summaryrefslogtreecommitdiff
path: root/llvm/lib/Target/X86/X86FlagsCopyLowering.cpp
blob: 778aa505b2d9e4d59d372bb54be9f3094c22089f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
//====- X86FlagsCopyLowering.cpp - Lowers COPY nodes of EFLAGS ------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// Lowers COPY nodes of EFLAGS by directly extracting and preserving individual
/// flag bits.
///
/// We have to do this by carefully analyzing and rewriting the usage of the
/// copied EFLAGS register because there is no general way to rematerialize the
/// entire EFLAGS register safely and efficiently. Using `popf` both forces
/// dynamic stack adjustment and can create correctness issues due to IF, TF,
/// and other non-status flags being overwritten. Using sequences involving
/// SAHF don't work on all x86 processors and are often quite slow compared to
/// directly testing a single status preserved in its own GPR.
///
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineSSAUpdater.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/MCSchedule.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <utility>

using namespace llvm;

#define PASS_KEY "x86-flags-copy-lowering"
#define DEBUG_TYPE PASS_KEY

STATISTIC(NumCopiesEliminated, "Number of copies of EFLAGS eliminated");
STATISTIC(NumSetCCsInserted, "Number of setCC instructions inserted");
STATISTIC(NumTestsInserted, "Number of test instructions inserted");
STATISTIC(NumAddsInserted, "Number of adds instructions inserted");

namespace llvm {

void initializeX86FlagsCopyLoweringPassPass(PassRegistry &);

} // end namespace llvm

namespace {

// Convenient array type for storing registers associated with each condition.
using CondRegArray = std::array<unsigned, X86::LAST_VALID_COND + 1>;

class X86FlagsCopyLoweringPass : public MachineFunctionPass {
public:
  X86FlagsCopyLoweringPass() : MachineFunctionPass(ID) {
    initializeX86FlagsCopyLoweringPassPass(*PassRegistry::getPassRegistry());
  }

  StringRef getPassName() const override { return "X86 EFLAGS copy lowering"; }
  bool runOnMachineFunction(MachineFunction &MF) override;
  void getAnalysisUsage(AnalysisUsage &AU) const override;

  /// Pass identification, replacement for typeid.
  static char ID;

private:
  MachineRegisterInfo *MRI;
  const X86Subtarget *Subtarget;
  const X86InstrInfo *TII;
  const TargetRegisterInfo *TRI;
  const TargetRegisterClass *PromoteRC;
  MachineDominatorTree *MDT;

  CondRegArray collectCondsInRegs(MachineBasicBlock &MBB,
                                  MachineBasicBlock::iterator CopyDefI);

  unsigned promoteCondToReg(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator TestPos,
                            DebugLoc TestLoc, X86::CondCode Cond);
  std::pair<unsigned, bool>
  getCondOrInverseInReg(MachineBasicBlock &TestMBB,
                        MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
                        X86::CondCode Cond, CondRegArray &CondRegs);
  void insertTest(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos,
                  DebugLoc Loc, unsigned Reg);

  void rewriteArithmetic(MachineBasicBlock &TestMBB,
                         MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
                         MachineInstr &MI, MachineOperand &FlagUse,
                         CondRegArray &CondRegs);
  void rewriteCMov(MachineBasicBlock &TestMBB,
                   MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
                   MachineInstr &CMovI, MachineOperand &FlagUse,
                   CondRegArray &CondRegs);
  void rewriteCondJmp(MachineBasicBlock &TestMBB,
                      MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
                      MachineInstr &JmpI, CondRegArray &CondRegs);
  void rewriteCopy(MachineInstr &MI, MachineOperand &FlagUse,
                   MachineInstr &CopyDefI);
  void rewriteSetCarryExtended(MachineBasicBlock &TestMBB,
                               MachineBasicBlock::iterator TestPos,
                               DebugLoc TestLoc, MachineInstr &SetBI,
                               MachineOperand &FlagUse, CondRegArray &CondRegs);
  void rewriteSetCC(MachineBasicBlock &TestMBB,
                    MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
                    MachineInstr &SetCCI, MachineOperand &FlagUse,
                    CondRegArray &CondRegs);
};

} // end anonymous namespace

INITIALIZE_PASS_BEGIN(X86FlagsCopyLoweringPass, DEBUG_TYPE,
                      "X86 EFLAGS copy lowering", false, false)
INITIALIZE_PASS_END(X86FlagsCopyLoweringPass, DEBUG_TYPE,
                    "X86 EFLAGS copy lowering", false, false)

FunctionPass *llvm::createX86FlagsCopyLoweringPass() {
  return new X86FlagsCopyLoweringPass();
}

char X86FlagsCopyLoweringPass::ID = 0;

void X86FlagsCopyLoweringPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<MachineDominatorTree>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

namespace {
/// An enumeration of the arithmetic instruction mnemonics which have
/// interesting flag semantics.
///
/// We can map instruction opcodes into these mnemonics to make it easy to
/// dispatch with specific functionality.
enum class FlagArithMnemonic {
  ADC,
  ADCX,
  ADOX,
  RCL,
  RCR,
  SBB,
};
} // namespace

static FlagArithMnemonic getMnemonicFromOpcode(unsigned Opcode) {
  switch (Opcode) {
  default:
    report_fatal_error("No support for lowering a copy into EFLAGS when used "
                       "by this instruction!");

