Get the fence key for inner nodes.
static inline uintptr_type
btree_node_get_fence_key (const struct btree_node *n)
{
  // For inner nodes we just return our right-most entry.
  return n->content.children[n->entry_count - 1].separator;
}

// Find the position for a slot in an inner node.
static unsigned
btree_node_find_inner_slot (const struct btree_node *n, uintptr_type value)
{
  for (unsigned index = 0, ec = n->entry_count; index != ec; ++index)
    if (n->content.children[index].separator >= value)
      return index;
  return n->entry_count;
}

// Find the position for a slot in a leaf node.
static unsigned
btree_node_find_leaf_slot (const struct btree_node *n, uintptr_type value)
{
  for (unsigned index = 0, ec = n->entry_count; index != ec; ++index)
    if (n->content.entries[index].base + n->content.entries[index].size > value)
      return index;
  return n->entry_count;
}

// Try to lock the node exclusive.
static inline bool
btree_node_try_lock_exclusive (struct btree_node *n)
{
  return version_lock_try_lock_exclusive (&(n->version_lock));
}

// Lock the node exclusive, blocking as needed.
static inline void
btree_node_lock_exclusive (struct btree_node *n)
{
  version_lock_lock_exclusive (&(n->version_lock));
}

// Release a locked node and increase the version lock.
static inline void
btree_node_unlock_exclusive (struct btree_node *n)
{
  version_lock_unlock_exclusive (&(n->version_lock));
}

// Acquire an optimistic "lock". Note that this does not lock at all, it
// only allows for validation later.
static inline bool
btree_node_lock_optimistic (const struct btree_node *n, uintptr_type *lock)
{
  return version_lock_lock_optimistic (&(n->version_lock), lock);
}

// Validate a previously acquire lock.
static inline bool
btree_node_validate (const struct btree_node *n, uintptr_type lock)
{
  return version_lock_validate (&(n->version_lock), lock);
}

// Insert a new separator after splitting.
static void
btree_node_update_separator_after_split (struct btree_node *n,
					 uintptr_type old_separator,
					 uintptr_type new_separator,
					 struct btree_node *new_right)
{
  unsigned slot = btree_node_find_inner_slot (n, old_separator);
  for (unsigned index = n->entry_count; index > slot; --index)
    n->content.children[index] = n->content.children[index - 1];
  n->content.children[slot].separator = new_separator;
  n->content.children[slot + 1].child = new_right;
  n->entry_count++;
}

// A btree. Suitable for static initialization, all members are zero at the
// beginning.
struct btree
{
  // The root of the btree.
  struct btree_node *root;
  // The free list of released node.
  struct btree_node *free_list;
  // The version lock used to protect the root.
  struct version_lock root_lock;
};

// Initialize a btree. Not actually used, just for exposition.
static inline void
btree_init (struct btree *t)
{
  t->root = NULL;
  t->free_list = NULL;
  t->root_lock.version_lock = 0;
};

static void
btree_release_tree_recursively (struct btree *t, struct btree_node *n);

// Destroy a tree and release all nodes.
static void
btree_destroy (struct btree *t)
{
  // Disable the mechanism before cleaning up.
  struct btree_node *old_root
    = __atomic_exchange_n (&(t->root), NULL, __ATOMIC_SEQ_CST);
  if (old_root)
    btree_release_tree_recursively (t, old_root);

  // Release all free nodes.
  while (t->free_list)
    {
      struct btree_node *next = t->free_list->content.children[0].child;
      free (t->free_list);
      t->free_list = next;
    }
}

// Allocate a node. This node will be returned in locked exclusive state.
static struct btree_node *
btree_allocate_node (struct btree *t, bool inner)
{
  while (true)
    {
      // Try the free list first.
      struct btree_node *next_free
	= __atomic_load_n (&(t->free_list), __ATOMIC_SEQ_CST);
      if (next_free)
	{
	  if (!btree_node_try_lock_exclusive (next_free))
	    continue;
	  // The node might no longer be free, check that again after acquiring
	  // the exclusive lock.
	  if (next_free->type == btree_node_free)
	    {
	      struct btree_node *ex = next_free;
	      if (__atomic_compare_exchange_n (
		    &(t->free_list), &ex, next_free->content.children[0].child,
		    false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST))
		{
		  next_free->entry_count = 0;
		  next_free->type = inner ? btree_node_inner : btree_node_leaf;
		  return next_free;
		}
	    }
	  btree_node_unlock_exclusive (next_free);
	  continue;
	}

