// backend.h -- Go frontend interface to backend -*- C++ -*- // Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #ifndef GO_BACKEND_H #define GO_BACKEND_H #include #include #include #include "operator.h" // Pointers to these types are created by the backend, passed to the // frontend, and passed back to the backend. The types must be // defined by the backend using these names. // The backend representation of a type. class Btype; // The backend represention of an expression. class Bexpression; // The backend representation of a statement. class Bstatement; // The backend representation of a function definition or declaration. class Bfunction; // The backend representation of a block. class Bblock; // The backend representation of a variable. class Bvariable; // The backend representation of a label. class Blabel; // The backend interface. This is a pure abstract class that a // specific backend will implement. class Backend { public: virtual ~Backend() { } // Name/type/location. Used for function parameters, struct fields, // interface methods. struct Btyped_identifier { std::string name; Btype* btype; Location location; Btyped_identifier() : name(), btype(NULL), location(UNKNOWN_LOCATION) { } Btyped_identifier(const std::string& a_name, Btype* a_btype, Location a_location) : name(a_name), btype(a_btype), location(a_location) { } }; // Types. // Produce an error type. Actually the backend could probably just // crash if this is called. virtual Btype* error_type() = 0; // Get a void type. This is used in (at least) two ways: 1) as the // return type of a function with no result parameters; 2) // unsafe.Pointer is represented as *void. virtual Btype* void_type() = 0; // Get the unnamed boolean type. virtual Btype* bool_type() = 0; // Get an unnamed integer type with the given signedness and number // of bits. virtual Btype* integer_type(bool is_unsigned, int bits) = 0; // Get an unnamed floating point type with the given number of bits // (32 or 64). virtual Btype* float_type(int bits) = 0; // Get an unnamed complex type with the given number of bits (64 or 128). virtual Btype* complex_type(int bits) = 0; // Get a pointer type. virtual Btype* pointer_type(Btype* to_type) = 0; // Get a function type. The receiver, parameter, and results are // generated from the types in the Function_type. The Function_type // is provided so that the names are available. This should return // not the type of a Go function (which is a pointer to a struct) // but the type of a C function pointer (which will be used as the // type of the first field of the struct). If there is more than // one result, RESULT_STRUCT is a struct type to hold the results, // and RESULTS may be ignored; if there are zero or one results, // RESULT_STRUCT is NULL. virtual Btype* function_type(const Btyped_identifier& receiver, const std::vector& parameters, const std::vector& results, Btype* result_struct, Location location) = 0; // Get a struct type. virtual Btype* struct_type(const std::vector& fields) = 0; // Get an array type. virtual Btype* array_type(Btype* element_type, Bexpression* length) = 0; // Create a placeholder pointer type. This is used for a named // pointer type, since in Go a pointer type may refer to itself. // NAME is the name of the type, and the location is where the named // type is defined. This function is also used for unnamed function // types with multiple results, in which case the type has no name // and NAME will be empty. FOR_FUNCTION is true if this is for a C // pointer to function type. A Go func type is represented as a // pointer to a struct, and the first field of the struct is a C // pointer to function. The return value will later be passed as // the first parameter to set_placeholder_pointer_type or // set_placeholder_function_type. virtual Btype* placeholder_pointer_type(const std::string& name, Location, bool for_function) = 0; // Fill in a placeholder pointer type as a pointer. This takes a // type returned by placeholder_pointer_type and arranges for it to // point to the type that TO_TYPE points to (that is, PLACEHOLDER // becomes the same type as TO_TYPE). Returns true on success, // false on failure. virtual bool set_placeholder_pointer_type(Btype* placeholder, Btype* to_type) = 0; // Fill in a placeholder pointer type as a function. This takes a // type returned by placeholder_pointer_type and arranges for it to // become a real Go function type (which corresponds to a C/C++ // pointer to function type). FT will be something returned by the // function_type method. Returns true on success, false on failure. virtual bool set_placeholder_function_type(Btype* placeholder, Btype* ft) = 0; // Create a placeholder struct