#define LLVM_EXPAND_INSTR_SIZES(MNEMONIC, SUFFIX)                              \
  case X86::MNEMONIC##8##SUFFIX:                                               \
  case X86::MNEMONIC##16##SUFFIX:                                              \
  case X86::MNEMONIC##32##SUFFIX:                                              \
  case X86::MNEMONIC##64##SUFFIX:

#define LLVM_EXPAND_ADC_SBB_INSTR(MNEMONIC)                                    \
  LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr)                                        \
  LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr_REV)                                    \
  LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rm)                                        \
  LLVM_EXPAND_INSTR_SIZES(MNEMONIC, mr)                                        \
  case X86::MNEMONIC##8ri:                                                     \
  case X86::MNEMONIC##16ri8:                                                   \
  case X86::MNEMONIC##32ri8:                                                   \
  case X86::MNEMONIC##64ri8:                                                   \
  case X86::MNEMONIC##16ri:                                                    \
  case X86::MNEMONIC##32ri:                                                    \
  case X86::MNEMONIC##64ri32:                                                  \
  case X86::MNEMONIC##8mi:                                                     \
  case X86::MNEMONIC##16mi8:                                                   \
  case X86::MNEMONIC##32mi8:                                                   \
  case X86::MNEMONIC##64mi8:                                                   \
  case X86::MNEMONIC##16mi:                                                    \
  case X86::MNEMONIC##32mi:                                                    \
  case X86::MNEMONIC##64mi32:                                                  \
  case X86::MNEMONIC##8i8:                                                     \
  case X86::MNEMONIC##16i16:                                                   \
  case X86::MNEMONIC##32i32:                                                   \
  case X86::MNEMONIC##64i32:

    LLVM_EXPAND_ADC_SBB_INSTR(ADC)
    return FlagArithMnemonic::ADC;

    LLVM_EXPAND_ADC_SBB_INSTR(SBB)
    return FlagArithMnemonic::SBB;

#undef LLVM_EXPAND_ADC_SBB_INSTR

    LLVM_EXPAND_INSTR_SIZES(RCL, rCL)
    LLVM_EXPAND_INSTR_SIZES(RCL, r1)
    LLVM_EXPAND_INSTR_SIZES(RCL, ri)
    return FlagArithMnemonic::RCL;

    LLVM_EXPAND_INSTR_SIZES(RCR, rCL)
    LLVM_EXPAND_INSTR_SIZES(RCR, r1)
    LLVM_EXPAND_INSTR_SIZES(RCR, ri)
    return FlagArithMnemonic::RCR;

#undef LLVM_EXPAND_INSTR_SIZES

  case X86::ADCX32rr:
  case X86::ADCX64rr:
  case X86::ADCX32rm:
  case X86::ADCX64rm:
    return FlagArithMnemonic::ADCX;

  case X86::ADOX32rr:
  case X86::ADOX64rr:
  case X86::ADOX32rm:
  case X86::ADOX64rm:
    return FlagArithMnemonic::ADOX;
  }
}

static MachineBasicBlock &splitBlock(MachineBasicBlock &MBB,
                                     MachineInstr &SplitI,
                                     const X86InstrInfo &TII) {
  MachineFunction &MF = *MBB.getParent();

  assert(SplitI.getParent() == &MBB &&
         "Split instruction must be in the split block!");
  assert(SplitI.isBranch() &&
         "Only designed to split a tail of branch instructions!");
  assert(X86::getCondFromBranchOpc(SplitI.getOpcode()) != X86::COND_INVALID &&
         "Must split on an actual jCC instruction!");

  // Dig out the previous instruction to the split point.
  MachineInstr &PrevI = *std::prev(SplitI.getIterator());
  assert(PrevI.isBranch() && "Must split after a branch!");
  assert(X86::getCondFromBranchOpc(PrevI.getOpcode()) != X86::COND_INVALID &&
         "Must split after an actual jCC instruction!");
  assert(!std::prev(PrevI.getIterator())->isTerminator() &&
         "Must only have this one terminator prior to the split!");

  // Grab the one successor edge that will stay in `MBB`.
  MachineBasicBlock &UnsplitSucc = *PrevI.getOperand(0).getMBB();

  // Analyze the original block to see if we are actually splitting an edge
  // into two edges. This can happen when we have multiple conditional jumps to
  // the same successor.
  bool IsEdgeSplit =
      std::any_of(SplitI.getIterator(), MBB.instr_end(),
                  [&](MachineInstr &MI) {
                    assert(MI.isTerminator() &&
                           "Should only have spliced terminators!");
                    return llvm::any_of(
                        MI.operands(), [&](MachineOperand &MOp) {
                          return MOp.isMBB() && MOp.getMBB() == &UnsplitSucc;
                        });
                  }) ||
      MBB.getFallThrough() == &UnsplitSucc;

  MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();

  // Insert the new block immediately after the current one. Any existing
  // fallthrough will be sunk into this new block anyways.
  MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);

  // Splice the tail of instructions into the new block.
  NewMBB.splice(NewMBB.end(), &MBB, SplitI.getIterator(), MBB.end());

