/* * Written by J.T. Conklin . * Public domain. * * Adapted for `long double' by Ulrich Drepper . */ /* * The 8087 method for the exponential function is to calculate * exp(x) = 2^(x log2(e)) * after separating integer and fractional parts * x log2(e) = i + f, |f| <= .5 * 2^i is immediate but f needs to be precise for long double accuracy. * Suppress range reduction error in computing f by the following. * Separate x into integer and fractional parts * x = xi + xf, |xf| <= .5 * Separate log2(e) into the sum of an exact number c0 and small part c1. * c0 + c1 = log2(e) to extra precision * Then * f = (c0 xi - i) + c0 xf + c1 x * where c0 xi is exact and so also is (c0 xi - i). * -- moshier@na-net.ornl.gov */ #include .section .rodata.cst16,"aM",@progbits,16 .p2align 4 ASM_TYPE_DIRECTIVE(c0,@object) c0: .byte 0, 0, 0, 0, 0, 0, 0xaa, 0xb8, 0xff, 0x3f .byte 0, 0, 0, 0, 0, 0 ASM_SIZE_DIRECTIVE(c0) ASM_TYPE_DIRECTIVE(c1,@object) c1: .byte 0x20, 0xfa, 0xee, 0xc2, 0x5f, 0x70, 0xa5, 0xec, 0xed, 0x3f .byte 0, 0, 0, 0, 0, 0 ASM_SIZE_DIRECTIVE(c1) ASM_TYPE_DIRECTIVE(csat,@object) csat: .byte 0, 0, 0, 0, 0, 0, 0, 0x80, 0x0e, 0x40 .byte 0, 0, 0, 0, 0, 0 ASM_SIZE_DIRECTIVE(csat) #ifdef PIC # define MO(op) op##@GOTOFF(%ecx) #else # define MO(op) op #endif .text ENTRY(__ieee754_expl) fldt 4(%esp) /* I added the following ugly construct because expl(+-Inf) resulted in NaN. The ugliness results from the bright minds at Intel. For the i686 the code can be written better. -- drepper@cygnus.com. */ fxam /* Is NaN or +-Inf? */ #ifdef PIC LOAD_PIC_REG (cx) #endif movzwl 4+8(%esp), %eax andl $0x7fff, %eax cmpl $0x400d, %eax jle 3f /* Overflow, underflow or infinity or NaN as argument. */ fstsw %ax movb $0x45, %dh andb %ah, %dh cmpb $0x05, %dh je 1f /* Is +-Inf, jump. */ cmpb $0x01, %dh je 2f /* Is +-NaN, jump. */ /* Overflow or underflow; saturate. */ fstp %st fldt MO(csat) andb $2, %ah jz 3f fchs 3: fldl2e /* 1 log2(e) */ fmul %st(1), %st /* 1 x log2(e) */ frndint /* 1 i */ fld %st(1) /* 2 x */ frndint /* 2 xi */ fld %st(1) /* 3 i */ fldt MO(c0) /* 4 c0 */ fld %st(2) /* 5 xi */ fmul %st(1), %st /* 5 c0 xi */ fsubp %st, %st(2) /* 4 f = c0 xi - i */ fld %st(4) /* 5 x */ fsub %st(3), %st /* 5 xf = x - xi */ fmulp %st, %st(1) /* 4 c0 xf */ faddp %st, %st(1) /* 3 f = f + c0 xf */ fldt MO(c1) /* 4 */ fmul %st(4), %st /* 4 c1 * x */ faddp %st, %st(1) /* 3 f = f + c1 * x */ f2xm1 /* 3 2^(fract(x * log2(e))) - 1 */ fld1 /* 4 1.0 */ faddp /* 3 2^(fract(x * log2(e))) */ fstp %st(1) /* 2 */ fscale /* 2 scale factor is st(1); e^x */ fstp %st(1) /* 1 */ fstp %st(1) /* 0 */ jmp 2f 1: testl $0x200, %eax /* Test sign. */ jz 2f /* If positive, jump. */ fstp %st fldz /* Set result to 0. */ 2: ret END(__ieee754_expl) strong_alias (__ieee754_expl, __expl_finite)