aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/InstCombine/InstCombineNegator.cpp
blob: c573b03f31a623d7fe408cc3d153fdc99692f099 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
//===- InstCombineNegator.cpp -----------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements sinking of negation into expression trees,
// as long as that can be done without increasing instruction count.
//
//===----------------------------------------------------------------------===//

#include "InstCombineInternal.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/TargetFolder.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/InstCombine/InstCombiner.h"
#include <cassert>
#include <cstdint>
#include <functional>
#include <tuple>
#include <type_traits>
#include <utility>

namespace llvm {
class AssumptionCache;
class DataLayout;
class DominatorTree;
class LLVMContext;
} // namespace llvm

using namespace llvm;

#define DEBUG_TYPE "instcombine"

STATISTIC(NegatorTotalNegationsAttempted,
          "Negator: Number of negations attempted to be sinked");
STATISTIC(NegatorNumTreesNegated,
          "Negator: Number of negations successfully sinked");
STATISTIC(NegatorMaxDepthVisited, "Negator: Maximal traversal depth ever "
                                  "reached while attempting to sink negation");
STATISTIC(NegatorTimesDepthLimitReached,
          "Negator: How many times did the traversal depth limit was reached "
          "during sinking");
STATISTIC(
    NegatorNumValuesVisited,
    "Negator: Total number of values visited during attempts to sink negation");
STATISTIC(NegatorNumNegationsFoundInCache,
          "Negator: How many negations did we retrieve/reuse from cache");
STATISTIC(NegatorMaxTotalValuesVisited,
          "Negator: Maximal number of values ever visited while attempting to "
          "sink negation");
STATISTIC(NegatorNumInstructionsCreatedTotal,
          "Negator: Number of new negated instructions created, total");
STATISTIC(NegatorMaxInstructionsCreated,
          "Negator: Maximal number of new instructions created during negation "
          "attempt");
STATISTIC(NegatorNumInstructionsNegatedSuccess,
          "Negator: Number of new negated instructions created in successful "
          "negation sinking attempts");

DEBUG_COUNTER(NegatorCounter, "instcombine-negator",
              "Controls Negator transformations in InstCombine pass");

static cl::opt<bool>
    NegatorEnabled("instcombine-negator-enabled", cl::init(true),
                   cl::desc("Should we attempt to sink negations?"));

static cl::opt<unsigned>
    NegatorMaxDepth("instcombine-negator-max-depth",
                    cl::init(NegatorDefaultMaxDepth),
                    cl::desc("What is the maximal lookup depth when trying to "
                             "check for viability of negation sinking."));

Negator::Negator(LLVMContext &C, const DataLayout &DL_, AssumptionCache &AC_,
                 const DominatorTree &DT_, bool IsTrulyNegation_)
    : Builder(C, TargetFolder(DL_),
              IRBuilderCallbackInserter([&](Instruction *I) {
                ++NegatorNumInstructionsCreatedTotal;
                NewInstructions.push_back(I);
              })),
      DL(DL_), AC(AC_), DT(DT_), IsTrulyNegation(IsTrulyNegation_) {}

#if LLVM_ENABLE_STATS
Negator::~Negator() {
  NegatorMaxTotalValuesVisited.updateMax(NumValuesVisitedInThisNegator);
}
#endif

// Due to the InstCombine's worklist management, there are no guarantees that
// each instruction we'll encounter has been visited by InstCombine already.
// In particular, most importantly for us, that means we have to canonicalize
// constants to RHS ourselves, since that is helpful sometimes.
std::array<Value *, 2> Negator::getSortedOperandsOfBinOp(Instruction *I) {
  assert(I->getNumOperands() == 2 && "Only for binops!");
  std::array<Value *, 2> Ops{I->getOperand(0), I->getOperand(1)};
  if (I->isCommutative() && InstCombiner::getComplexity(I->getOperand(0)) <
                                InstCombiner::getComplexity(I->getOperand(1)))
    std::swap(Ops[0], Ops[1]);
  return Ops;
}

// FIXME: can this be reworked into a worklist-based algorithm while preserving
// the depth-first, early bailout traversal?
LLVM_NODISCARD Value *Negator::visitImpl(Value *V, unsigned Depth) {
  // -(undef) -> undef.
  if (match(V, m_Undef()))
    return V;

  // In i1, negation can simply be ignored.
  if (V->getType()->isIntOrIntVectorTy(1))
    return V;

  Value *X;

  // -(-(X)) -> X.
  if (match(V, m_Neg(m_Value(X))))
    return X;