  // Copy the necessary succesors (and their probability info) into the new
  // block.
  for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI)
    if (IsEdgeSplit || *SI != &UnsplitSucc)
      NewMBB.copySuccessor(&MBB, SI);
  // Normalize the probabilities if we didn't end up splitting the edge.
  if (!IsEdgeSplit)
    NewMBB.normalizeSuccProbs();

  // Now replace all of the moved successors in the original block with the new
  // block. This will merge their probabilities.
  for (MachineBasicBlock *Succ : NewMBB.successors())
    if (Succ != &UnsplitSucc)
      MBB.replaceSuccessor(Succ, &NewMBB);

  // We should always end up replacing at least one successor.
  assert(MBB.isSuccessor(&NewMBB) &&
         "Failed to make the new block a successor!");

  // Now update all the PHIs.
  for (MachineBasicBlock *Succ : NewMBB.successors()) {
    for (MachineInstr &MI : *Succ) {
      if (!MI.isPHI())
        break;

      for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
           OpIdx += 2) {
        MachineOperand &OpV = MI.getOperand(OpIdx);
        MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
        assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
        if (OpMBB.getMBB() != &MBB)
          continue;

        // Replace the operand for unsplit successors
        if (!IsEdgeSplit || Succ != &UnsplitSucc) {
          OpMBB.setMBB(&NewMBB);

          // We have to continue scanning as there may be multiple entries in
          // the PHI.
          continue;
        }

        // When we have split the edge append a new successor.
        MI.addOperand(MF, OpV);
        MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
        break;
      }
    }
  }

  return NewMBB;
}

bool X86FlagsCopyLoweringPass::runOnMachineFunction(MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
                    << " **********\n");

  Subtarget = &MF.getSubtarget<X86Subtarget>();
  MRI = &MF.getRegInfo();
  TII = Subtarget->getInstrInfo();
  TRI = Subtarget->getRegisterInfo();
  MDT = &getAnalysis<MachineDominatorTree>();
  PromoteRC = &X86::GR8RegClass;

  if (MF.begin() == MF.end())
    // Nothing to do for a degenerate empty function...
    return false;

  // Collect the copies in RPO so that when there are chains where a copy is in
  // turn copied again we visit the first one first. This ensures we can find
  // viable locations for testing the original EFLAGS that dominate all the
  // uses across complex CFGs.
  SmallVector<MachineInstr *, 4> Copies;
  ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
  for (MachineBasicBlock *MBB : RPOT)
    for (MachineInstr &MI : *MBB)
      if (MI.getOpcode() == TargetOpcode::COPY &&
          MI.getOperand(0).getReg() == X86::EFLAGS)
        Copies.push_back(&MI);

  for (MachineInstr *CopyI : Copies) {
    MachineBasicBlock &MBB = *CopyI->getParent();

    MachineOperand &VOp = CopyI->getOperand(1);
    assert(VOp.isReg() &&
           "The input to the copy for EFLAGS should always be a register!");
    MachineInstr &CopyDefI = *MRI->getVRegDef(VOp.getReg());
    if (CopyDefI.getOpcode() != TargetOpcode::COPY) {
      // FIXME: The big likely candidate here are PHI nodes. We could in theory
      // handle PHI nodes, but it gets really, really hard. Insanely hard. Hard
      // enough that it is probably better to change every other part of LLVM
      // to avoid creating them. The issue is that once we have PHIs we won't
      // know which original EFLAGS value we need to capture with our setCCs
      // below. The end result will be computing a complete set of setCCs that
      // we *might* want, computing them in every place where we copy *out* of
      // EFLAGS and then doing SSA formation on all of them to insert necessary
      // PHI nodes and consume those here. Then hoping that somehow we DCE the
      // unnecessary ones. This DCE seems very unlikely to be successful and so
      // we will almost certainly end up with a glut of dead setCC
      // instructions. Until we have a motivating test case and fail to avoid
      // it by changing other parts of LLVM's lowering, we refuse to handle
      // this complex case here.
      LLVM_DEBUG(
          dbgs() << "ERROR: Encountered unexpected def of an eflags copy: ";
          CopyDefI.dump());
      report_fatal_error(
          "Cannot lower EFLAGS copy unless it is defined in turn by a copy!");
    }

    auto Cleanup = make_scope_exit([&] {
      // All uses of the EFLAGS copy are now rewritten, kill the copy into
      // eflags and if dead the copy from.
      CopyI->eraseFromParent();
      if (MRI->use_empty(CopyDefI.getOperand(0).getReg()))
        CopyDefI.eraseFromParent();
      ++NumCopiesEliminated;
    });

    MachineOperand &DOp = CopyI->getOperand(0);
    assert(DOp.isDef() && "Expected register def!");
    assert(DOp.getReg() == X86::EFLAGS && "Unexpected copy def register!");
    if (DOp.isDead())
      continue;

    MachineBasicBlock *TestMBB = CopyDefI.getParent();
    auto TestPos = CopyDefI.getIterator();
    DebugLoc TestLoc = CopyDefI.getDebugLoc();

    LLVM_DEBUG(dbgs() << "Rewriting copy: "; CopyI->dump());