      // No free node available, allocate a new one.
      struct btree_node *new_node
	= (struct btree_node *) (malloc (sizeof (struct btree_node)));
      version_lock_initialize_locked_exclusive (
	&(new_node->version_lock)); // initialize the node in locked state.
      new_node->entry_count = 0;
      new_node->type = inner ? btree_node_inner : btree_node_leaf;
      return new_node;
    }
}

// Release a node. This node must be currently locked exclusively and will
// be placed in the free list.
static void
btree_release_node (struct btree *t, struct btree_node *node)
{
  // We cannot release the memory immediately because there might still be
  // concurrent readers on that node. Put it in the free list instead.
  node->type = btree_node_free;
  struct btree_node *next_free
    = __atomic_load_n (&(t->free_list), __ATOMIC_SEQ_CST);
  do
    {
      node->content.children[0].child = next_free;
  } while (!__atomic_compare_exchange_n (&(t->free_list), &next_free, node,
					 false, __ATOMIC_SEQ_CST,
					 __ATOMIC_SEQ_CST));
  btree_node_unlock_exclusive (node);
}

// Recursively release a tree. The btree is by design very shallow, thus
// we can risk recursion here.
static void
btree_release_tree_recursively (struct btree *t, struct btree_node *node)
{
  btree_node_lock_exclusive (node);
  if (btree_node_is_inner (node))
    {
      for (unsigned index = 0; index < node->entry_count; ++index)
	btree_release_tree_recursively (t, node->content.children[index].child);
    }
  btree_release_node (t, node);
}

// Check if we are splitting the root.
static void
btree_handle_root_split (struct btree *t, struct btree_node **node,
			 struct btree_node **parent)
{
  // We want to keep the root pointer stable to allow for contention
  // free reads. Thus, we split the root by first moving the content
  // of the root node to a new node, and then split that new node.
  if (!*parent)
    {
      // Allocate a new node, this guarantees us that we will have a parent
      // afterwards.
      struct btree_node *new_node
	= btree_allocate_node (t, btree_node_is_inner (*node));
      struct btree_node *old_node = *node;
      new_node->entry_count = old_node->entry_count;
      new_node->content = old_node->content;
      old_node->content.children[0].separator = max_separator;
      old_node->content.children[0].child = new_node;
      old_node->entry_count = 1;
      old_node->type = btree_node_inner;

      *parent = old_node;
      *node = new_node;
    }
}

// Split an inner node.
static void
btree_split_inner (struct btree *t, struct btree_node **inner,
		   struct btree_node **parent, uintptr_type target)
{
  // Check for the root.
  btree_handle_root_split (t, inner, parent);

  // Create two inner node.
  uintptr_type right_fence = btree_node_get_fence_key (*inner);
  struct btree_node *left_inner = *inner;
  struct btree_node *right_inner = btree_allocate_node (t, true);
  unsigned split = left_inner->entry_count / 2;
  right_inner->entry_count = left_inner->entry_count - split;
  for (unsigned index = 0; index < right_inner->entry_count; ++index)
    right_inner->content.children[index]
      = left_inner->content.children[split + index];
  left_inner->entry_count = split;
  uintptr_type left_fence = btree_node_get_fence_key (left_inner);
  btree_node_update_separator_after_split (*parent, right_fence, left_fence,
					   right_inner);
  if (target <= left_fence)
    {
      *inner = left_inner;
      btree_node_unlock_exclusive (right_inner);
    }
  else
    {
      *inner = right_inner;
      btree_node_unlock_exclusive (left_inner);
    }
}

// Split a leaf node.
static void
btree_split_leaf (struct btree *t, struct btree_node **leaf,
		  struct btree_node **parent, uintptr_type fence,
		  uintptr_type target)
{
  // Check for the root.
  btree_handle_root_split (t, leaf, parent);

  // Create two leaf nodes.
  uintptr_type right_fence = fence;
  struct btree_node *left_leaf = *leaf;
  struct btree_node *right_leaf = btree_allocate_node (t, false);
  unsigned split = left_leaf->entry_count / 2;
  right_leaf->entry_count = left_leaf->entry_count - split;
  for (unsigned index = 0; index != right_leaf->entry_count; ++index)
    right_leaf->content.entries[index]
      = left_leaf->content.entries[split + index];
  left_leaf->entry_count = split;
  uintptr_type left_fence = right_leaf->content.entries[0].base - 1;
  btree_node_update_separator_after_split (*parent, right_fence, left_fence,
					   right_leaf);
  if (target <= left_fence)
    {
      *leaf = left_leaf;
      btree_node_unlock_exclusive (right_leaf);
    }
  else
    {
      *leaf = right_leaf;
      btree_node_unlock_exclusive (left_leaf);
    }
}