  // Integral constants can be freely negated.
  if (match(V, m_AnyIntegralConstant()))
    return ConstantExpr::getNeg(cast<Constant>(V), /*HasNUW=*/false,
                                /*HasNSW=*/false);

  // If we have a non-instruction, then give up.
  if (!isa<Instruction>(V))
    return nullptr;

  // If we have started with a true negation (i.e. `sub 0, %y`), then if we've
  // got instruction that does not require recursive reasoning, we can still
  // negate it even if it has other uses, without increasing instruction count.
  if (!V->hasOneUse() && !IsTrulyNegation)
    return nullptr;

  auto *I = cast<Instruction>(V);
  unsigned BitWidth = I->getType()->getScalarSizeInBits();

  // We must preserve the insertion point and debug info that is set in the
  // builder at the time this function is called.
  InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
  // And since we are trying to negate instruction I, that tells us about the
  // insertion point and the debug info that we need to keep.
  Builder.SetInsertPoint(I);

  // In some cases we can give the answer without further recursion.
  switch (I->getOpcode()) {
  case Instruction::Add: {
    std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
    // `inc` is always negatible.
    if (match(Ops[1], m_One()))
      return Builder.CreateNot(Ops[0], I->getName() + ".neg");
    break;
  }
  case Instruction::Xor:
    // `not` is always negatible.
    if (match(I, m_Not(m_Value(X))))
      return Builder.CreateAdd(X, ConstantInt::get(X->getType(), 1),
                               I->getName() + ".neg");
    break;
  case Instruction::AShr:
  case Instruction::LShr: {
    // Right-shift sign bit smear is negatible.
    const APInt *Op1Val;
    if (match(I->getOperand(1), m_APInt(Op1Val)) && *Op1Val == BitWidth - 1) {
      Value *BO = I->getOpcode() == Instruction::AShr
                      ? Builder.CreateLShr(I->getOperand(0), I->getOperand(1))
                      : Builder.CreateAShr(I->getOperand(0), I->getOperand(1));
      if (auto *NewInstr = dyn_cast<Instruction>(BO)) {
        NewInstr->copyIRFlags(I);
        NewInstr->setName(I->getName() + ".neg");
      }
      return BO;
    }
    // While we could negate exact arithmetic shift:
    //   ashr exact %x, C  -->   sdiv exact i8 %x, -1<<C
    // iff C != 0 and C u< bitwidth(%x), we don't want to,
    // because division is *THAT* much worse than a shift.
    break;
  }
  case Instruction::SExt:
  case Instruction::ZExt:
    // `*ext` of i1 is always negatible
    if (I->getOperand(0)->getType()->isIntOrIntVectorTy(1))
      return I->getOpcode() == Instruction::SExt
                 ? Builder.CreateZExt(I->getOperand(0), I->getType(),
                                      I->getName() + ".neg")
                 : Builder.CreateSExt(I->getOperand(0), I->getType(),
                                      I->getName() + ".neg");
    break;
  case Instruction::Select: {
    // If both arms of the select are constants, we don't need to recurse.
    // Therefore, this transform is not limited by uses.
    auto *Sel = cast<SelectInst>(I);
    Constant *TrueC, *FalseC;
    if (match(Sel->getTrueValue(), m_ImmConstant(TrueC)) &&
        match(Sel->getFalseValue(), m_ImmConstant(FalseC))) {
      Constant *NegTrueC = ConstantExpr::getNeg(TrueC);
      Constant *NegFalseC = ConstantExpr::getNeg(FalseC);
      return Builder.CreateSelect(Sel->getCondition(), NegTrueC, NegFalseC,
                                  I->getName() + ".neg", /*MDFrom=*/I);
    }
    break;
  }
  default:
    break; // Other instructions require recursive reasoning.
  }

  if (I->getOpcode() == Instruction::Sub &&
      (I->hasOneUse() || match(I->getOperand(0), m_ImmConstant()))) {
    // `sub` is always negatible.
    // However, only do this either if the old `sub` doesn't stick around, or
    // it was subtracting from a constant. Otherwise, this isn't profitable.
    return Builder.CreateSub(I->getOperand(1), I->getOperand(0),
                             I->getName() + ".neg");
  }

