summaryrefslogtreecommitdiff
path: root/libstdc++-v3/include/std/mutex
blob: f500818d9c9ea1d1657ccd895d69825886bb0d9f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
// <mutex> -*- C++ -*-

// Copyright (C) 2003-2022 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file include/mutex
 *  This is a Standard C++ Library header.
 */

#ifndef _GLIBCXX_MUTEX
#define _GLIBCXX_MUTEX 1

#pragma GCC system_header

#if __cplusplus < 201103L
# include <bits/c++0x_warning.h>
#else

#include <tuple>
#include <exception>
#include <type_traits>
#include <system_error>
#include <bits/chrono.h>
#include <bits/std_mutex.h>
#include <bits/unique_lock.h>
#if ! _GTHREAD_USE_MUTEX_TIMEDLOCK
# include <condition_variable>
# include <thread>
#endif
#include <ext/atomicity.h>     // __gnu_cxx::__is_single_threaded

#if defined _GLIBCXX_HAS_GTHREADS && ! defined _GLIBCXX_HAVE_TLS
# include <bits/std_function.h>  // std::function
#endif

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  /**
   * @addtogroup mutexes
   * @{
   */

#ifdef _GLIBCXX_HAS_GTHREADS

  // Common base class for std::recursive_mutex and std::recursive_timed_mutex
  class __recursive_mutex_base
  {
  protected:
    typedef __gthread_recursive_mutex_t		__native_type;

    __recursive_mutex_base(const __recursive_mutex_base&) = delete;
    __recursive_mutex_base& operator=(const __recursive_mutex_base&) = delete;

#ifdef __GTHREAD_RECURSIVE_MUTEX_INIT
    __native_type  _M_mutex = __GTHREAD_RECURSIVE_MUTEX_INIT;

    __recursive_mutex_base() = default;
#else
    __native_type  _M_mutex;

    __recursive_mutex_base()
    {
      // XXX EAGAIN, ENOMEM, EPERM, EBUSY(may), EINVAL(may)
      __GTHREAD_RECURSIVE_MUTEX_INIT_FUNCTION(&_M_mutex);
    }

    ~__recursive_mutex_base()
    { __gthread_recursive_mutex_destroy(&_M_mutex); }
#endif
  };

  /// The standard recursive mutex type.
  class recursive_mutex : private __recursive_mutex_base
  {
  public:
    typedef __native_type* 			native_handle_type;

    recursive_mutex() = default;
    ~recursive_mutex() = default;

    recursive_mutex(const recursive_mutex&) = delete;
    recursive_mutex& operator=(const recursive_mutex&) = delete;

    void
    lock()
    {
      int __e = __gthread_recursive_mutex_lock(&_M_mutex);

      // EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may)
      if (__e)
	__throw_system_error(__e);
    }

    bool
    try_lock() noexcept
    {
      // XXX EINVAL, EAGAIN, EBUSY
      return !__gthread_recursive_mutex_trylock(&_M_mutex);
    }

    void
    unlock()
    {
      // XXX EINVAL, EAGAIN, EBUSY
      __gthread_recursive_mutex_unlock(&_M_mutex);
    }

    native_handle_type
    native_handle() noexcept
    { return &_M_mutex; }
  };

#if _GTHREAD_USE_MUTEX_TIMEDLOCK
  template<typename _Derived>
    class __timed_mutex_impl
    {
    protected:
      template<typename _Rep, typename _Period>
	bool
	_M_try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
	{
#if _GLIBCXX_USE_PTHREAD_MUTEX_CLOCKLOCK
	  using __clock = chrono::steady_clock;
#else
	  using __clock = chrono::system_clock;
#endif

	  auto __rt = chrono::duration_cast<__clock::duration>(__rtime);
	  if (ratio_greater<__clock::period, _Period>())
	    ++__rt;
	  return _M_try_lock_until(__clock::now() + __rt);
	}

      template<typename _Duration>
	bool
	_M_try_lock_until(const chrono::time_point<chrono::system_clock,
						   _Duration>& __atime)
	{
	  auto __s = chrono::time_point_cast<chrono::seconds>(__atime);
	  auto __ns = chrono::duration_cast<chrono::nanoseconds>(__atime - __s);

