aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-scopedtables.c
blob: b18978e4ab78c172c9d8ec9ef0ae83283b0489f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
/* Header file for SSA dominator optimizations.
   Copyright (C) 2013-2016 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "function.h"
#include "basic-block.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "tree-pretty-print.h"
#include "tree-ssa-scopedtables.h"
#include "tree-ssa-threadedge.h"
#include "stor-layout.h"
#include "fold-const.h"
#include "tree-eh.h"
#include "internal-fn.h"
#include "tree-dfa.h"

static bool hashable_expr_equal_p (const struct hashable_expr *,
				   const struct hashable_expr *);

/* Initialize local stacks for this optimizer and record equivalences
   upon entry to BB.  Equivalences can come from the edge traversed to
   reach BB or they may come from PHI nodes at the start of BB.  */

/* Pop items off the unwinding stack, removing each from the hash table
   until a marker is encountered.  */

void
avail_exprs_stack::pop_to_marker ()
{
  /* Remove all the expressions made available in this block.  */
  while (m_stack.length () > 0)
    {
      std::pair<expr_hash_elt_t, expr_hash_elt_t> victim = m_stack.pop ();
      expr_hash_elt **slot;

      if (victim.first == NULL)
	break;

      /* This must precede the actual removal from the hash table,
         as ELEMENT and the table entry may share a call argument
         vector which will be freed during removal.  */
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
          fprintf (dump_file, "<<<< ");
	  victim.first->print (dump_file);
        }

      slot = m_avail_exprs->find_slot (victim.first, NO_INSERT);
      gcc_assert (slot && *slot == victim.first);
      if (victim.second != NULL)
	{
	  delete *slot;
	  *slot = victim.second;
	}
      else
	m_avail_exprs->clear_slot (slot);
    }
}

/* Add <ELT1,ELT2> to the unwinding stack so they can be later removed
   from the hash table.  */

void
avail_exprs_stack::record_expr (class expr_hash_elt *elt1,
				class expr_hash_elt *elt2,
				char type)
{
  if (elt1 && dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "%c>>> ", type);
      elt1->print (dump_file);
    }

  m_stack.safe_push (std::pair<expr_hash_elt_t, expr_hash_elt_t> (elt1, elt2));
}

/* Generate a hash value for a pair of expressions.  This can be used
   iteratively by passing a previous result in HSTATE.

   The same hash value is always returned for a given pair of expressions,
   regardless of the order in which they are presented.  This is useful in
   hashing the operands of commutative functions.  */

namespace inchash
{

static void
add_expr_commutative (const_tree t1, const_tree t2, hash &hstate)
{
  hash one, two;

  inchash::add_expr (t1, one);
  inchash::add_expr (t2, two);
  hstate.add_commutative (one, two);
}

/* Compute a hash value for a hashable_expr value EXPR and a
   previously accumulated hash value VAL.  If two hashable_expr
   values compare equal with hashable_expr_equal_p, they must
   hash to the same value, given an identical value of VAL.
   The logic is intended to follow inchash::add_expr in tree.c.  */

static void
add_hashable_expr (const struct hashable_expr *expr, hash &hstate)
{
  switch (expr->kind)
    {
    case EXPR_SINGLE:
      inchash::add_expr (expr->ops.single.rhs, hstate);
      break;

    case EXPR_UNARY:
      hstate.add_object (expr->ops.unary.op);

      /* Make sure to include signedness in the hash computation.
         Don't hash the type, that can lead to having nodes which
         compare equal according to operand_equal_p, but which
         have different hash codes.  */
      if (CONVERT_EXPR_CODE_P (expr->ops.unary.op)
          || expr->ops.unary.op == NON_LVALUE_EXPR)
        hstate.add_int (TYPE_UNSIGNED (expr->type));

      inchash::add_expr (expr->ops.unary.opnd, hstate);
      break;

    case EXPR_BINARY:
      hstate.add_object (expr->ops.binary.op);
      if (commutative_tree_code (expr->ops.binary.op))
	inchash::add_expr_commutative (expr->ops.binary.opnd0,
					  expr->ops.binary.opnd1, hstate);
      else
        {
          inchash::add_expr (expr->ops.binary.opnd0, hstate);
          inchash::add_expr (expr->ops.binary.opnd1, hstate);
        }
      break;