  // Some other cases, while still don't require recursion,
  // are restricted to the one-use case.
  if (!V->hasOneUse())
    return nullptr;

  switch (I->getOpcode()) {
  case Instruction::And: {
    Constant *ShAmt;
    // sub(y,and(lshr(x,C),1)) --> add(ashr(shl(x,(BW-1)-C),BW-1),y)
    if (match(I, m_c_And(m_OneUse(m_TruncOrSelf(
                             m_LShr(m_Value(X), m_ImmConstant(ShAmt)))),
                         m_One()))) {
      unsigned BW = X->getType()->getScalarSizeInBits();
      Constant *BWMinusOne = ConstantInt::get(X->getType(), BW - 1);
      Value *R = Builder.CreateShl(X, Builder.CreateSub(BWMinusOne, ShAmt));
      R = Builder.CreateAShr(R, BWMinusOne);
      return Builder.CreateTruncOrBitCast(R, I->getType());
    }
    break;
  }
  case Instruction::SDiv:
    // `sdiv` is negatible if divisor is not undef/INT_MIN/1.
    // While this is normally not behind a use-check,
    // let's consider division to be special since it's costly.
    if (auto *Op1C = dyn_cast<Constant>(I->getOperand(1))) {
      if (!Op1C->containsUndefOrPoisonElement() &&
          Op1C->isNotMinSignedValue() && Op1C->isNotOneValue()) {
        Value *BO =
            Builder.CreateSDiv(I->getOperand(0), ConstantExpr::getNeg(Op1C),
                               I->getName() + ".neg");
        if (auto *NewInstr = dyn_cast<Instruction>(BO))
          NewInstr->setIsExact(I->isExact());
        return BO;
      }
    }
    break;
  }

  // Rest of the logic is recursive, so if it's time to give up then it's time.
  if (Depth > NegatorMaxDepth) {
    LLVM_DEBUG(dbgs() << "Negator: reached maximal allowed traversal depth in "
                      << *V << ". Giving up.\n");
    ++NegatorTimesDepthLimitReached;
    return nullptr;
  }