	  __gthread_time_t __ts = {
	    static_cast<std::time_t>(__s.time_since_epoch().count()),
	    static_cast<long>(__ns.count())
	  };

	  return static_cast<_Derived*>(this)->_M_timedlock(__ts);
	}

#ifdef _GLIBCXX_USE_PTHREAD_MUTEX_CLOCKLOCK
      template<typename _Duration>
	bool
	_M_try_lock_until(const chrono::time_point<chrono::steady_clock,
						   _Duration>& __atime)
	{
	  auto __s = chrono::time_point_cast<chrono::seconds>(__atime);
	  auto __ns = chrono::duration_cast<chrono::nanoseconds>(__atime - __s);

	  __gthread_time_t __ts = {
	    static_cast<std::time_t>(__s.time_since_epoch().count()),
	    static_cast<long>(__ns.count())
	  };

	  return static_cast<_Derived*>(this)->_M_clocklock(CLOCK_MONOTONIC,
							    __ts);
	}
#endif

      template<typename _Clock, typename _Duration>
	bool
	_M_try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
	{
#if __cplusplus > 201703L
	  static_assert(chrono::is_clock_v<_Clock>);
#endif
	  // The user-supplied clock may not tick at the same rate as
	  // steady_clock, so we must loop in order to guarantee that
	  // the timeout has expired before returning false.
	  auto __now = _Clock::now();
	  do {
	    auto __rtime = __atime - __now;
	    if (_M_try_lock_for(__rtime))
	      return true;
	    __now = _Clock::now();
	  } while (__atime > __now);
	  return false;
	}
    };

  /// The standard timed mutex type.
  class timed_mutex
  : private __mutex_base, public __timed_mutex_impl<timed_mutex>
  {
  public:
    typedef __native_type* 		  	native_handle_type;

    timed_mutex() = default;
    ~timed_mutex() = default;

    timed_mutex(const timed_mutex&) = delete;
    timed_mutex& operator=(const timed_mutex&) = delete;

    void
    lock()
    {
      int __e = __gthread_mutex_lock(&_M_mutex);

      // EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may)
      if (__e)
	__throw_system_error(__e);
    }

    bool
    try_lock() noexcept
    {
      // XXX EINVAL, EAGAIN, EBUSY
      return !__gthread_mutex_trylock(&_M_mutex);
    }

    template <class _Rep, class _Period>
      bool
      try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
      { return _M_try_lock_for(__rtime); }

    template <class _Clock, class _Duration>
      bool
      try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
      { return _M_try_lock_until(__atime); }

    void
    unlock()
    {
      // XXX EINVAL, EAGAIN, EBUSY
      __gthread_mutex_unlock(&_M_mutex);
    }

    native_handle_type
    native_handle() noexcept
    { return &_M_mutex; }

    private:
      friend class __timed_mutex_impl<timed_mutex>;

      bool
      _M_timedlock(const __gthread_time_t& __ts)
      { return !__gthread_mutex_timedlock(&_M_mutex, &__ts); }

#if _GLIBCXX_USE_PTHREAD_MUTEX_CLOCKLOCK
      bool
      _M_clocklock(clockid_t clockid, const __gthread_time_t& __ts)
      { return !pthread_mutex_clocklock(&_M_mutex, clockid, &__ts); }
#endif
  };

  /// recursive_timed_mutex
  class recursive_timed_mutex
  : private __recursive_mutex_base,
    public __timed_mutex_impl<recursive_timed_mutex>
  {
  public:
    typedef __native_type* 			native_handle_type;

    recursive_timed_mutex() = default;
    ~recursive_timed_mutex() = default;

    recursive_timed_mutex(const recursive_timed_mutex&) = delete;
    recursive_timed_mutex& operator=(const recursive_timed_mutex&) = delete;

    void
    lock()
    {
      int __e = __gthread_recursive_mutex_lock(&_M_mutex);

      // EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may)
      if (__e)
	__throw_system_error(__e);
    }

    bool
    try_lock() noexcept
    {
      // XXX EINVAL, EAGAIN, EBUSY
      return !__gthread_recursive_mutex_trylock(&_M_mutex);
    }

    template <class _Rep, class _Period>
      bool
      try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
      { return _M_try_lock_for(__rtime); }

    template <class _Clock, class _Duration>
      bool
      try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
      { return _M_try_lock_until(__atime); }

    void
    unlock()
    {
      // XXX EINVAL, EAGAIN, EBUSY
      __gthread_recursive_mutex_unlock(&_M_mutex);
    }

    native_handle_type
    native_handle() noexcept
    { return &_M_mutex; }

    private:
      friend class __timed_mutex_impl<recursive_timed_mutex>;

      bool
      _M_timedlock(const __gthread_time_t& __ts)
      { return !__gthread_recursive_mutex_timedlock(&_M_mutex, &__ts); }

#ifdef _GLIBCXX_USE_PTHREAD_MUTEX_CLOCKLOCK
      bool
      _M_clocklock(clockid_t clockid, const __gthread_time_t& __ts)
      { return !pthread_mutex_clocklock(&_M_mutex, clockid, &__ts); }
#endif
  };

#else // !_GTHREAD_USE_MUTEX_TIMEDLOCK

  /// timed_mutex
  class timed_mutex
  {
    mutex		_M_mut;
    condition_variable	_M_cv;
    bool		_M_locked = false;

  public:

    timed_mutex() = default;
    ~timed_mutex() { __glibcxx_assert( !_M_locked ); }

    timed_mutex(const timed_mutex&) = delete;
    timed_mutex& operator=(const timed_mutex&) = delete;

    void
    lock()
    {
      unique_lock<mutex> __lk(_M_mut);
      _M_cv.wait(__lk, [&]{ return !_M_locked; });
      _M_locked = true;
    }

    bool
    try_lock()
    {
      lock_guard<mutex> __lk(_M_mut);
      if (_M_locked)
	return false;
      _M_locked = true;
      return true;
    }

    template<typename _Rep, typename _Period>
      bool
      try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
      {
	unique_lock<mutex> __lk(_M_mut);
	if (!_M_cv.wait_for(__lk, __rtime, [&]{ return !_M_locked; }))
	  return false;
	_M_locked = true;
	return true;
      }

    template<typename _Clock, typename _Duration>
      bool
      try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
      {
	unique_lock<mutex> __lk(_M_mut);
	if (!_M_cv.wait_until(__lk, __atime, [&]{ return !_M_locked; }))
	  return false;
	_M_locked = true;
	return true;
      }

    void
    unlock()
    {
      lock_guard<mutex> __lk(_M_mut);
      __glibcxx_assert( _M_locked );
      _M_locked = false;
      _M_cv.notify_one();
    }
  };

  /// recursive_timed_mutex
  class recursive_timed_mutex
  {
    mutex		_M_mut;
    condition_variable	_M_cv;
    thread::id		_M_owner;
    unsigned		_M_count = 0;

    // Predicate type that tests whether the current thread can lock a mutex.
    struct _Can_lock
    {
      // Returns true if the mutex is unlocked or is locked by _M_caller.
      bool
      operator()() const noexcept
      { return _M_mx->_M_count == 0 || _M_mx->_M_owner == _M_caller; }

      const recursive_timed_mutex* _M_mx;
      thread::id _M_caller;
    };

  public:

    recursive_timed_mutex() = default;
    ~recursive_timed_mutex() { __glibcxx_assert( _M_count == 0 ); }

    recursive_timed_mutex(const recursive_timed_mutex&) = delete;
    recursive_timed_mutex& operator=(const recursive_timed_mutex&) = delete;