// Merge (or balance) child nodes.
static struct btree_node *
btree_merge_node (struct btree *t, unsigned child_slot,
		  struct btree_node *parent, uintptr_type target)
{
  // Choose the emptiest neighbor and lock both. The target child is already
  // locked.
  unsigned left_slot;
  struct btree_node *left_node, *right_node;
  if ((child_slot == 0)
      || (((child_slot + 1) < parent->entry_count)
	  && (parent->content.children[child_slot + 1].child->entry_count
	      < parent->content.children[child_slot - 1].child->entry_count)))
    {
      left_slot = child_slot;
      left_node = parent->content.children[left_slot].child;
      right_node = parent->content.children[left_slot + 1].child;
      btree_node_lock_exclusive (right_node);
    }
  else
    {
      left_slot = child_slot - 1;
      left_node = parent->content.children[left_slot].child;
      right_node = parent->content.children[left_slot + 1].child;
      btree_node_lock_exclusive (left_node);
    }

  // Can we merge both nodes into one node?
  unsigned total_count = left_node->entry_count + right_node->entry_count;
  unsigned max_count
    = btree_node_is_inner (left_node) ? max_fanout_inner : max_fanout_leaf;
  if (total_count <= max_count)
    {
      // Merge into the parent?
      if (parent->entry_count == 2)
	{
	  // Merge children into parent. This can only happen at the root.
	  if (btree_node_is_inner (left_node))
	    {
	      for (unsigned index = 0; index != left_node->entry_count; ++index)
		parent->content.children[index]
		  = left_node->content.children[index];
	      for (unsigned index = 0; index != right_node->entry_count;
		   ++index)
		parent->content.children[index + left_node->entry_count]
		  = right_node->content.children[index];
	    }
	  else
	    {
	      parent->type = btree_node_leaf;
	      for (unsigned index = 0; index != left_node->entry_count; ++index)
		parent->content.entries[index]
		  = left_node->content.entries[index];
	      for (unsigned index = 0; index != right_node->entry_count;
		   ++index)
		parent->content.entries[index + left_node->entry_count]
		  = right_node->content.entries[index];
	    }
	  parent->entry_count = total_count;
	  btree_release_node (t, left_node);
	  btree_release_node (t, right_node);
	  return parent;
	}
      else
	{
	  // Regular merge.
	  if (btree_node_is_inner (left_node))
	    {
	      for (unsigned index = 0; index != right_node->entry_count;
		   ++index)
		left_node->content.children[left_node->entry_count++]
		  = right_node->content.children[index];
	    }
	  else
	    {
	      for (unsigned index = 0; index != right_node->entry_count;
		   ++index)
		left_node->content.entries[left_node->entry_count++]
		  = right_node->content.entries[index];
	    }
	  parent->content.children[left_slot].separator
	    = parent->content.children[left_slot + 1].separator;
	  for (unsigned index = left_slot + 1; index + 1 < parent->entry_count;
	       ++index)
	    parent->content.children[index]
	      = parent->content.children[index + 1];
	  parent->entry_count--;
	  btree_release_node (t, right_node);
	  btree_node_unlock_exclusive (parent);
	  return left_node;
	}
    }

  // No merge possible, rebalance instead.
  if (left_node->entry_count > right_node->entry_count)
    {
      // Shift from left to right.
      unsigned to_shift
	= (left_node->entry_count - right_node->entry_count) / 2;
      if (btree_node_is_inner (left_node))
	{
	  for (unsigned index = 0; index != right_node->entry_count; ++index)
	    {
	      unsigned pos = right_node->entry_count - 1 - index;
	      right_node->content.children[pos + to_shift]
		= right_node->content.children[pos];
	    }
	  for (unsigned index = 0; index != to_shift; ++index)
	    right_node->content.children[index]
	      = left_node->content
		  .children[left_node->entry_count - to_shift + index];
	}
      else
	{
	  for (unsigned index = 0; index != right_node->entry_count; ++index)
	    {
	      unsigned pos = right_node->entry_count - 1 - index;
	      right_node->content.entries[pos + to_shift]
		= right_node->content.entries[pos];
	    }
	  for (unsigned index = 0; index != to_shift; ++index)
	    right_node->content.entries[index]
	      = left_node->content
		  .entries[left_node->entry_count - to_shift + index];
	}
      left_node->entry_count -= to_shift;
      right_node->entry_count += to_shift;
    }
  else
    {
      // Shift from right to left.
      unsigned to_shift
	= (right_node->entry_count - left_node->entry_count) / 2;
      if (btree_node_is_inner (left_node))
	{
	  for (unsigned index = 0; index != to_shift; ++index)
	    left_node->content.children[left_node->entry_count + index]
	      = right_node->content.children[index];
	  for (unsigned index = 0; index != right_node->entry_count - to_shift;
	       ++index)
	    right_node->content.children[index]
	      = right_node->content.children[index + to_shift];
	}
      else
	{
	  for (unsigned index = 0; index != to_shift; ++index)
	    left_node->content.entries[left_node->entry_count + index]
	      = right_node->content.entries[index];
	  for (unsigned index = 0; index != right_node->entry_count - to_shift;
	       ++index)
	    right_node->content.entries[index]
	      = right_node->content.entries[index + to_shift];
	}
      left_node->entry_count += to_shift;
      right_node->entry_count -= to_shift;
    }
  uintptr_type left_fence;
  if (btree_node_is_leaf (left_node))
    {
      left_fence = right_node->content.entries[0].base - 1;
    }
  else
    {
      left_fence = btree_node_get_fence_key (left_node);
    }
  parent->content.children[left_slot].separator = left_fence;
  btree_node_unlock_exclusive (parent);
  if (target <= left_fence)
    {
      btree_node_unlock_exclusive (right_node);
      return left_node;
    }
  else
    {
      btree_node_unlock_exclusive (left_node);
      return right_node;
    }
}