    // Walk up across live-in EFLAGS to find where they were actually def'ed.
    //
    // This copy's def may just be part of a region of blocks covered by
    // a single def of EFLAGS and we want to find the top of that region where
    // possible.
    //
    // This is essentially a search for a *candidate* reaching definition
    // location. We don't need to ever find the actual reaching definition here,
    // but we want to walk up the dominator tree to find the highest point which
    // would be viable for such a definition.
    auto HasEFLAGSClobber = [&](MachineBasicBlock::iterator Begin,
                                MachineBasicBlock::iterator End) {
      // Scan backwards as we expect these to be relatively short and often find
      // a clobber near the end.
      return llvm::any_of(
          llvm::reverse(llvm::make_range(Begin, End)), [&](MachineInstr &MI) {
            // Flag any instruction (other than the copy we are
            // currently rewriting) that defs EFLAGS.
            return &MI != CopyI && MI.findRegisterDefOperand(X86::EFLAGS);
          });
    };
    auto HasEFLAGSClobberPath = [&](MachineBasicBlock *BeginMBB,
                                    MachineBasicBlock *EndMBB) {
      assert(MDT->dominates(BeginMBB, EndMBB) &&
             "Only support paths down the dominator tree!");
      SmallPtrSet<MachineBasicBlock *, 4> Visited;
      SmallVector<MachineBasicBlock *, 4> Worklist;
      // We terminate at the beginning. No need to scan it.
      Visited.insert(BeginMBB);
      Worklist.push_back(EndMBB);
      do {
        auto *MBB = Worklist.pop_back_val();
        for (auto *PredMBB : MBB->predecessors()) {
          if (!Visited.insert(PredMBB).second)
            continue;
          if (HasEFLAGSClobber(PredMBB->begin(), PredMBB->end()))
            return true;
          // Enqueue this block to walk its predecessors.
          Worklist.push_back(PredMBB);
        }
      } while (!Worklist.empty());
      // No clobber found along a path from the begin to end.
      return false;
    };
    while (TestMBB->isLiveIn(X86::EFLAGS) && !TestMBB->pred_empty() &&
           !HasEFLAGSClobber(TestMBB->begin(), TestPos)) {
      // Find the nearest common dominator of the predecessors, as
      // that will be the best candidate to hoist into.
      MachineBasicBlock *HoistMBB =
          std::accumulate(std::next(TestMBB->pred_begin()), TestMBB->pred_end(),
                          *TestMBB->pred_begin(),
                          [&](MachineBasicBlock *LHS, MachineBasicBlock *RHS) {
                            return MDT->findNearestCommonDominator(LHS, RHS);
                          });

      // Now we need to scan all predecessors that may be reached along paths to
      // the hoist block. A clobber anywhere in any of these blocks the hoist.
      // Note that this even handles loops because we require *no* clobbers.
      if (HasEFLAGSClobberPath(HoistMBB, TestMBB))
        break;

      // We also need the terminators to not sneakily clobber flags.
      if (HasEFLAGSClobber(HoistMBB->getFirstTerminator()->getIterator(),
                           HoistMBB->instr_end()))
        break;

      // We found a viable location, hoist our test position to it.
      TestMBB = HoistMBB;
      TestPos = TestMBB->getFirstTerminator()->getIterator();
      // Clear the debug location as it would just be confusing after hoisting.
      TestLoc = DebugLoc();
    }
    LLVM_DEBUG({
      auto DefIt = llvm::find_if(
          llvm::reverse(llvm::make_range(TestMBB->instr_begin(), TestPos)),
          [&](MachineInstr &MI) {
            return MI.findRegisterDefOperand(X86::EFLAGS);
          });
      if (DefIt.base() != TestMBB->instr_begin()) {
        dbgs() << "  Using EFLAGS defined by: ";
        DefIt->dump();
      } else {
        dbgs() << "  Using live-in flags for BB:\n";
        TestMBB->dump();
      }
    });

    // While rewriting uses, we buffer jumps and rewrite them in a second pass
    // because doing so will perturb the CFG that we are walking to find the
    // uses in the first place.
    SmallVector<MachineInstr *, 4> JmpIs;

    // Gather the condition flags that have already been preserved in
    // registers. We do this from scratch each time as we expect there to be
    // very few of them and we expect to not revisit the same copy definition
    // many times. If either of those change sufficiently we could build a map
    // of these up front instead.
    CondRegArray CondRegs = collectCondsInRegs(*TestMBB, TestPos);

    // Collect the basic blocks we need to scan. Typically this will just be
    // a single basic block but we may have to scan multiple blocks if the
    // EFLAGS copy lives into successors.
    SmallVector<MachineBasicBlock *, 2> Blocks;
    SmallPtrSet<MachineBasicBlock *, 2> VisitedBlocks;
    Blocks.push_back(&MBB);

    do {
      MachineBasicBlock &UseMBB = *Blocks.pop_back_val();

      // Track when if/when we find a kill of the flags in this block.
      bool FlagsKilled = false;

      // In most cases, we walk from the beginning to the end of the block. But
      // when the block is the same block as the copy is from, we will visit it
      // twice. The first time we start from the copy and go to the end. The
      // second time we start from the beginning and go to the copy. This lets
      // us handle copies inside of cycles.
      // FIXME: This loop is *super* confusing. This is at least in part
      // a symptom of all of this routine needing to be refactored into
      // documentable components. Once done, there may be a better way to write
      // this loop.
      for (auto MII = (&UseMBB == &MBB && !VisitedBlocks.count(&UseMBB))
                          ? std::next(CopyI->getIterator())
                          : UseMBB.instr_begin(),
                MIE = UseMBB.instr_end();
           MII != MIE;) {
        MachineInstr &MI = *MII++;
        // If we are in the original copy block and encounter either the copy
        // def or the copy itself, break so that we don't re-process any part of
        // the block or process the instructions in the range that was copied
        // over.
        if (&MI == CopyI || &MI == &CopyDefI) {
          assert(&UseMBB == &MBB && VisitedBlocks.count(&MBB) &&
                 "Should only encounter these on the second pass over the "
                 "original block.");
          break;
        }