    void
    lock()
    {
      auto __id = this_thread::get_id();
      _Can_lock __can_lock{this, __id};
      unique_lock<mutex> __lk(_M_mut);
      _M_cv.wait(__lk, __can_lock);
      if (_M_count == -1u)
	__throw_system_error(EAGAIN); // [thread.timedmutex.recursive]/3
      _M_owner = __id;
      ++_M_count;
    }

    bool
    try_lock()
    {
      auto __id = this_thread::get_id();
      _Can_lock __can_lock{this, __id};
      lock_guard<mutex> __lk(_M_mut);
      if (!__can_lock())
	return false;
      if (_M_count == -1u)
	return false;
      _M_owner = __id;
      ++_M_count;
      return true;
    }

    template<typename _Rep, typename _Period>
      bool
      try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
      {
	auto __id = this_thread::get_id();
	_Can_lock __can_lock{this, __id};
	unique_lock<mutex> __lk(_M_mut);
	if (!_M_cv.wait_for(__lk, __rtime, __can_lock))
	  return false;
	if (_M_count == -1u)
	  return false;
	_M_owner = __id;
	++_M_count;
	return true;
      }

    template<typename _Clock, typename _Duration>
      bool
      try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
      {
	auto __id = this_thread::get_id();
	_Can_lock __can_lock{this, __id};
	unique_lock<mutex> __lk(_M_mut);
	if (!_M_cv.wait_until(__lk, __atime, __can_lock))
	  return false;
	if (_M_count == -1u)
	  return false;
	_M_owner = __id;
	++_M_count;
	return true;
      }

    void
    unlock()
    {
      lock_guard<mutex> __lk(_M_mut);
      __glibcxx_assert( _M_owner == this_thread::get_id() );
      __glibcxx_assert( _M_count > 0 );
      if (--_M_count == 0)
	{
	  _M_owner = {};
	  _M_cv.notify_one();
	}
    }
  };

#endif
#endif // _GLIBCXX_HAS_GTHREADS

  /// @cond undocumented
  namespace __detail
  {
    // Lock the last lockable, after all previous ones are locked.
    template<typename _Lockable>
      inline int
      __try_lock_impl(_Lockable& __l)
      {
	if (unique_lock<_Lockable> __lock{__l, try_to_lock})
	  {
	    __lock.release();
	    return -1;
	  }
	else
	  return 0;
      }

    // Lock each lockable in turn.
    // Use iteration if all lockables are the same type, recursion otherwise.
    template<typename _L0, typename... _Lockables>
      inline int
      __try_lock_impl(_L0& __l0, _Lockables&... __lockables)
      {
#if __cplusplus >= 201703L
	if constexpr ((is_same_v<_L0, _Lockables> && ...))
	  {
	    constexpr int _Np = 1 + sizeof...(_Lockables);
	    unique_lock<_L0> __locks[_Np] = {
		{__l0, defer_lock}, {__lockables, defer_lock}...
	    };
	    for (int __i = 0; __i < _Np; ++__i)
	      {
		if (!__locks[__i].try_lock())
		  {
		    const int __failed = __i;
		    while (__i--)
		      __locks[__i].unlock();
		    return __failed;
		  }
	      }
	    for (auto& __l : __locks)
	      __l.release();
	    return -1;
	  }
	else
#endif
	if (unique_lock<_L0> __lock{__l0, try_to_lock})
	  {
	    int __idx = __detail::__try_lock_impl(__lockables...);
	    if (__idx == -1)
	      {
		__lock.release();
		return -1;
	      }
	    return __idx + 1;
	  }
	else
	  return 0;
      }

  } // namespace __detail
  /// @endcond

  /** @brief Generic try_lock.
   *  @param __l1 Meets Lockable requirements (try_lock() may throw).
   *  @param __l2 Meets Lockable requirements (try_lock() may throw).
   *  @param __l3 Meets Lockable requirements (try_lock() may throw).
   *  @return Returns -1 if all try_lock() calls return true. Otherwise returns
   *          a 0-based index corresponding to the argument that returned false.
   *  @post Either all arguments are locked, or none will be.
   *
   *  Sequentially calls try_lock() on each argument.
   */
  template<typename _L1, typename _L2, typename... _L3>
    inline int
    try_lock(_L1& __l1, _L2& __l2, _L3&... __l3)
    {
      return __detail::__try_lock_impl(__l1, __l2, __l3...);
    }