  switch (I->getOpcode()) {
  case Instruction::Freeze: {
    // `freeze` is negatible if its operand is negatible.
    Value *NegOp = negate(I->getOperand(0), Depth + 1);
    if (!NegOp) // Early return.
      return nullptr;
    return Builder.CreateFreeze(NegOp, I->getName() + ".neg");
  }
  case Instruction::PHI: {
    // `phi` is negatible if all the incoming values are negatible.
    auto *PHI = cast<PHINode>(I);
    SmallVector<Value *, 4> NegatedIncomingValues(PHI->getNumOperands());
    for (auto I : zip(PHI->incoming_values(), NegatedIncomingValues)) {
      if (!(std::get<1>(I) =
                negate(std::get<0>(I), Depth + 1))) // Early return.
        return nullptr;
    }
    // All incoming values are indeed negatible. Create negated PHI node.
    PHINode *NegatedPHI = Builder.CreatePHI(
        PHI->getType(), PHI->getNumOperands(), PHI->getName() + ".neg");
    for (auto I : zip(NegatedIncomingValues, PHI->blocks()))
      NegatedPHI->addIncoming(std::get<0>(I), std::get<1>(I));
    return NegatedPHI;
  }
  case Instruction::Select: {
    if (isKnownNegation(I->getOperand(1), I->getOperand(2))) {
      // Of one hand of select is known to be negation of another hand,
      // just swap the hands around.
      auto *NewSelect = cast<SelectInst>(I->clone());
      // Just swap the operands of the select.
      NewSelect->swapValues();
      // Don't swap prof metadata, we didn't change the branch behavior.
      NewSelect->setName(I->getName() + ".neg");
      Builder.Insert(NewSelect);
      return NewSelect;
    }
    // `select` is negatible if both hands of `select` are negatible.
    Value *NegOp1 = negate(I->getOperand(1), Depth + 1);
    if (!NegOp1) // Early return.
      return nullptr;
    Value *NegOp2 = negate(I->getOperand(2), Depth + 1);
    if (!NegOp2)
      return nullptr;
    // Do preserve the metadata!
    return Builder.CreateSelect(I->getOperand(0), NegOp1, NegOp2,
                                I->getName() + ".neg", /*MDFrom=*/I);
  }
  case Instruction::ShuffleVector: {
    // `shufflevector` is negatible if both operands are negatible.
    auto *Shuf = cast<ShuffleVectorInst>(I);
    Value *NegOp0 = negate(I->getOperand(0), Depth + 1);
    if (!NegOp0) // Early return.
      return nullptr;
    Value *NegOp1 = negate(I->getOperand(1), Depth + 1);
    if (!NegOp1)
      return nullptr;
    return Builder.CreateShuffleVector(NegOp0, NegOp1, Shuf->getShuffleMask(),
                                       I->getName() + ".neg");
  }
  case Instruction::ExtractElement: {
    // `extractelement` is negatible if source operand is negatible.
    auto *EEI = cast<ExtractElementInst>(I);
    Value *NegVector = negate(EEI->getVectorOperand(), Depth + 1);
    if (!NegVector) // Early return.
      return nullptr;
    return Builder.CreateExtractElement(NegVector, EEI->getIndexOperand(),
                                        I->getName() + ".neg");
  }
  case Instruction::InsertElement: {
    // `insertelement` is negatible if both the source vector and
    // element-to-be-inserted are negatible.
    auto *IEI = cast<InsertElementInst>(I);
    Value *NegVector = negate(IEI->getOperand(0), Depth + 1);
    if (!NegVector) // Early return.
      return nullptr;
    Value *NegNewElt = negate(IEI->getOperand(1), Depth + 1);
    if (!NegNewElt) // Early return.
      return nullptr;
    return Builder.CreateInsertElement(NegVector, NegNewElt, IEI->getOperand(2),
                                       I->getName() + ".neg");
  }
  case Instruction::Trunc: {
    // `trunc` is negatible if its operand is negatible.
    Value *NegOp = negate(I->getOperand(0), Depth + 1);
    if (!NegOp) // Early return.
      return nullptr;
    return Builder.CreateTrunc(NegOp, I->getType(), I->getName() + ".neg");
  }
  case Instruction::Shl: {
    // `shl` is negatible if the first operand is negatible.
    if (Value *NegOp0 = negate(I->getOperand(0), Depth + 1))
      return Builder.CreateShl(NegOp0, I->getOperand(1), I->getName() + ".neg");
    // Otherwise, `shl %x, C` can be interpreted as `mul %x, 1<<C`.
    auto *Op1C = dyn_cast<Constant>(I->getOperand(1));
    if (!Op1C) // Early return.
      return nullptr;
    return Builder.CreateMul(
        I->getOperand(0),
        ConstantExpr::getShl(Constant::getAllOnesValue(Op1C->getType()), Op1C),
        I->getName() + ".neg");
  }
  case Instruction::Or: {
    if (!haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1), DL, &AC, I,
                             &DT))
      return nullptr; // Don't know how to handle `or` in general.
    std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
    // `or`/`add` are interchangeable when operands have no common bits set.
    // `inc` is always negatible.
    if (match(Ops[1], m_One()))
      return Builder.CreateNot(Ops[0], I->getName() + ".neg");
    // Else, just defer to Instruction::Add handling.
    LLVM_FALLTHROUGH;
  }
  case Instruction::Add: {
    // `add` is negatible if both of its operands are negatible.
    SmallVector<Value *, 2> NegatedOps, NonNegatedOps;
    for (Value *Op : I->operands()) {
      // Can we sink the negation into this operand?
      if (Value *NegOp = negate(Op, Depth + 1)) {
        NegatedOps.emplace_back(NegOp); // Successfully negated operand!
        continue;
      }
      // Failed to sink negation into this operand. IFF we started from negation
      // and we manage to sink negation into one operand, we can still do this.
      if (!IsTrulyNegation)
        return nullptr;
      NonNegatedOps.emplace_back(Op); // Just record which operand that was.
    }
    assert((NegatedOps.size() + NonNegatedOps.size()) == 2 &&
           "Internal consistency check failed.");
    // Did we manage to sink negation into both of the operands?
    if (NegatedOps.size() == 2) // Then we get to keep the `add`!
      return Builder.CreateAdd(NegatedOps[0], NegatedOps[1],
                               I->getName() + ".neg");
    assert(IsTrulyNegation && "We should have early-exited then.");
    // Completely failed to sink negation?
    if (NonNegatedOps.size() == 2)
      return nullptr;
    // 0-(a+b) --> (-a)-b
    return Builder.CreateSub(NegatedOps[0], NonNegatedOps[0],
                             I->getName() + ".neg");
  }
  case Instruction::Xor: {
    std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
    // `xor` is negatible if one of its operands is invertible.
    // FIXME: InstCombineInverter? But how to connect Inverter and Negator?
    if (auto *C = dyn_cast<Constant>(Ops[1])) {
      Value *Xor = Builder.CreateXor(Ops[0], ConstantExpr::getNot(C));
      return Builder.CreateAdd(Xor, ConstantInt::get(Xor->getType(), 1),
                               I->getName() + ".neg");
    }
    return nullptr;
  }
  case Instruction::Mul: {
    std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
    // `mul` is negatible if one of its operands is negatible.
    Value *NegatedOp, *OtherOp;
    // First try the second operand, in case it's a constant it will be best to
    // just invert it instead of sinking the `neg` deeper.
    if (Value *NegOp1 = negate(Ops[1], Depth + 1)) {
      NegatedOp = NegOp1;
      OtherOp = Ops[0];
    } else if (Value *NegOp0 = negate(Ops[0], Depth + 1)) {
      NegatedOp = NegOp0;
      OtherOp = Ops[1];
    } else
      // Can't negate either of them.
      return nullptr;
    return Builder.CreateMul(NegatedOp, OtherOp, I->getName() + ".neg");
  }
  default:
    return nullptr; // Don't know, likely not negatible for free.
  }