        MachineOperand *FlagUse = MI.findRegisterUseOperand(X86::EFLAGS);
        if (!FlagUse) {
          if (MI.findRegisterDefOperand(X86::EFLAGS)) {
            // If EFLAGS are defined, it's as-if they were killed. We can stop
            // scanning here.
            //
            // NB!!! Many instructions only modify some flags. LLVM currently
            // models this as clobbering all flags, but if that ever changes
            // this will need to be carefully updated to handle that more
            // complex logic.
            FlagsKilled = true;
            break;
          }
          continue;
        }

        LLVM_DEBUG(dbgs() << "  Rewriting use: "; MI.dump());

        // Check the kill flag before we rewrite as that may change it.
        if (FlagUse->isKill())
          FlagsKilled = true;

        // Once we encounter a branch, the rest of the instructions must also be
        // branches. We can't rewrite in place here, so we handle them below.
        //
        // Note that we don't have to handle tail calls here, even conditional
        // tail calls, as those are not introduced into the X86 MI until post-RA
        // branch folding or black placement. As a consequence, we get to deal
        // with the simpler formulation of conditional branches followed by tail
        // calls.
        if (X86::getCondFromBranchOpc(MI.getOpcode()) != X86::COND_INVALID) {
          auto JmpIt = MI.getIterator();
          do {
            JmpIs.push_back(&*JmpIt);
            ++JmpIt;
          } while (JmpIt != UseMBB.instr_end() &&
                   X86::getCondFromBranchOpc(JmpIt->getOpcode()) !=
                       X86::COND_INVALID);
          break;
        }

        // Otherwise we can just rewrite in-place.
        if (X86::getCondFromCMovOpc(MI.getOpcode()) != X86::COND_INVALID) {
          rewriteCMov(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
        } else if (X86::getCondFromSETOpc(MI.getOpcode()) !=
                   X86::COND_INVALID) {
          rewriteSetCC(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
        } else if (MI.getOpcode() == TargetOpcode::COPY) {
          rewriteCopy(MI, *FlagUse, CopyDefI);
        } else {
          // We assume all other instructions that use flags also def them.
          assert(MI.findRegisterDefOperand(X86::EFLAGS) &&
                 "Expected a def of EFLAGS for this instruction!");

          // NB!!! Several arithmetic instructions only *partially* update
          // flags. Theoretically, we could generate MI code sequences that
          // would rely on this fact and observe different flags independently.
          // But currently LLVM models all of these instructions as clobbering
          // all the flags in an undef way. We rely on that to simplify the
          // logic.
          FlagsKilled = true;

          switch (MI.getOpcode()) {
          case X86::SETB_C8r:
          case X86::SETB_C16r:
          case X86::SETB_C32r:
          case X86::SETB_C64r:
            // Use custom lowering for arithmetic that is merely extending the
            // carry flag. We model this as the SETB_C* pseudo instructions.
            rewriteSetCarryExtended(*TestMBB, TestPos, TestLoc, MI, *FlagUse,
                                    CondRegs);
            break;

          default:
            // Generically handle remaining uses as arithmetic instructions.
            rewriteArithmetic(*TestMBB, TestPos, TestLoc, MI, *FlagUse,
                              CondRegs);
            break;
          }
          break;
        }

        // If this was the last use of the flags, we're done.
        if (FlagsKilled)
          break;
      }

      // If the flags were killed, we're done with this block.
      if (FlagsKilled)
        continue;

      // Otherwise we need to scan successors for ones where the flags live-in
      // and queue those up for processing.
      for (MachineBasicBlock *SuccMBB : UseMBB.successors())
        if (SuccMBB->isLiveIn(X86::EFLAGS) &&
            VisitedBlocks.insert(SuccMBB).second) {
          // We currently don't do any PHI insertion and so we require that the
          // test basic block dominates all of the use basic blocks. Further, we
          // can't have a cycle from the test block back to itself as that would
          // create a cycle requiring a PHI to break it.
          //
          // We could in theory do PHI insertion here if it becomes useful by
          // just taking undef values in along every edge that we don't trace
          // this EFLAGS copy along. This isn't as bad as fully general PHI
          // insertion, but still seems like a great deal of complexity.
          //
          // Because it is theoretically possible that some earlier MI pass or
          // other lowering transformation could induce this to happen, we do
          // a hard check even in non-debug builds here.
          if (SuccMBB == TestMBB || !MDT->dominates(TestMBB, SuccMBB)) {
            LLVM_DEBUG({
              dbgs()
                  << "ERROR: Encountered use that is not dominated by our test "
                     "basic block! Rewriting this would require inserting PHI "
                     "nodes to track the flag state across the CFG.\n\nTest "
                     "block:\n";
              TestMBB->dump();
              dbgs() << "Use block:\n";
              SuccMBB->dump();
            });
            report_fatal_error(
                "Cannot lower EFLAGS copy when original copy def "
                "does not dominate all uses.");
          }