    case EXPR_TERNARY:
      hstate.add_object (expr->ops.ternary.op);
      if (commutative_ternary_tree_code (expr->ops.ternary.op))
	inchash::add_expr_commutative (expr->ops.ternary.opnd0,
					  expr->ops.ternary.opnd1, hstate);
      else
        {
          inchash::add_expr (expr->ops.ternary.opnd0, hstate);
          inchash::add_expr (expr->ops.ternary.opnd1, hstate);
        }
      inchash::add_expr (expr->ops.ternary.opnd2, hstate);
      break;

    case EXPR_CALL:
      {
        size_t i;
        enum tree_code code = CALL_EXPR;
        gcall *fn_from;

        hstate.add_object (code);
        fn_from = expr->ops.call.fn_from;
        if (gimple_call_internal_p (fn_from))
          hstate.merge_hash ((hashval_t) gimple_call_internal_fn (fn_from));
        else
          inchash::add_expr (gimple_call_fn (fn_from), hstate);
        for (i = 0; i < expr->ops.call.nargs; i++)
          inchash::add_expr (expr->ops.call.args[i], hstate);
      }
      break;

    case EXPR_PHI:
      {
        size_t i;

        for (i = 0; i < expr->ops.phi.nargs; i++)
          inchash::add_expr (expr->ops.phi.args[i], hstate);
      }
      break;

    default:
      gcc_unreachable ();
    }
}

}

/* Hashing and equality functions.  We compute a value number for expressions
   using the code of the expression and the SSA numbers of its operands.  */

static hashval_t
avail_expr_hash (class expr_hash_elt *p)
{
  const struct hashable_expr *expr = p->expr ();
  inchash::hash hstate;

  if (expr->kind == EXPR_SINGLE)
    {
      /* T could potentially be a switch index or a goto dest.  */
      tree t = expr->ops.single.rhs;
      if (TREE_CODE (t) == MEM_REF || handled_component_p (t))
	{
	  /* Make equivalent statements of both these kinds hash together.
	     Dealing with both MEM_REF and ARRAY_REF allows us not to care
	     about equivalence with other statements not considered here.  */
	  bool reverse;
	  HOST_WIDE_INT offset, size, max_size;
	  tree base = get_ref_base_and_extent (t, &offset, &size, &max_size,
					       &reverse);
	  /* Strictly, we could try to normalize variable-sized accesses too,
	    but here we just deal with the common case.  */
	  if (size != -1
	      && size == max_size)
	    {
	      enum tree_code code = MEM_REF;
	      hstate.add_object (code);
	      inchash::add_expr (base, hstate);
	      hstate.add_object (offset);
	      hstate.add_object (size);
	      return hstate.end ();
	    }
	}
    }

  inchash::add_hashable_expr (expr, hstate);

  return hstate.end ();
}

/* Compares trees T0 and T1 to see if they are MEM_REF or ARRAY_REFs equivalent
   to each other.  (That is, they return the value of the same bit of memory.)

   Return TRUE if the two are so equivalent; FALSE if not (which could still
   mean the two are equivalent by other means).  */

static bool
equal_mem_array_ref_p (tree t0, tree t1)
{
  if (TREE_CODE (t0) != MEM_REF && ! handled_component_p (t0))
    return false;
  if (TREE_CODE (t1) != MEM_REF && ! handled_component_p (t1))
    return false;

  if (!types_compatible_p (TREE_TYPE (t0), TREE_TYPE (t1)))
    return false;
  bool rev0;
  HOST_WIDE_INT off0, sz0, max0;
  tree base0 = get_ref_base_and_extent (t0, &off0, &sz0, &max0, &rev0);
  if (sz0 == -1
      || sz0 != max0)
    return false;

  bool rev1;
  HOST_WIDE_INT off1, sz1, max1;
  tree base1 = get_ref_base_and_extent (t1, &off1, &sz1, &max1, &rev1);
  if (sz1 == -1
      || sz1 != max1)
    return false;

  if (rev0 != rev1)
    return false;

  /* Types were compatible, so this is a sanity check.  */
  gcc_assert (sz0 == sz1);

  return (off0 == off1) && operand_equal_p (base0, base1, 0);
}

/* Compare two hashable_expr structures for equivalence.  They are
   considered equivalent when the expressions they denote must
   necessarily be equal.  The logic is intended to follow that of
   operand_equal_p in fold-const.c */

static bool
hashable_expr_equal_p (const struct hashable_expr *expr0,
		       const struct hashable_expr *expr1)
{
  tree type0 = expr0->type;
  tree type1 = expr1->type;