type. This is used for a named // struct type, as with placeholder_pointer_type. It is also used // for interface types, in which case NAME will be the empty string. virtual Btype* placeholder_struct_type(const std::string& name, Location) = 0; // Fill in a placeholder struct type. This takes a type returned by // placeholder_struct_type and arranges for it to become a real // struct type. The parameter is as for struct_type. Returns true // on success, false on failure. virtual bool set_placeholder_struct_type(Btype* placeholder, const std::vector& fields) = 0; // Create a placeholder array type. This is used for a named array // type, as with placeholder_pointer_type, to handle cases like // type A []*A. virtual Btype* placeholder_array_type(const std::string& name, Location) = 0; // Fill in a placeholder array type. This takes a type returned by // placeholder_array_type and arranges for it to become a real array // type. The parameters are as for array_type. Returns true on // success, false on failure. virtual bool set_placeholder_array_type(Btype* placeholder, Btype* element_type, Bexpression* length) = 0; // Return a named version of a type. The location is the location // of the type definition. This will not be called for a type // created via placeholder_pointer_type, placeholder_struct_type, or // placeholder_array_type.. (It may be called for a pointer, // struct, or array type in a case like "type P *byte; type Q P".) virtual Btype* named_type(const std::string& name, Btype*, Location) = 0; // Create a marker for a circular pointer type. Go pointer and // function types can refer to themselves in ways that are not // permitted in C/C++. When a circular type is found, this function // is called for the circular reference. This permits the backend // to decide how to handle such a type. PLACEHOLDER is the // placeholder type which has already been created; if the backend // is prepared to handle a circular pointer type, it may simply // return PLACEHOLDER. FOR_FUNCTION is true if this is for a // function type. // // For "type P *P" the sequence of calls will be // bt1 = placeholder_pointer_type(); // bt2 = circular_pointer_type(bt1, false); // set_placeholder_pointer_type(bt1, bt2); virtual Btype* circular_pointer_type(Btype* placeholder, bool for_function) = 0; // Return whether the argument could be a special type created by // circular_pointer_type. This is used to introduce explicit type // conversions where needed. If circular_pointer_type returns its // PLACEHOLDER parameter, this may safely always return false. virtual bool is_circular_pointer_type(Btype*) = 0; // Return the size of a type. virtual int64_t type_size(Btype*) = 0; // Return the alignment of a type. virtual int64_t type_alignment(Btype*) = 0; // Return the alignment of a struct field of this type. This is // normally the same as type_alignment, but not always. virtual int64_t type_field_alignment(Btype*) = 0; // Return the offset of field INDEX in a struct type. INDEX is the // entry in the FIELDS std::vector parameter of struct_type or // set_placeholder_struct_type. virtual int64_t type_field_offset(Btype*, size_t index) = 0; // Expressions. // Return an expression for a zero value of the given type. This is // used for cases such as local variable initialization and // converting nil to other types. virtual Bexpression* zero_expression(Btype*) = 0; // Create an error expression. This is used for cases which should // not occur in a correct program, in order to keep the compilation // going without crashing. virtual Bexpression* error_expression() = 0; // Create a nil pointer expression. virtual Bexpression* nil_pointer_expression() = 0; // Create a reference to a variable. virtual Bexpression* var_expression(Bvariable* var, Location) = 0; // Create an expression that indirects through the pointer expression EXPR // (i.e., return the expression for *EXPR). KNOWN_VALID is true if the pointer // is known to point to a valid memory location. BTYPE is the expected type // of the indirected EXPR. virtual Bexpression* indirect_expression(Btype* btype, Bexpression* expr, bool known_valid, Location) = 0; // Return an expression that declares a constant named NAME with the // constant value VAL in BTYPE. virtual Bexpression* named_constant_expression(Btype* btype, const std::string& name, Bexpression* val, Location) = 0; // Return an expression for the multi-precision integer VAL in BTYPE. virtual Bexpression* integer_constant_expression(Btype* btype, mpz_t val) = 0; // Return an expression for the floating point value VAL in BTYPE. virtual Bexpression* float_constant_expression(Btype* btype, mpfr_t val) = 0; // Return an expression for the complex