          Blocks.push_back(SuccMBB);
        }
    } while (!Blocks.empty());

    // Now rewrite the jumps that use the flags. These we handle specially
    // because if there are multiple jumps in a single basic block we'll have
    // to do surgery on the CFG.
    MachineBasicBlock *LastJmpMBB = nullptr;
    for (MachineInstr *JmpI : JmpIs) {
      // Past the first jump within a basic block we need to split the blocks
      // apart.
      if (JmpI->getParent() == LastJmpMBB)
        splitBlock(*JmpI->getParent(), *JmpI, *TII);
      else
        LastJmpMBB = JmpI->getParent();

      rewriteCondJmp(*TestMBB, TestPos, TestLoc, *JmpI, CondRegs);
    }

    // FIXME: Mark the last use of EFLAGS before the copy's def as a kill if
    // the copy's def operand is itself a kill.
  }

#ifndef NDEBUG
  for (MachineBasicBlock &MBB : MF)
    for (MachineInstr &MI : MBB)
      if (MI.getOpcode() == TargetOpcode::COPY &&
          (MI.getOperand(0).getReg() == X86::EFLAGS ||
           MI.getOperand(1).getReg() == X86::EFLAGS)) {
        LLVM_DEBUG(dbgs() << "ERROR: Found a COPY involving EFLAGS: ";
                   MI.dump());
        llvm_unreachable("Unlowered EFLAGS copy!");
      }
#endif

  return true;
}

/// Collect any conditions that have already been set in registers so that we
/// can re-use them rather than adding duplicates.
CondRegArray X86FlagsCopyLoweringPass::collectCondsInRegs(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator TestPos) {
  CondRegArray CondRegs = {};

  // Scan backwards across the range of instructions with live EFLAGS.
  for (MachineInstr &MI :
       llvm::reverse(llvm::make_range(MBB.begin(), TestPos))) {
    X86::CondCode Cond = X86::getCondFromSETOpc(MI.getOpcode());
    if (Cond != X86::COND_INVALID && !MI.mayStore() && MI.getOperand(0).isReg() &&
        TRI->isVirtualRegister(MI.getOperand(0).getReg())) {
      assert(MI.getOperand(0).isDef() &&
             "A non-storing SETcc should always define a register!");
      CondRegs[Cond] = MI.getOperand(0).getReg();
    }

    // Stop scanning when we see the first definition of the EFLAGS as prior to
    // this we would potentially capture the wrong flag state.
    if (MI.findRegisterDefOperand(X86::EFLAGS))
      break;
  }
  return CondRegs;
}

unsigned X86FlagsCopyLoweringPass::promoteCondToReg(
    MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
    DebugLoc TestLoc, X86::CondCode Cond) {
  unsigned Reg = MRI->createVirtualRegister(PromoteRC);
  auto SetI = BuildMI(TestMBB, TestPos, TestLoc,
                      TII->get(X86::getSETFromCond(Cond)), Reg);
  (void)SetI;
  LLVM_DEBUG(dbgs() << "    save cond: "; SetI->dump());
  ++NumSetCCsInserted;
  return Reg;
}

std::pair<unsigned, bool> X86FlagsCopyLoweringPass::getCondOrInverseInReg(
    MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
    DebugLoc TestLoc, X86::CondCode Cond, CondRegArray &CondRegs) {
  unsigned &CondReg = CondRegs[Cond];
  unsigned &InvCondReg = CondRegs[X86::GetOppositeBranchCondition(Cond)];
  if (!CondReg && !InvCondReg)
    CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);

  if (CondReg)
    return {CondReg, false};
  else
    return {InvCondReg, true};
}

void X86FlagsCopyLoweringPass::insertTest(MachineBasicBlock &MBB,
                                          MachineBasicBlock::iterator Pos,
                                          DebugLoc Loc, unsigned Reg) {
  auto TestI =
      BuildMI(MBB, Pos, Loc, TII->get(X86::TEST8rr)).addReg(Reg).addReg(Reg);
  (void)TestI;
  LLVM_DEBUG(dbgs() << "    test cond: "; TestI->dump());
  ++NumTestsInserted;
}

void X86FlagsCopyLoweringPass::rewriteArithmetic(
    MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
    DebugLoc TestLoc, MachineInstr &MI, MachineOperand &FlagUse,
    CondRegArray &CondRegs) {
  // Arithmetic is either reading CF or OF. Figure out which condition we need
  // to preserve in a register.
  X86::CondCode Cond;

  // The addend to use to reset CF or OF when added to the flag value.
  int Addend;

  switch (getMnemonicFromOpcode(MI.getOpcode())) {
  case FlagArithMnemonic::ADC:
  case FlagArithMnemonic::ADCX:
  case FlagArithMnemonic::RCL:
  case FlagArithMnemonic::RCR:
  case FlagArithMnemonic::SBB:
    Cond = X86::COND_B; // CF == 1
    // Set up an addend that when one is added will need a carry due to not
    // having a higher bit available.
    Addend = 255;
    break;

  case FlagArithMnemonic::ADOX:
    Cond = X86::COND_O; // OF == 1
    // Set up an addend that when one is added will turn from positive to
    // negative and thus overflow in the signed domain.
    Addend = 127;
    break;
  }