  /* If either type is NULL, there is nothing to check.  */
  if ((type0 == NULL_TREE) ^ (type1 == NULL_TREE))
    return false;

  /* If both types don't have the same signedness, precision, and mode,
     then we can't consider  them equal.  */
  if (type0 != type1
      && (TREE_CODE (type0) == ERROR_MARK
	  || TREE_CODE (type1) == ERROR_MARK
	  || TYPE_UNSIGNED (type0) != TYPE_UNSIGNED (type1)
	  || TYPE_PRECISION (type0) != TYPE_PRECISION (type1)
	  || TYPE_MODE (type0) != TYPE_MODE (type1)))
    return false;

  if (expr0->kind != expr1->kind)
    return false;

  switch (expr0->kind)
    {
    case EXPR_SINGLE:
      return equal_mem_array_ref_p (expr0->ops.single.rhs,
				    expr1->ops.single.rhs)
	     || operand_equal_p (expr0->ops.single.rhs,
				 expr1->ops.single.rhs, 0);
    case EXPR_UNARY:
      if (expr0->ops.unary.op != expr1->ops.unary.op)
        return false;

      if ((CONVERT_EXPR_CODE_P (expr0->ops.unary.op)
           || expr0->ops.unary.op == NON_LVALUE_EXPR)
          && TYPE_UNSIGNED (expr0->type) != TYPE_UNSIGNED (expr1->type))
        return false;

      return operand_equal_p (expr0->ops.unary.opnd,
                              expr1->ops.unary.opnd, 0);

    case EXPR_BINARY:
      if (expr0->ops.binary.op != expr1->ops.binary.op)
	return false;

      if (operand_equal_p (expr0->ops.binary.opnd0,
			   expr1->ops.binary.opnd0, 0)
	  && operand_equal_p (expr0->ops.binary.opnd1,
			      expr1->ops.binary.opnd1, 0))
	return true;

      /* For commutative ops, allow the other order.  */
      return (commutative_tree_code (expr0->ops.binary.op)
	      && operand_equal_p (expr0->ops.binary.opnd0,
				  expr1->ops.binary.opnd1, 0)
	      && operand_equal_p (expr0->ops.binary.opnd1,
				  expr1->ops.binary.opnd0, 0));

    case EXPR_TERNARY:
      if (expr0->ops.ternary.op != expr1->ops.ternary.op
	  || !operand_equal_p (expr0->ops.ternary.opnd2,
			       expr1->ops.ternary.opnd2, 0))
	return false;

      if (operand_equal_p (expr0->ops.ternary.opnd0,
			   expr1->ops.ternary.opnd0, 0)
	  && operand_equal_p (expr0->ops.ternary.opnd1,
			      expr1->ops.ternary.opnd1, 0))
	return true;

      /* For commutative ops, allow the other order.  */
      return (commutative_ternary_tree_code (expr0->ops.ternary.op)
	      && operand_equal_p (expr0->ops.ternary.opnd0,
				  expr1->ops.ternary.opnd1, 0)
	      && operand_equal_p (expr0->ops.ternary.opnd1,
				  expr1->ops.ternary.opnd0, 0));

    case EXPR_CALL:
      {
        size_t i;

        /* If the calls are to different functions, then they
           clearly cannot be equal.  */
        if (!gimple_call_same_target_p (expr0->ops.call.fn_from,
                                        expr1->ops.call.fn_from))
          return false;

        if (! expr0->ops.call.pure)
          return false;

        if (expr0->ops.call.nargs !=  expr1->ops.call.nargs)
          return false;

        for (i = 0; i < expr0->ops.call.nargs; i++)
          if (! operand_equal_p (expr0->ops.call.args[i],
                                 expr1->ops.call.args[i], 0))
            return false;

	if (stmt_could_throw_p (expr0->ops.call.fn_from))
	  {
	    int lp0 = lookup_stmt_eh_lp (expr0->ops.call.fn_from);
	    int lp1 = lookup_stmt_eh_lp (expr1->ops.call.fn_from);
	    if ((lp0 > 0 || lp1 > 0) && lp0 != lp1)
	      return false;
	  }

        return true;
      }

    case EXPR_PHI:
      {
        size_t i;

        if (expr0->ops.phi.nargs !=  expr1->ops.phi.nargs)
          return false;