value VAL in BTYPE. virtual Bexpression* complex_constant_expression(Btype* btype, mpc_t val) = 0; // Return an expression for the string value VAL. virtual Bexpression* string_constant_expression(const std::string& val) = 0; // Return an expression for the boolean value VAL. virtual Bexpression* boolean_constant_expression(bool val) = 0; // Return an expression for the real part of BCOMPLEX. virtual Bexpression* real_part_expression(Bexpression* bcomplex, Location) = 0; // Return an expression for the imaginary part of BCOMPLEX. virtual Bexpression* imag_part_expression(Bexpression* bcomplex, Location) = 0; // Return an expression for the complex number (BREAL, BIMAG). virtual Bexpression* complex_expression(Bexpression* breal, Bexpression* bimag, Location) = 0; // Return an expression that converts EXPR to TYPE. virtual Bexpression* convert_expression(Btype* type, Bexpression* expr, Location) = 0; // Create an expression for the address of a function. This is used to // get the address of the code for a function. virtual Bexpression* function_code_expression(Bfunction*, Location) = 0; // Create an expression that takes the address of an expression. virtual Bexpression* address_expression(Bexpression*, Location) = 0; // Return an expression for the field at INDEX in BSTRUCT. virtual Bexpression* struct_field_expression(Bexpression* bstruct, size_t index, Location) = 0; // Create an expression that executes BSTAT before BEXPR. virtual Bexpression* compound_expression(Bstatement* bstat, Bexpression* bexpr, Location) = 0; // Return an expression that executes THEN_EXPR if CONDITION is true, or // ELSE_EXPR otherwise and returns the result as type BTYPE. ELSE_EXPR // may be NULL. BTYPE may be NULL. virtual Bexpression* conditional_expression(Btype* btype, Bexpression* condition, Bexpression* then_expr, Bexpression* else_expr, Location) = 0; // Return an expression for the unary operation OP EXPR. // Supported values of OP are (from operators.h): // MINUS, NOT, XOR. virtual Bexpression* unary_expression(Operator op, Bexpression* expr, Location) = 0; // Return an expression for the binary operation LEFT OP RIGHT. // Supported values of OP are (from operators.h): // EQEQ, NOTEQ, LT, LE, GT, GE, PLUS, MINUS, OR, XOR, MULT, DIV, MOD, // LSHIFT, RSHIFT, AND, NOT. virtual Bexpression* binary_expression(Operator op, Bexpression* left, Bexpression* right, Location) = 0; // Return an expression that constructs BTYPE with VALS. BTYPE must be the // backend representation a of struct. VALS must be in the same order as the // corresponding fields in BTYPE. virtual Bexpression* constructor_expression(Btype* btype, const std::vector& vals, Location) = 0; // Return an expression that constructs an array of BTYPE with INDEXES and // VALS. INDEXES and VALS must have the same amount of elements. Each index // in INDEXES must be in the same order as the corresponding value in VALS. virtual Bexpression* array_constructor_expression(Btype* btype, const std::vector& indexes, const std::vector& vals, Location) = 0; // Return an expression for the address of BASE[INDEX]. // BASE has a pointer type. This is used for slice indexing. virtual Bexpression* pointer_offset_expression(Bexpression* base, Bexpression* index, Location) = 0; // Return an expression for ARRAY[INDEX] as an l-value. ARRAY is a valid // fixed-length array, not a slice. virtual Bexpression* array_index_expression(Bexpression* array, Bexpression* index, Location) = 0; // Create an expression for a call to FN with ARGS. virtual Bexpression* call_expression(Bexpression* fn, const std::vector& args, Bexpression* static_chain, Location) = 0; // Statements. // Create an error statement. This is used for cases which should // not occur in a correct program, in order to keep the compilation // going without crashing. virtual Bstatement* error_statement() = 0; // Create an expression statement. virtual Bstatement* expression_statement(Bexpression*) = 0; // Create a variable initialization statement. This initializes a // local variable at the point in the program flow where it is // declared. virtual Bstatement* init_statement(Bvariable* var, Bexpression* init) = 0; // Create an assignment statement. virtual Bstatement* assignment_statement(Bexpression* lhs, Bexpression* rhs, Location) = 0; // Create a return statement, passing the representation of the // function and the list of values to return. virtual Bstatement* return_statement(Bfunction*, const std::vector&, Location) = 0; // Create an if statement. ELSE_BLOCK may be NULL. virtual Bstatement* if_statement(Bexpression* condition, Bblock* then_block, Bblock* else_block, Location) = 0; // Create a switch statement where the case values