  /// @cond undocumented
  namespace __detail
  {
    // This function can recurse up to N levels deep, for N = 1+sizeof...(L1).
    // On each recursion the lockables are rotated left one position,
    // e.g. depth 0: l0, l1, l2; depth 1: l1, l2, l0; depth 2: l2, l0, l1.
    // When a call to l_i.try_lock() fails it recurses/returns to depth=i
    // so that l_i is the first argument, and then blocks until l_i is locked.
    template<typename _L0, typename... _L1>
      void
      __lock_impl(int& __i, int __depth, _L0& __l0, _L1&... __l1)
      {
	while (__i >= __depth)
	  {
	    if (__i == __depth)
	      {
		int __failed = 1; // index that couldn't be locked
		{
		  unique_lock<_L0> __first(__l0);
		  __failed += __detail::__try_lock_impl(__l1...);
		  if (!__failed)
		    {
		      __i = -1; // finished
		      __first.release();
		      return;
		    }
		}
#if defined _GLIBCXX_HAS_GTHREADS && defined _GLIBCXX_USE_SCHED_YIELD
		__gthread_yield();
#endif
		constexpr auto __n = 1 + sizeof...(_L1);
		__i = (__depth + __failed) % __n;
	      }
	    else // rotate left until l_i is first.
	      __detail::__lock_impl(__i, __depth + 1, __l1..., __l0);
	  }
      }

  } // namespace __detail
  /// @endcond

  /** @brief Generic lock.
   *  @param __l1 Meets Lockable requirements (try_lock() may throw).
   *  @param __l2 Meets Lockable requirements (try_lock() may throw).
   *  @param __l3 Meets Lockable requirements (try_lock() may throw).
   *  @throw An exception thrown by an argument's lock() or try_lock() member.
   *  @post All arguments are locked.
   *
   *  All arguments are locked via a sequence of calls to lock(), try_lock()
   *  and unlock().  If this function exits via an exception any locks that
   *  were obtained will be released.
   */
  template<typename _L1, typename _L2, typename... _L3>
    void
    lock(_L1& __l1, _L2& __l2, _L3&... __l3)
    {
#if __cplusplus >= 201703L
      if constexpr (is_same_v<_L1, _L2> && (is_same_v<_L1, _L3> && ...))
	{
	  constexpr int _Np = 2 + sizeof...(_L3);
	  unique_lock<_L1> __locks[] = {
	      {__l1, defer_lock}, {__l2, defer_lock}, {__l3, defer_lock}...
	  };
	  int __first = 0;
	  do {
	    __locks[__first].lock();
	    for (int __j = 1; __j < _Np; ++__j)
	      {
		const int __idx = (__first + __j) % _Np;
		if (!__locks[__idx].try_lock())
		  {
		    for (int __k = __j; __k != 0; --__k)
		      __locks[(__first + __k - 1) % _Np].unlock();
		    __first = __idx;
		    break;
		  }
	      }
	  } while (!__locks[__first].owns_lock());

	  for (auto& __l : __locks)
	    __l.release();
	}
      else
#endif
	{
	  int __i = 0;
	  __detail::__lock_impl(__i, 0, __l1, __l2, __l3...);
	}
    }

#if __cplusplus >= 201703L
#define __cpp_lib_scoped_lock 201703L
  /** @brief A scoped lock type for multiple lockable objects.
   *
   * A scoped_lock controls mutex ownership within a scope, releasing
   * ownership in the destructor.
   */
  template<typename... _MutexTypes>
    class scoped_lock
    {
    public:
      explicit scoped_lock(_MutexTypes&... __m) : _M_devices(std::tie(__m...))
      { std::lock(__m...); }

      explicit scoped_lock(adopt_lock_t, _MutexTypes&... __m) noexcept
      : _M_devices(std::tie(__m...))
      { } // calling thread owns mutex