        for (i = 0; i < expr0->ops.phi.nargs; i++)
          if (! operand_equal_p (expr0->ops.phi.args[i],
                                 expr1->ops.phi.args[i], 0))
            return false;

        return true;
      }

    default:
      gcc_unreachable ();
    }
}

/* Given a statement STMT, construct a hash table element.  */

expr_hash_elt::expr_hash_elt (gimple *stmt, tree orig_lhs)
{
  enum gimple_code code = gimple_code (stmt);
  struct hashable_expr *expr = this->expr ();

  if (code == GIMPLE_ASSIGN)
    {
      enum tree_code subcode = gimple_assign_rhs_code (stmt);

      switch (get_gimple_rhs_class (subcode))
        {
        case GIMPLE_SINGLE_RHS:
	  expr->kind = EXPR_SINGLE;
	  expr->type = TREE_TYPE (gimple_assign_rhs1 (stmt));
	  expr->ops.single.rhs = gimple_assign_rhs1 (stmt);
	  break;
        case GIMPLE_UNARY_RHS:
	  expr->kind = EXPR_UNARY;
	  expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
	  if (CONVERT_EXPR_CODE_P (subcode))
	    subcode = NOP_EXPR;
	  expr->ops.unary.op = subcode;
	  expr->ops.unary.opnd = gimple_assign_rhs1 (stmt);
	  break;
        case GIMPLE_BINARY_RHS:
	  expr->kind = EXPR_BINARY;
	  expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
	  expr->ops.binary.op = subcode;
	  expr->ops.binary.opnd0 = gimple_assign_rhs1 (stmt);
	  expr->ops.binary.opnd1 = gimple_assign_rhs2 (stmt);
	  break;
        case GIMPLE_TERNARY_RHS:
	  expr->kind = EXPR_TERNARY;
	  expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
	  expr->ops.ternary.op = subcode;
	  expr->ops.ternary.opnd0 = gimple_assign_rhs1 (stmt);
	  expr->ops.ternary.opnd1 = gimple_assign_rhs2 (stmt);
	  expr->ops.ternary.opnd2 = gimple_assign_rhs3 (stmt);
	  break;
        default:
          gcc_unreachable ();
        }
    }
  else if (code == GIMPLE_COND)
    {
      expr->type = boolean_type_node;
      expr->kind = EXPR_BINARY;
      expr->ops.binary.op = gimple_cond_code (stmt);
      expr->ops.binary.opnd0 = gimple_cond_lhs (stmt);
      expr->ops.binary.opnd1 = gimple_cond_rhs (stmt);
    }
  else if (gcall *call_stmt = dyn_cast <gcall *> (stmt))
    {
      size_t nargs = gimple_call_num_args (call_stmt);
      size_t i;

      gcc_assert (gimple_call_lhs (call_stmt));

      expr->type = TREE_TYPE (gimple_call_lhs (call_stmt));
      expr->kind = EXPR_CALL;
      expr->ops.call.fn_from = call_stmt;

      if (gimple_call_flags (call_stmt) & (ECF_CONST | ECF_PURE))
        expr->ops.call.pure = true;
      else
        expr->ops.call.pure = false;

      expr->ops.call.nargs = nargs;
      expr->ops.call.args = XCNEWVEC (tree, nargs);
      for (i = 0; i < nargs; i++)
        expr->ops.call.args[i] = gimple_call_arg (call_stmt, i);
    }
  else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
    {
      expr->type = TREE_TYPE (gimple_switch_index (swtch_stmt));
      expr->kind = EXPR_SINGLE;
      expr->ops.single.rhs = gimple_switch_index (swtch_stmt);
    }
  else if (code == GIMPLE_GOTO)
    {
      expr->type = TREE_TYPE (gimple_goto_dest (stmt));
      expr->kind = EXPR_SINGLE;
      expr->ops.single.rhs = gimple_goto_dest (stmt);
    }
  else if (code == GIMPLE_PHI)
    {
      size_t nargs = gimple_phi_num_args (stmt);
      size_t i;

      expr->type = TREE_TYPE (gimple_phi_result (stmt));
      expr->kind = EXPR_PHI;
      expr->ops.phi.nargs = nargs;
      expr->ops.phi.args = XCNEWVEC (tree, nargs);
      for (i = 0; i < nargs; i++)
        expr->ops.phi.args[i] = gimple_phi_arg_def (stmt, i);
    }
  else
    gcc_unreachable ();

  m_lhs = orig_lhs;
  m_vop = gimple_vuse (stmt);
  m_hash = avail_expr_hash (this);
  m_stamp = this;
}