// Insert an entry.
static bool
btree_insert (struct btree *t, uintptr_type base, uintptr_type size,
	      struct object *ob)
{
  // Sanity check.
  if (!size)
    return false;

  // Access the root.
  struct btree_node *iter, *parent = NULL;
  {
    version_lock_lock_exclusive (&(t->root_lock));
    iter = t->root;
    if (iter)
      {
	btree_node_lock_exclusive (iter);
      }
    else
      {
	t->root = iter = btree_allocate_node (t, false);
      }
    version_lock_unlock_exclusive (&(t->root_lock));
  }

  // Walk down the btree with classic lock coupling and eager splits.
  // Strictly speaking this is not performance optimal, we could use
  // optimistic lock coupling until we hit a node that has to be modified.
  // But that is more difficult to implement and frame registration is
  // rare anyway, we use simple locking for now.

  uintptr_type fence = max_separator;
  while (btree_node_is_inner (iter))
    {
      // Use eager splits to avoid lock coupling up.
      if (iter->entry_count == max_fanout_inner)
	btree_split_inner (t, &iter, &parent, base);

      unsigned slot = btree_node_find_inner_slot (iter, base);
      if (parent)
	btree_node_unlock_exclusive (parent);
      parent = iter;
      fence = iter->content.children[slot].separator;
      iter = iter->content.children[slot].child;
      btree_node_lock_exclusive (iter);
    }

  // Make sure we have space.
  if (iter->entry_count == max_fanout_leaf)
    btree_split_leaf (t, &iter, &parent, fence, base);
  if (parent)
    btree_node_unlock_exclusive (parent);

  // Insert in node.
  unsigned slot = btree_node_find_leaf_slot (iter, base);
  if ((slot < iter->entry_count) && (iter->content.entries[slot].base == base))
    {
      // Duplicate entry, this should never happen.
      btree_node_unlock_exclusive (iter);
      return false;
    }
  for (unsigned index = iter->entry_count; index > slot; --index)
    iter->content.entries[index] = iter->content.entries[index - 1];
  struct leaf_entry *e = &(iter->content.entries[slot]);
  e->base = base;
  e->size = size;
  e->ob = ob;
  iter->entry_count++;
  btree_node_unlock_exclusive (iter);
  return true;
}

// Remove an entry.
static struct object *
btree_remove (struct btree *t, uintptr_type base)
{
  // Access the root.
  version_lock_lock_exclusive (&(t->root_lock));
  struct btree_node *iter = t->root;
  if (iter)
    btree_node_lock_exclusive (iter);
  version_lock_unlock_exclusive (&(t->root_lock));
  if (!iter)
    return NULL;

  // Same strategy as with insert, walk down with lock coupling and
  // merge eagerly.
  while (btree_node_is_inner (iter))
    {
      unsigned slot = btree_node_find_inner_slot (iter, base);
      struct btree_node *next = iter->content.children[slot].child;
      btree_node_lock_exclusive (next);
      if (btree_node_needs_merge (next))
	{
	  // Use eager merges to avoid lock coupling up.
	  iter = btree_merge_node (t, slot, iter, base);
	}
      else
	{
	  btree_node_unlock_exclusive (iter);
	  iter = next;
	}
    }