      ~scoped_lock()
      { std::apply([](auto&... __m) { (__m.unlock(), ...); }, _M_devices); }

      scoped_lock(const scoped_lock&) = delete;
      scoped_lock& operator=(const scoped_lock&) = delete;

    private:
      tuple<_MutexTypes&...> _M_devices;
    };

  template<>
    class scoped_lock<>
    {
    public:
      explicit scoped_lock() = default;
      explicit scoped_lock(adopt_lock_t) noexcept { }
      ~scoped_lock() = default;

      scoped_lock(const scoped_lock&) = delete;
      scoped_lock& operator=(const scoped_lock&) = delete;
    };

  template<typename _Mutex>
    class scoped_lock<_Mutex>
    {
    public:
      using mutex_type = _Mutex;

      explicit scoped_lock(mutex_type& __m) : _M_device(__m)
      { _M_device.lock(); }

      explicit scoped_lock(adopt_lock_t, mutex_type& __m) noexcept
      : _M_device(__m)
      { } // calling thread owns mutex

      ~scoped_lock()
      { _M_device.unlock(); }

      scoped_lock(const scoped_lock&) = delete;
      scoped_lock& operator=(const scoped_lock&) = delete;

    private:
      mutex_type&  _M_device;
    };
#endif // C++17

#ifdef _GLIBCXX_HAS_GTHREADS
  /// Flag type used by std::call_once
  struct once_flag
  {
    constexpr once_flag() noexcept = default;

    /// Deleted copy constructor
    once_flag(const once_flag&) = delete;
    /// Deleted assignment operator
    once_flag& operator=(const once_flag&) = delete;

  private:
    // For gthreads targets a pthread_once_t is used with pthread_once, but
    // for most targets this doesn't work correctly for exceptional executions.
    __gthread_once_t _M_once = __GTHREAD_ONCE_INIT;

    struct _Prepare_execution;

    template<typename _Callable, typename... _Args>
      friend void
      call_once(once_flag& __once, _Callable&& __f, _Args&&... __args);
  };

  /// @cond undocumented
# ifdef _GLIBCXX_HAVE_TLS
  // If TLS is available use thread-local state for the type-erased callable
  // that is being run by std::call_once in the current thread.
  extern __thread void* __once_callable;
  extern __thread void (*__once_call)();

  // RAII type to set up state for pthread_once call.
  struct once_flag::_Prepare_execution
  {
    template<typename _Callable>
      explicit
      _Prepare_execution(_Callable& __c)
      {
	// Store address in thread-local pointer:
	__once_callable = std::__addressof(__c);
	// Trampoline function to invoke the closure via thread-local pointer:
	__once_call = [] { (*static_cast<_Callable*>(__once_callable))(); };
      }

    ~_Prepare_execution()
    {
      // PR libstdc++/82481
      __once_callable = nullptr;
      __once_call = nullptr;
    }

    _Prepare_execution(const _Prepare_execution&) = delete;
    _Prepare_execution& operator=(const _Prepare_execution&) = delete;
  };

# else
  // Without TLS use a global std::mutex and store the callable in a
  // global std::function.
  extern function<void()> __once_functor;

  extern void
  __set_once_functor_lock_ptr(unique_lock<mutex>*);

  extern mutex&
  __get_once_mutex();

  // RAII type to set up state for pthread_once call.
  struct once_flag::_Prepare_execution
  {
    template<typename _Callable>
      explicit
      _Prepare_execution(_Callable& __c)
      {
	// Store the callable in the global std::function
	__once_functor = __c;
	__set_once_functor_lock_ptr(&_M_functor_lock);
      }

    ~_Prepare_execution()
    {
      if (_M_functor_lock)
	__set_once_functor_lock_ptr(nullptr);
    }

  private:
    // XXX This deadlocks if used recursively (PR 97949)
    unique_lock<mutex> _M_functor_lock{__get_once_mutex()};