/* Given a hashable_expr expression ORIG and an ORIG_LHS,
   construct a hash table element.  */

expr_hash_elt::expr_hash_elt (struct hashable_expr *orig, tree orig_lhs)
{
  m_expr = *orig;
  m_lhs = orig_lhs;
  m_vop = NULL_TREE;
  m_hash = avail_expr_hash (this);
  m_stamp = this;
}

/* Copy constructor for a hash table element.  */

expr_hash_elt::expr_hash_elt (class expr_hash_elt &old_elt)
{
  m_expr = old_elt.m_expr;
  m_lhs = old_elt.m_lhs;
  m_vop = old_elt.m_vop;
  m_hash = old_elt.m_hash;
  m_stamp = this;

  /* Now deep copy the malloc'd space for CALL and PHI args.  */
  if (old_elt.m_expr.kind == EXPR_CALL)
    {
      size_t nargs = old_elt.m_expr.ops.call.nargs;
      size_t i;

      m_expr.ops.call.args = XCNEWVEC (tree, nargs);
      for (i = 0; i < nargs; i++)
        m_expr.ops.call.args[i] = old_elt.m_expr.ops.call.args[i];
    }
  else if (old_elt.m_expr.kind == EXPR_PHI)
    {
      size_t nargs = old_elt.m_expr.ops.phi.nargs;
      size_t i;

      m_expr.ops.phi.args = XCNEWVEC (tree, nargs);
      for (i = 0; i < nargs; i++)
        m_expr.ops.phi.args[i] = old_elt.m_expr.ops.phi.args[i];
    }
}

/* Calls and PHIs have a variable number of arguments that are allocated
   on the heap.  Thus we have to have a special dtor to release them.  */

expr_hash_elt::~expr_hash_elt ()
{
  if (m_expr.kind == EXPR_CALL)
    free (m_expr.ops.call.args);
  else if (m_expr.kind == EXPR_PHI)
    free (m_expr.ops.phi.args);
}

/* Print a diagnostic dump of an expression hash table entry.  */

void
expr_hash_elt::print (FILE *stream)
{
  fprintf (stream, "STMT ");

  if (m_lhs)
    {
      print_generic_expr (stream, m_lhs, 0);
      fprintf (stream, " = ");
    }

  switch (m_expr.kind)
    {
      case EXPR_SINGLE:
        print_generic_expr (stream, m_expr.ops.single.rhs, 0);
        break;

      case EXPR_UNARY:
	fprintf (stream, "%s ", get_tree_code_name (m_expr.ops.unary.op));
        print_generic_expr (stream, m_expr.ops.unary.opnd, 0);
        break;

      case EXPR_BINARY:
        print_generic_expr (stream, m_expr.ops.binary.opnd0, 0);
	fprintf (stream, " %s ", get_tree_code_name (m_expr.ops.binary.op));
        print_generic_expr (stream, m_expr.ops.binary.opnd1, 0);
        break;

      case EXPR_TERNARY:
	fprintf (stream, " %s <", get_tree_code_name (m_expr.ops.ternary.op));
        print_generic_expr (stream, m_expr.ops.ternary.opnd0, 0);
	fputs (", ", stream);
        print_generic_expr (stream, m_expr.ops.ternary.opnd1, 0);
	fputs (", ", stream);
        print_generic_expr (stream, m_expr.ops.ternary.opnd2, 0);
	fputs (">", stream);
        break;

      case EXPR_CALL:
        {
          size_t i;
          size_t nargs = m_expr.ops.call.nargs;
          gcall *fn_from;

          fn_from = m_expr.ops.call.fn_from;
          if (gimple_call_internal_p (fn_from))
            fputs (internal_fn_name (gimple_call_internal_fn (fn_from)),
                   stream);
          else
            print_generic_expr (stream, gimple_call_fn (fn_from), 0);
          fprintf (stream, " (");
          for (i = 0; i < nargs; i++)
            {
              print_generic_expr (stream, m_expr.ops.call.args[i], 0);
              if (i + 1 < nargs)
                fprintf (stream, ", ");
            }
          fprintf (stream, ")");
        }
        break;