are constants. // CASES and STATEMENTS must have the same number of entries. If // VALUE matches any of the list in CASES[i], which will all be // integers, then STATEMENTS[i] is executed. STATEMENTS[i] will // either end with a goto statement or will fall through into // STATEMENTS[i + 1]. CASES[i] is empty for the default clause, // which need not be last. FUNCTION is the current function. virtual Bstatement* switch_statement(Bfunction* function, Bexpression* value, const std::vector >& cases, const std::vector& statements, Location) = 0; // Create a single statement from two statements. virtual Bstatement* compound_statement(Bstatement*, Bstatement*) = 0; // Create a single statement from a list of statements. virtual Bstatement* statement_list(const std::vector&) = 0; // Create a statement that attempts to execute BSTAT and calls EXCEPT_STMT if // an exception occurs. EXCEPT_STMT may be NULL. FINALLY_STMT may be NULL and // if not NULL, it will always be executed. This is used for handling defers // in Go functions. In C++, the resulting code is of this form: // try { BSTAT; } catch { EXCEPT_STMT; } finally { FINALLY_STMT; } virtual Bstatement* exception_handler_statement(Bstatement* bstat, Bstatement* except_stmt, Bstatement* finally_stmt, Location) = 0; // Blocks. // Create a block. The frontend will call this function when it // starts converting a block within a function. FUNCTION is the // current function. ENCLOSING is the enclosing block; it will be // NULL for the top-level block in a function. VARS is the list of // local variables defined within this block; each entry will be // created by the local_variable function. START_LOCATION is the // location of the start of the block, more or less the location of // the initial curly brace. END_LOCATION is the location of the end // of the block, more or less the location of the final curly brace. // The statements will be added after the block is created. virtual Bblock* block(Bfunction* function, Bblock* enclosing, const std::vector& vars, Location start_location, Location end_location) = 0; // Add the statements to a block. The block is created first. Then // the statements are created. Then the statements are added to the // block. This will called exactly once per block. The vector may // be empty if there are no statements. virtual void block_add_statements(Bblock*, const std::vector&) = 0; // Return the block as a statement. This is used to include a block // in a list of statements. virtual Bstatement* block_statement(Bblock*) = 0; // Variables. // Create an error variable. This is used for cases which should // not occur in a correct program, in order to keep the compilation // going without crashing. virtual Bvariable* error_variable() = 0; // Create a global variable. PACKAGE_NAME is the name of the // package where the variable is defined. PKGPATH is the package // path for that package, from the -fgo-pkgpath or -fgo-prefix // option. NAME is the name of the variable. BTYPE is the type of // the variable. IS_EXTERNAL is true if the variable is defined in // some other package. IS_HIDDEN is true if the variable is not // exported (name begins with a lower case letter). // IN_UNIQUE_SECTION is true if the variable should be put into a // unique section if possible; this is intended to permit the linker // to garbage collect the variable if it is not referenced. // LOCATION is where the variable was defined. virtual Bvariable* global_variable(const std::string& package_name, const std::string& pkgpath, const std::string& name, Btype* btype, bool is_external, bool is_hidden, bool in_unique_section, Location location) = 0; // A global variable will 1) be initialized to zero, or 2) be // initialized to a constant value, or 3) be initialized in the init // function. In case 2, the frontend will call // global_variable_set_init to set the initial value. If this is // not called, the backend should initialize a global variable to 0. // The init function may then assign a value to it. virtual void global_variable_set_init(Bvariable*, Bexpression*) = 0; // Create a local variable. The frontend will create the local // variables first, and then create the block which contains them. // FUNCTION is the function in which the variable is defined. NAME // is the name of the variable. TYPE is the type. IS_ADDRESS_TAKEN // is true if the address of this variable is taken (this implies // that the address does not escape the function, as otherwise the // variable would be on the heap). LOCATION is where the variable // is defined. For each local variable the frontend will call // init_statement to set the initial value. virtual Bvariable* local_variable(Bfunction* function, const