    _Prepare_execution(const _Prepare_execution&) = delete;
    _Prepare_execution& operator=(const _Prepare_execution&) = delete;
  };
# endif
  /// @endcond

  // This function is passed to pthread_once by std::call_once.
  // It runs __once_call() or __once_functor().
  extern "C" void __once_proxy(void);

  /// Invoke a callable and synchronize with other calls using the same flag
  template<typename _Callable, typename... _Args>
    void
    call_once(once_flag& __once, _Callable&& __f, _Args&&... __args)
    {
      // Closure type that runs the function
      auto __callable = [&] {
	  std::__invoke(std::forward<_Callable>(__f),
			std::forward<_Args>(__args)...);
      };

      once_flag::_Prepare_execution __exec(__callable);

      // XXX pthread_once does not reset the flag if an exception is thrown.
      if (int __e = __gthread_once(&__once._M_once, &__once_proxy))
	__throw_system_error(__e);
    }

#else // _GLIBCXX_HAS_GTHREADS

  /// Flag type used by std::call_once
  struct once_flag
  {
    constexpr once_flag() noexcept = default;

    /// Deleted copy constructor
    once_flag(const once_flag&) = delete;
    /// Deleted assignment operator
    once_flag& operator=(const once_flag&) = delete;

  private:
    // There are two different std::once_flag interfaces, abstracting four
    // different implementations.
    // The single-threaded interface uses the _M_activate() and _M_finish(bool)
    // functions, which start and finish an active execution respectively.
    // See [thread.once.callonce] in C++11 for the definition of
    // active/passive/returning/exceptional executions.
    enum _Bits : int { _Init = 0, _Active = 1, _Done = 2 };

    int _M_once = _Bits::_Init;

    // Check to see if all executions will be passive now.
    bool
    _M_passive() const noexcept;

    // Attempts to begin an active execution.
    bool _M_activate();

    // Must be called to complete an active execution.
    // The argument is true if the active execution was a returning execution,
    // false if it was an exceptional execution.
    void _M_finish(bool __returning) noexcept;

    // RAII helper to call _M_finish.
    struct _Active_execution
    {
      explicit _Active_execution(once_flag& __flag) : _M_flag(__flag) { }

      ~_Active_execution() { _M_flag._M_finish(_M_returning); }

      _Active_execution(const _Active_execution&) = delete;
      _Active_execution& operator=(const _Active_execution&) = delete;

      once_flag& _M_flag;
      bool _M_returning = false;
    };

    template<typename _Callable, typename... _Args>
      friend void
      call_once(once_flag& __once, _Callable&& __f, _Args&&... __args);
  };

  // Inline definitions of std::once_flag members for single-threaded targets.

  inline bool
  once_flag::_M_passive() const noexcept
  { return _M_once == _Bits::_Done; }

  inline bool
  once_flag::_M_activate()
  {
    if (_M_once == _Bits::_Init) [[__likely__]]
      {
	_M_once = _Bits::_Active;
	return true;
      }
    else if (_M_passive()) // Caller should have checked this already.
      return false;
    else
      __throw_system_error(EDEADLK);
  }

  inline void
  once_flag::_M_finish(bool __returning) noexcept
  { _M_once = __returning ? _Bits::_Done : _Bits::_Init; }

  /// Invoke a callable and synchronize with other calls using the same flag
  template<typename _Callable, typename... _Args>
    inline void
    call_once(once_flag& __once, _Callable&& __f, _Args&&... __args)
    {
      if (__once._M_passive())
	return;
      else if (__once._M_activate())
	{
	  once_flag::_Active_execution __exec(__once);

	  // _GLIBCXX_RESOLVE_LIB_DEFECTS
	  // 2442. call_once() shouldn't DECAY_COPY()
	  std::__invoke(std::forward<_Callable>(__f),
			std::forward<_Args>(__args)...);

	  // __f(__args...) did not throw
	  __exec._M_returning = true;
	}
    }
#endif // _GLIBCXX_HAS_GTHREADS

  /// @} group mutexes
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace

#endif // C++11

#endif // _GLIBCXX_MUTEX