  llvm_unreachable("Can't get here. We always return from switch.");
}

LLVM_NODISCARD Value *Negator::negate(Value *V, unsigned Depth) {
  NegatorMaxDepthVisited.updateMax(Depth);
  ++NegatorNumValuesVisited;

#if LLVM_ENABLE_STATS
  ++NumValuesVisitedInThisNegator;
#endif

#ifndef NDEBUG
  // We can't ever have a Value with such an address.
  Value *Placeholder = reinterpret_cast<Value *>(static_cast<uintptr_t>(-1));
#endif

  // Did we already try to negate this value?
  auto NegationsCacheIterator = NegationsCache.find(V);
  if (NegationsCacheIterator != NegationsCache.end()) {
    ++NegatorNumNegationsFoundInCache;
    Value *NegatedV = NegationsCacheIterator->second;
    assert(NegatedV != Placeholder && "Encountered a cycle during negation.");
    return NegatedV;
  }

#ifndef NDEBUG
  // We did not find a cached result for negation of V. While there,
  // let's temporairly cache a placeholder value, with the idea that if later
  // during negation we fetch it from cache, we'll know we're in a cycle.
  NegationsCache[V] = Placeholder;
#endif

  // No luck. Try negating it for real.
  Value *NegatedV = visitImpl(V, Depth);
  // And cache the (real) result for the future.
  NegationsCache[V] = NegatedV;

  return NegatedV;
}

LLVM_NODISCARD Optional<Negator::Result> Negator::run(Value *Root) {
  Value *Negated = negate(Root, /*Depth=*/0);
  if (!Negated) {
    // We must cleanup newly-inserted instructions, to avoid any potential
    // endless combine looping.
    for (Instruction *I : llvm::reverse(NewInstructions))
      I->eraseFromParent();
    return llvm::None;
  }
  return std::make_pair(ArrayRef<Instruction *>(NewInstructions), Negated);
}

LLVM_NODISCARD Value *Negator::Negate(bool LHSIsZero, Value *Root,
                                      InstCombinerImpl &IC) {
  ++NegatorTotalNegationsAttempted;
  LLVM_DEBUG(dbgs() << "Negator: attempting to sink negation into " << *Root
                    << "\n");

  if (!NegatorEnabled || !DebugCounter::shouldExecute(NegatorCounter))
    return nullptr;

  Negator N(Root->getContext(), IC.getDataLayout(), IC.getAssumptionCache(),
            IC.getDominatorTree(), LHSIsZero);
  Optional<Result> Res = N.run(Root);
  if (!Res) { // Negation failed.
    LLVM_DEBUG(dbgs() << "Negator: failed to sink negation into " << *Root
                      << "\n");
    return nullptr;
  }

  LLVM_DEBUG(dbgs() << "Negator: successfully sunk negation into " << *Root
                    << "\n         NEW: " << *Res->second << "\n");
  ++NegatorNumTreesNegated;

  // We must temporarily unset the 'current' insertion point and DebugLoc of the
  // InstCombine's IRBuilder so that it won't interfere with the ones we have
  // already specified when producing negated instructions.
  InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
  IC.Builder.ClearInsertionPoint();
  IC.Builder.SetCurrentDebugLocation(DebugLoc());

  // And finally, we must add newly-created instructions into the InstCombine's
  // worklist (in a proper order!) so it can attempt to combine them.
  LLVM_DEBUG(dbgs() << "Negator: Propagating " << Res->first.size()
                    << " instrs to InstCombine\n");
  NegatorMaxInstructionsCreated.updateMax(Res->first.size());
  NegatorNumInstructionsNegatedSuccess += Res->first.size();

  // They are in def-use order, so nothing fancy, just insert them in order.
  for (Instruction *I : Res->first)
    IC.Builder.Insert(I, I->getName());

  // And return the new root.
  return Res->second;
}