std::string& name, Btype* type, bool is_address_taken, Location location) = 0; // Create a function parameter. This is an incoming parameter, not // a result parameter (result parameters are treated as local // variables). The arguments are as for local_variable. virtual Bvariable* parameter_variable(Bfunction* function, const std::string& name, Btype* type, bool is_address_taken, Location location) = 0; // Create a static chain parameter. This is the closure parameter. virtual Bvariable* static_chain_variable(Bfunction* function, const std::string& name, Btype* type, Location location) = 0; // Create a temporary variable. A temporary variable has no name, // just a type. We pass in FUNCTION and BLOCK in case they are // needed. If INIT is not NULL, the variable should be initialized // to that value. Otherwise the initial value is irrelevant--the // backend does not have to explicitly initialize it to zero. // ADDRESS_IS_TAKEN is true if the programs needs to take the // address of this temporary variable. LOCATION is the location of // the statement or expression which requires creating the temporary // variable, and may not be very useful. This function should // return a variable which can be referenced later and should set // *PSTATEMENT to a statement which initializes the variable. virtual Bvariable* temporary_variable(Bfunction*, Bblock*, Btype*, Bexpression* init, bool address_is_taken, Location location, Bstatement** pstatement) = 0; // Create an implicit variable that is compiler-defined. This is // used when generating GC data and roots, when storing the values // of a slice constructor, and for the zero value of types. This returns a // Bvariable because it corresponds to an initialized variable in C. // // NAME is the name to use for the initialized variable this will create. // // TYPE is the type of the implicit variable. // // IS_HIDDEN will be true if the descriptor should only be visible // within the current object. // // IS_CONSTANT is true if the implicit variable should be treated like it is // immutable. For slice initializers, if the values must be copied to the // heap, the variable IS_CONSTANT. // // IS_COMMON is true if the implicit variable should // be treated as a common variable (multiple definitions with // different sizes permitted in different object files, all merged // into the largest definition at link time); this will be true for // the zero value. IS_HIDDEN and IS_COMMON will never both be true. // // If ALIGNMENT is not zero, it is the desired alignment of the variable. virtual Bvariable* implicit_variable(const std::string& name, Btype* type, bool is_hidden, bool is_constant, bool is_common, int64_t alignment) = 0; // Set the initial value of a variable created by implicit_variable. // This must be called even if there is no initializer, i.e., INIT is NULL. // The NAME, TYPE, IS_HIDDEN, IS_CONSTANT, and IS_COMMON parameters are // the same ones passed to implicit_variable. INIT will be a composite // literal of type TYPE. It will not contain any function calls or anything // else that can not be put into a read-only data section. // It may contain the address of variables created by implicit_variable. // // If IS_COMMON is true, INIT will be NULL, and the // variable should be initialized to all zeros. virtual void implicit_variable_set_init(Bvariable*, const std::string& name, Btype* type, bool is_hidden, bool is_constant, bool is_common, Bexpression* init) = 0; // Create a reference to a named implicit variable defined in some other // package. This will be a variable created by a call to implicit_variable // with the same NAME and TYPE and with IS_COMMON passed as false. This // corresponds to an extern global variable in C. virtual Bvariable* implicit_variable_reference(const std::string& name, Btype* type) = 0; // Create a named immutable initialized data structure. This is // used for type descriptors, map descriptors, and function // descriptors. This returns a Bvariable because it corresponds to // an initialized const variable in C. // // NAME is the name to use for the initialized global variable which // this call will create. // // IS_HIDDEN will be true if the descriptor should only be visible // within the current object. // // IS_COMMON is true if NAME may be defined by several packages, and // the linker should merge all such definitions. If IS_COMMON is // false, NAME should be defined in only one file. In general // IS_COMMON will be true for the type descriptor of an unnamed type // or a builtin type. IS_HIDDEN and IS_COMMON will never both be // true. // // TYPE will be a struct type; the type of the returned expression // must be a pointer to this struct