  // Now get a register that contains the value of the flag input to the
  // arithmetic. We require exactly this flag to simplify the arithmetic
  // required to materialize it back into the flag.
  unsigned &CondReg = CondRegs[Cond];
  if (!CondReg)
    CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);

  MachineBasicBlock &MBB = *MI.getParent();

  // Insert an instruction that will set the flag back to the desired value.
  unsigned TmpReg = MRI->createVirtualRegister(PromoteRC);
  auto AddI =
      BuildMI(MBB, MI.getIterator(), MI.getDebugLoc(), TII->get(X86::ADD8ri))
          .addDef(TmpReg, RegState::Dead)
          .addReg(CondReg)
          .addImm(Addend);
  (void)AddI;
  LLVM_DEBUG(dbgs() << "    add cond: "; AddI->dump());
  ++NumAddsInserted;
  FlagUse.setIsKill(true);
}

void X86FlagsCopyLoweringPass::rewriteCMov(MachineBasicBlock &TestMBB,
                                           MachineBasicBlock::iterator TestPos,
                                           DebugLoc TestLoc,
                                           MachineInstr &CMovI,
                                           MachineOperand &FlagUse,
                                           CondRegArray &CondRegs) {
  // First get the register containing this specific condition.
  X86::CondCode Cond = X86::getCondFromCMovOpc(CMovI.getOpcode());
  unsigned CondReg;
  bool Inverted;
  std::tie(CondReg, Inverted) =
      getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);

  MachineBasicBlock &MBB = *CMovI.getParent();

  // Insert a direct test of the saved register.
  insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg);

  // Rewrite the CMov to use the !ZF flag from the test (but match register
  // size and memory operand), and then kill its use of the flags afterward.
  auto &CMovRC = *MRI->getRegClass(CMovI.getOperand(0).getReg());
  CMovI.setDesc(TII->get(X86::getCMovFromCond(
      Inverted ? X86::COND_E : X86::COND_NE, TRI->getRegSizeInBits(CMovRC) / 8,
      !CMovI.memoperands_empty())));
  FlagUse.setIsKill(true);
  LLVM_DEBUG(dbgs() << "    fixed cmov: "; CMovI.dump());
}

void X86FlagsCopyLoweringPass::rewriteCondJmp(
    MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
    DebugLoc TestLoc, MachineInstr &JmpI, CondRegArray &CondRegs) {
  // First get the register containing this specific condition.
  X86::CondCode Cond = X86::getCondFromBranchOpc(JmpI.getOpcode());
  unsigned CondReg;
  bool Inverted;
  std::tie(CondReg, Inverted) =
      getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);

  MachineBasicBlock &JmpMBB = *JmpI.getParent();

  // Insert a direct test of the saved register.
  insertTest(JmpMBB, JmpI.getIterator(), JmpI.getDebugLoc(), CondReg);

  // Rewrite the jump to use the !ZF flag from the test, and kill its use of
  // flags afterward.
  JmpI.setDesc(TII->get(
      X86::GetCondBranchFromCond(Inverted ? X86::COND_E : X86::COND_NE)));
  const int ImplicitEFLAGSOpIdx = 1;
  JmpI.getOperand(ImplicitEFLAGSOpIdx).setIsKill(true);
  LLVM_DEBUG(dbgs() << "    fixed jCC: "; JmpI.dump());
}

void X86FlagsCopyLoweringPass::rewriteCopy(MachineInstr &MI,
                                           MachineOperand &FlagUse,
                                           MachineInstr &CopyDefI) {
  // Just replace this copy with the original copy def.
  MRI->replaceRegWith(MI.getOperand(0).getReg(),
                      CopyDefI.getOperand(0).getReg());
  MI.eraseFromParent();
}

void X86FlagsCopyLoweringPass::rewriteSetCarryExtended(
    MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
    DebugLoc TestLoc, MachineInstr &SetBI, MachineOperand &FlagUse,
    CondRegArray &CondRegs) {
  // This routine is only used to handle pseudos for setting a register to zero
  // or all ones based on CF. This is essentially the sign extended from 1-bit
  // form of SETB and modeled with the SETB_C* pseudos. They require special
  // handling as they aren't normal SETcc instructions and are lowered to an
  // EFLAGS clobbering operation (SBB typically). One simplifying aspect is that
  // they are only provided in reg-defining forms. A complicating factor is that
  // they can define many different register widths.
  assert(SetBI.getOperand(0).isReg() &&
         "Cannot have a non-register defined operand to this variant of SETB!");

  // Little helper to do the common final step of replacing the register def'ed
  // by this SETB instruction with a new register and removing the SETB
  // instruction.
  auto RewriteToReg = [&](unsigned Reg) {
    MRI->replaceRegWith(SetBI.getOperand(0).getReg(), Reg);
    SetBI.eraseFromParent();
  };

  // Grab the register class used for this particular instruction.
  auto &SetBRC = *MRI->getRegClass(SetBI.getOperand(0).getReg());