  // Remove existing entry.
  unsigned slot = btree_node_find_leaf_slot (iter, base);
  if ((slot >= iter->entry_count) || (iter->content.entries[slot].base != base))
    {
      // Not found, this should never happen.
      btree_node_unlock_exclusive (iter);
      return NULL;
    }
  struct object *ob = iter->content.entries[slot].ob;
  for (unsigned index = slot; index + 1 < iter->entry_count; ++index)
    iter->content.entries[index] = iter->content.entries[index + 1];
  iter->entry_count--;
  btree_node_unlock_exclusive (iter);
  return ob;
}

// Find the corresponding entry for the given address.
static struct object *
btree_lookup (const struct btree *t, uintptr_type target_addr)
{
  // Within this function many loads are relaxed atomic loads.
  // Use a macro to keep the code reasonable.
#define RLOAD(x) __atomic_load_n (&(x), __ATOMIC_RELAXED)

  // For targets where unwind info is usually not registered through these
  // APIs anymore, avoid any sequential consistent atomics.
  // Use relaxed MO here, it is up to the app to ensure that the library
  // loading/initialization happens-before using that library in other
  // threads (in particular unwinding with that library's functions
  // appearing in the backtraces).  Calling that library's functions
  // without waiting for the library to initialize would be racy.
  if (__builtin_expect (!RLOAD (t->root), 1))
    return NULL;

  // The unwinding tables are mostly static, they only change when
  // frames are added or removed. This makes it extremely unlikely that they
  // change during a given unwinding sequence. Thus, we optimize for the
  // contention free case and use optimistic lock coupling. This does not
  // require any writes to shared state, instead we validate every read. It is
  // important that we do not trust any value that we have read until we call
  // validate again. Data can change at arbitrary points in time, thus we always
  // copy something into a local variable and validate again before acting on
  // the read. In the unlikely event that we encounter a concurrent change we
  // simply restart and try again.

restart:
  struct btree_node *iter;
  uintptr_type lock;
  {
    // Accessing the root node requires defending against concurrent pointer
    // changes Thus we couple rootLock -> lock on root node -> validate rootLock
    if (!version_lock_lock_optimistic (&(t->root_lock), &lock))
      goto restart;
    iter = RLOAD (t->root);
    if (!version_lock_validate (&(t->root_lock), lock))
      goto restart;
    if (!iter)
      return NULL;
    uintptr_type child_lock;
    if ((!btree_node_lock_optimistic (iter, &child_lock))
	|| (!version_lock_validate (&(t->root_lock), lock)))
      goto restart;
    lock = child_lock;
  }

  // Now we can walk down towards the right leaf node.
  while (true)
    {
      enum node_type type = RLOAD (iter->type);
      unsigned entry_count = RLOAD (iter->entry_count);
      if (!btree_node_validate (iter, lock))
	goto restart;
      if (!entry_count)
	return NULL;

      if (type == btree_node_inner)
	{
	  // We cannot call find_inner_slot here because we need (relaxed)
	  // atomic reads here.
	  unsigned slot = 0;
	  while (
	    ((slot + 1) < entry_count)
	    && (RLOAD (iter->content.children[slot].separator) < target_addr))
	    ++slot;
	  struct btree_node *child = RLOAD (iter->content.children[slot].child);
	  if (!btree_node_validate (iter, lock))
	    goto restart;

	  // The node content can change at any point in time, thus we must
	  // interleave parent and child checks.
	  uintptr_type child_lock;
	  if (!btree_node_lock_optimistic (child, &child_lock))
	    goto restart;
	  if (!btree_node_validate (iter, lock))
	    goto restart; // make sure we still point to the correct node after
			  // acquiring the optimistic lock.

	  // Go down
	  iter = child;
	  lock = child_lock;
	}
      else
	{
	  // We cannot call find_leaf_slot here because we need (relaxed)
	  // atomic reads here.
	  unsigned slot = 0;
	  while (((slot + 1) < entry_count)
		 && (RLOAD (iter->content.entries[slot].base)
		       + RLOAD (iter->content.entries[slot].size)
		     <= target_addr))
	    ++slot;
	  struct leaf_entry entry;
	  entry.base = RLOAD (iter->content.entries[slot].base);
	  entry.size = RLOAD (iter->content.entries[slot].size);
	  entry.ob = RLOAD (iter->content.entries[slot].ob);
	  if (!btree_node_validate (iter, lock))
	    goto restart;

	  // Check if we have a hit.
	  if ((entry.base <= target_addr)
	      && (target_addr < entry.base + entry.size))
	    {
	      return entry.ob;
	    }
	  return NULL;
	}
    }
#undef RLOAD
}

#endif /* unwind-dw2-btree.h */