type. // // We must create the named structure before we know its // initializer, because the initializer may refer to its own // address. After calling this the frontend will call // immutable_struct_set_init. virtual Bvariable* immutable_struct(const std::string& name, bool is_hidden, bool is_common, Btype* type, Location) = 0; // Set the initial value of a variable created by immutable_struct. // The NAME, IS_HIDDEN, IS_COMMON, TYPE, and location parameters are // the same ones passed to immutable_struct. INITIALIZER will be a // composite literal of type TYPE. It will not contain any function // calls or anything else that can not be put into a read-only data // section. It may contain the address of variables created by // immutable_struct. virtual void immutable_struct_set_init(Bvariable*, const std::string& name, bool is_hidden, bool is_common, Btype* type, Location, Bexpression* initializer) = 0; // Create a reference to a named immutable initialized data // structure defined in some other package. This will be a // structure created by a call to immutable_struct with the same // NAME and TYPE and with IS_COMMON passed as false. This // corresponds to an extern const global variable in C. virtual Bvariable* immutable_struct_reference(const std::string& name, Btype* type, Location) = 0; // Labels. // Create a new label. NAME will be empty if this is a label // created by the frontend for a loop construct. The location is // where the the label is defined. virtual Blabel* label(Bfunction*, const std::string& name, Location) = 0; // Create a statement which defines a label. This statement will be // put into the codestream at the point where the label should be // defined. virtual Bstatement* label_definition_statement(Blabel*) = 0; // Create a goto statement to a label. virtual Bstatement* goto_statement(Blabel*, Location) = 0; // Create an expression for the address of a label. This is used to // get the return address of a deferred function which may call // recover. virtual Bexpression* label_address(Blabel*, Location) = 0; // Functions. // Create an error function. This is used for cases which should // not occur in a correct program, in order to keep the compilation // going without crashing. virtual Bfunction* error_function() = 0; // Declare or define a function of FNTYPE. // NAME is the Go name of the function. ASM_NAME, if not the empty string, is // the name that should be used in the symbol table; this will be non-empty if // a magic extern comment is used. // IS_VISIBLE is true if this function should be visible outside of the // current compilation unit. IS_DECLARATION is true if this is a function // declaration rather than a definition; the function definition will be in // another compilation unit. // IS_INLINABLE is true if the function can be inlined. // DISABLE_SPLIT_STACK is true if this function may not split the stack; this // is used for the implementation of recover. // IN_UNIQUE_SECTION is true if this function should be put into a unique // location if possible; this is used for field tracking. virtual Bfunction* function(Btype* fntype, const std::string& name, const std::string& asm_name, bool is_visible, bool is_declaration, bool is_inlinable, bool disable_split_stack, bool in_unique_section, Location) = 0; // Create a statement that runs all deferred calls for FUNCTION. This should // be a statement that looks like this in C++: // finish: // try { UNDEFER; } catch { CHECK_DEFER; goto finish; } virtual Bstatement* function_defer_statement(Bfunction* function, Bexpression* undefer, Bexpression* check_defer, Location) = 0; // Record PARAM_VARS as the variables to use for the parameters of FUNCTION. // This will only be called for a function definition. Returns true on // success, false on failure. virtual bool function_set_parameters(Bfunction* function, const std::vector& param_vars) = 0; // Set the function body for FUNCTION using the code in CODE_STMT. Returns // true on success, false on failure. virtual bool function_set_body(Bfunction* function, Bstatement* code_stmt) = 0; // Look up a named built-in function in the current backend implementation. // Returns NULL if no built-in function by that name exists. virtual Bfunction* lookup_builtin(const std::string&) = 0; // Utility. // Write the definitions for all TYPE_DECLS, CONSTANT_DECLS, // FUNCTION_DECLS, and VARIABLE_DECLS declared globally. virtual void write_global_definitions(const std::vector& type_decls, const std::vector& constant_decls, const std::vector& function_decls, const std::vector& variable_decls) = 0; }; // The backend interface has to define this function. extern Backend* go_get_backend(); #endif // !defined(GO_BACKEND_H)