  MachineBasicBlock &MBB = *SetBI.getParent();
  auto SetPos = SetBI.getIterator();
  auto SetLoc = SetBI.getDebugLoc();

  auto AdjustReg = [&](unsigned Reg) {
    auto &OrigRC = *MRI->getRegClass(Reg);
    if (&OrigRC == &SetBRC)
      return Reg;

    unsigned NewReg;

    int OrigRegSize = TRI->getRegSizeInBits(OrigRC) / 8;
    int TargetRegSize = TRI->getRegSizeInBits(SetBRC) / 8;
    assert(OrigRegSize <= 8 && "No GPRs larger than 64-bits!");
    assert(TargetRegSize <= 8 && "No GPRs larger than 64-bits!");
    int SubRegIdx[] = {X86::NoSubRegister, X86::sub_8bit, X86::sub_16bit,
                       X86::NoSubRegister, X86::sub_32bit};

    // If the original size is smaller than the target *and* is smaller than 4
    // bytes, we need to explicitly zero extend it. We always extend to 4-bytes
    // to maximize the chance of being able to CSE that operation and to avoid
    // partial dependency stalls extending to 2-bytes.
    if (OrigRegSize < TargetRegSize && OrigRegSize < 4) {
      NewReg = MRI->createVirtualRegister(&X86::GR32RegClass);
      BuildMI(MBB, SetPos, SetLoc, TII->get(X86::MOVZX32rr8), NewReg)
          .addReg(Reg);
      if (&SetBRC == &X86::GR32RegClass)
        return NewReg;
      Reg = NewReg;
      OrigRegSize = 4;
    }

    NewReg = MRI->createVirtualRegister(&SetBRC);
    if (OrigRegSize < TargetRegSize) {
      BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::SUBREG_TO_REG),
              NewReg)
          .addImm(0)
          .addReg(Reg)
          .addImm(SubRegIdx[OrigRegSize]);
    } else if (OrigRegSize > TargetRegSize) {
      if (TargetRegSize == 1 && !Subtarget->is64Bit()) {
        // Need to constrain the register class.
        MRI->constrainRegClass(Reg, &X86::GR32_ABCDRegClass);
      }

      BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::COPY),
              NewReg)
          .addReg(Reg, 0, SubRegIdx[TargetRegSize]);
    } else {
      BuildMI(MBB, SetPos, SetLoc, TII->get(TargetOpcode::COPY), NewReg)
          .addReg(Reg);
    }
    return NewReg;
  };

  unsigned &CondReg = CondRegs[X86::COND_B];
  if (!CondReg)
    CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, X86::COND_B);

  // Adjust the condition to have the desired register width by zero-extending
  // as needed.
  // FIXME: We should use a better API to avoid the local reference and using a
  // different variable here.
  unsigned ExtCondReg = AdjustReg(CondReg);

  // Now we need to turn this into a bitmask. We do this by subtracting it from
  // zero.
  unsigned ZeroReg = MRI->createVirtualRegister(&X86::GR32RegClass);
  BuildMI(MBB, SetPos, SetLoc, TII->get(X86::MOV32r0), ZeroReg);
  ZeroReg = AdjustReg(ZeroReg);

  unsigned Sub;
  switch (SetBI.getOpcode()) {
  case X86::SETB_C8r:
    Sub = X86::SUB8rr;
    break;

  case X86::SETB_C16r:
    Sub = X86::SUB16rr;
    break;

  case X86::SETB_C32r:
    Sub = X86::SUB32rr;
    break;

  case X86::SETB_C64r:
    Sub = X86::SUB64rr;
    break;

  default:
    llvm_unreachable("Invalid SETB_C* opcode!");
  }
  unsigned ResultReg = MRI->createVirtualRegister(&SetBRC);
  BuildMI(MBB, SetPos, SetLoc, TII->get(Sub), ResultReg)
      .addReg(ZeroReg)
      .addReg(ExtCondReg);
  return RewriteToReg(ResultReg);
}

void X86FlagsCopyLoweringPass::rewriteSetCC(MachineBasicBlock &TestMBB,
                                            MachineBasicBlock::iterator TestPos,
                                            DebugLoc TestLoc,
                                            MachineInstr &SetCCI,
                                            MachineOperand &FlagUse,
                                            CondRegArray &CondRegs) {
  X86::CondCode Cond = X86::getCondFromSETOpc(SetCCI.getOpcode());
  // Note that we can't usefully rewrite this to the inverse without complex
  // analysis of the users of the setCC. Largely we rely on duplicates which
  // could have been avoided already being avoided here.
  unsigned &CondReg = CondRegs[Cond];
  if (!CondReg)
    CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);

  // Rewriting a register def is trivial: we just replace the register and
  // remove the setcc.
  if (!SetCCI.mayStore()) {
    assert(SetCCI.getOperand(0).isReg() &&
           "Cannot have a non-register defined operand to SETcc!");
    MRI->replaceRegWith(SetCCI.getOperand(0).getReg(), CondReg);
    SetCCI.eraseFromParent();
    return;
  }

  // Otherwise, we need to emit a store.
  auto MIB = BuildMI(*SetCCI.getParent(), SetCCI.getIterator(),
                     SetCCI.getDebugLoc(), TII->get(X86::MOV8mr));
  // Copy the address operands.
  for (int i = 0; i < X86::AddrNumOperands; ++i)
    MIB.add(SetCCI.getOperand(i));

  MIB.addReg(CondReg);

  MIB.setMemRefs(SetCCI.memoperands());

  SetCCI.eraseFromParent();
  return;
}