      case EXPR_PHI:
        {
          size_t i;
          size_t nargs = m_expr.ops.phi.nargs;

          fprintf (stream, "PHI <");
          for (i = 0; i < nargs; i++)
            {
              print_generic_expr (stream, m_expr.ops.phi.args[i], 0);
              if (i + 1 < nargs)
                fprintf (stream, ", ");
            }
          fprintf (stream, ">");
        }
        break;
    }

  if (m_vop)
    {
      fprintf (stream, " with ");
      print_generic_expr (stream, m_vop, 0);
    }

  fprintf (stream, "\n");
}

/* Pop entries off the stack until we hit the NULL marker.
   For each entry popped, use the SRC/DEST pair to restore
   SRC to its prior value.  */

void
const_and_copies::pop_to_marker (void)
{
  while (m_stack.length () > 0)
    {
      tree prev_value, dest;

      dest = m_stack.pop ();

      /* A NULL value indicates we should stop unwinding, otherwise
	 pop off the next entry as they're recorded in pairs.  */
      if (dest == NULL)
	break;

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "<<<< COPY ");
	  print_generic_expr (dump_file, dest, 0);
	  fprintf (dump_file, " = ");
	  print_generic_expr (dump_file, SSA_NAME_VALUE (dest), 0);
	  fprintf (dump_file, "\n");
	}

      prev_value = m_stack.pop ();
      set_ssa_name_value (dest, prev_value);
    }
}

/* Record that X has the value Y and that X's previous value is PREV_X. 

   This variant does not follow the value chain for Y.  */

void
const_and_copies::record_const_or_copy_raw (tree x, tree y, tree prev_x)
{
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "0>>> COPY ");
      print_generic_expr (dump_file, x, 0);
      fprintf (dump_file, " = ");
      print_generic_expr (dump_file, y, 0);
      fprintf (dump_file, "\n");
    }

  set_ssa_name_value (x, y);
  m_stack.reserve (2);
  m_stack.quick_push (prev_x);
  m_stack.quick_push (x);
}

/* Record that X has the value Y.  */

void
const_and_copies::record_const_or_copy (tree x, tree y)
{
  record_const_or_copy (x, y, SSA_NAME_VALUE (x));
}

/* Record that X has the value Y and that X's previous value is PREV_X. 

   This variant follow's Y value chain.  */

void
const_and_copies::record_const_or_copy (tree x, tree y, tree prev_x)
{
  /* Y may be NULL if we are invalidating entries in the table.  */
  if (y && TREE_CODE (y) == SSA_NAME)
    {
      tree tmp = SSA_NAME_VALUE (y);
      y = tmp ? tmp : y;
    }

  record_const_or_copy_raw (x, y, prev_x);
}

bool
expr_elt_hasher::equal (const value_type &p1, const compare_type &p2)
{
  const struct hashable_expr *expr1 = p1->expr ();
  const struct expr_hash_elt *stamp1 = p1->stamp ();
  const struct hashable_expr *expr2 = p2->expr ();
  const struct expr_hash_elt *stamp2 = p2->stamp ();

  /* This case should apply only when removing entries from the table.  */
  if (stamp1 == stamp2)
    return true;

  if (p1->hash () != p2->hash ())
    return false;

  /* In case of a collision, both RHS have to be identical and have the
     same VUSE operands.  */
  if (hashable_expr_equal_p (expr1, expr2)
      && types_compatible_p (expr1->type, expr2->type))
    return true;

  return false;
}

/* Given a conditional expression COND as a tree, initialize
   a hashable_expr expression EXPR.  The conditional must be a
   comparison or logical negation.  A constant or a variable is
   not permitted.  */

void
initialize_expr_from_cond (tree cond, struct hashable_expr *expr)
{
  expr->type = boolean_type_node;

  if (COMPARISON_CLASS_P (cond))
    {
      expr->kind = EXPR_BINARY;
      expr->ops.binary.op = TREE_CODE (cond);
      expr->ops.binary.opnd0 = TREE_OPERAND (cond, 0);
      expr->ops.binary.opnd1 = TREE_OPERAND (cond, 1);
    }
  else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
    {
      expr->kind = EXPR_UNARY;
      expr->ops.unary.op = TRUTH_NOT_EXPR;
      expr->ops.unary.opnd = TREE_OPERAND (cond, 0);
    }
  else
    gcc_unreachable ();
}