summaryrefslogtreecommitdiff
path: root/libsanitizer/tsan/tsan_rtl_access.cpp
blob: 7365fdaa303843d1aefe6b5bc15786b51d40ac2f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
//===-- tsan_rtl_access.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
// Definitions of memory access and function entry/exit entry points.
//===----------------------------------------------------------------------===//

#include "tsan_rtl.h"

namespace __tsan {

namespace v3 {

ALWAYS_INLINE USED bool TryTraceMemoryAccess(ThreadState *thr, uptr pc,
                                             uptr addr, uptr size,
                                             AccessType typ) {
  DCHECK(size == 1 || size == 2 || size == 4 || size == 8);
  if (!kCollectHistory)
    return true;
  EventAccess *ev;
  if (UNLIKELY(!TraceAcquire(thr, &ev)))
    return false;
  u64 size_log = size == 1 ? 0 : size == 2 ? 1 : size == 4 ? 2 : 3;
  uptr pc_delta = pc - thr->trace_prev_pc + (1 << (EventAccess::kPCBits - 1));
  thr->trace_prev_pc = pc;
  if (LIKELY(pc_delta < (1 << EventAccess::kPCBits))) {
    ev->is_access = 1;
    ev->is_read = !!(typ & kAccessRead);
    ev->is_atomic = !!(typ & kAccessAtomic);
    ev->size_log = size_log;
    ev->pc_delta = pc_delta;
    DCHECK_EQ(ev->pc_delta, pc_delta);
    ev->addr = CompressAddr(addr);
    TraceRelease(thr, ev);
    return true;
  }
  auto *evex = reinterpret_cast<EventAccessExt *>(ev);
  evex->is_access = 0;
  evex->is_func = 0;
  evex->type = EventType::kAccessExt;
  evex->is_read = !!(typ & kAccessRead);
  evex->is_atomic = !!(typ & kAccessAtomic);
  evex->size_log = size_log;
  evex->addr = CompressAddr(addr);
  evex->pc = pc;
  TraceRelease(thr, evex);
  return true;
}

ALWAYS_INLINE USED bool TryTraceMemoryAccessRange(ThreadState *thr, uptr pc,
                                                  uptr addr, uptr size,
                                                  AccessType typ) {
  if (!kCollectHistory)
    return true;
  EventAccessRange *ev;
  if (UNLIKELY(!TraceAcquire(thr, &ev)))
    return false;
  thr->trace_prev_pc = pc;
  ev->is_access = 0;
  ev->is_func = 0;
  ev->type = EventType::kAccessRange;
  ev->is_read = !!(typ & kAccessRead);
  ev->is_free = !!(typ & kAccessFree);
  ev->size_lo = size;
  ev->pc = CompressAddr(pc);
  ev->addr = CompressAddr(addr);
  ev->size_hi = size >> EventAccessRange::kSizeLoBits;
  TraceRelease(thr, ev);
  return true;
}

void TraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
                            AccessType typ) {
  if (LIKELY(TryTraceMemoryAccessRange(thr, pc, addr, size, typ)))
    return;
  TraceSwitchPart(thr);
  UNUSED bool res = TryTraceMemoryAccessRange(thr, pc, addr, size, typ);
  DCHECK(res);
}

void TraceFunc(ThreadState *thr, uptr pc) {
  if (LIKELY(TryTraceFunc(thr, pc)))
    return;
  TraceSwitchPart(thr);
  UNUSED bool res = TryTraceFunc(thr, pc);
  DCHECK(res);
}

void TraceMutexLock(ThreadState *thr, EventType type, uptr pc, uptr addr,
                    StackID stk) {
  DCHECK(type == EventType::kLock || type == EventType::kRLock);
  if (!kCollectHistory)
    return;
  EventLock ev;
  ev.is_access = 0;
  ev.is_func = 0;
  ev.type = type;
  ev.pc = CompressAddr(pc);
  ev.stack_lo = stk;
  ev.stack_hi = stk >> EventLock::kStackIDLoBits;
  ev._ = 0;
  ev.addr = CompressAddr(addr);
  TraceEvent(thr, ev);
}

void TraceMutexUnlock(ThreadState *thr, uptr addr) {
  if (!kCollectHistory)
    return;
  EventUnlock ev;
  ev.is_access = 0;
  ev.is_func = 0;
  ev.type = EventType::kUnlock;
  ev._ = 0;
  ev.addr = CompressAddr(addr);
  TraceEvent(thr, ev);
}

void TraceTime(ThreadState *thr) {
  if (!kCollectHistory)
    return;
  EventTime ev;
  ev.is_access = 0;
  ev.is_func = 0;
  ev.type = EventType::kTime;
  ev.sid = static_cast<u64>(thr->sid);
  ev.epoch = static_cast<u64>(thr->epoch);
  ev._ = 0;
  TraceEvent(thr, ev);
}

}  // namespace v3

ALWAYS_INLINE
Shadow LoadShadow(u64 *p) {
  u64 raw = atomic_load((atomic_uint64_t *)p, memory_order_relaxed);
  return Shadow(raw);
}

ALWAYS_INLINE
void StoreShadow(u64 *sp, u64 s) {
  atomic_store((atomic_uint64_t *)sp, s, memory_order_relaxed);
}

ALWAYS_INLINE
void StoreIfNotYetStored(u64 *sp, u64 *s) {
  StoreShadow(sp, *s);
  *s = 0;
}

extern "C" void __tsan_report_race();

ALWAYS_INLINE
void HandleRace(ThreadState *thr, u64 *shadow_mem, Shadow cur, Shadow old) {
  thr->racy_state[0] = cur.raw();
  thr->racy_state[1] = old.raw();
  thr->racy_shadow_addr = shadow_mem;
#if !SANITIZER_GO
  HACKY_CALL(__tsan_report_race);
#else
  ReportRace(thr);
#endif
}

static inline bool HappensBefore(Shadow old, ThreadState *thr) {
  return thr->clock.get(old.TidWithIgnore()) >= old.epoch();
}

ALWAYS_INLINE
void MemoryAccessImpl1(ThreadState *thr, uptr addr, int kAccessSizeLog,
                       bool kAccessIsWrite, bool kIsAtomic, u64 *shadow_mem,
                       Shadow cur) {
  // This potentially can live in an MMX/SSE scratch register.
  // The required intrinsics are:
  // __m128i _mm_move_epi64(__m128i*);
  // _mm_storel_epi64(u64*, __m128i);
  u64 store_word = cur.raw();
  bool stored = false;

  // scan all the shadow values and dispatch to 4 categories:
  // same, replace, candidate and race (see comments below).
  // we consider only 3 cases regarding access sizes:
  // equal, intersect and not intersect. initially I considered
  // larger and smaller as well, it allowed to replace some
  // 'candidates' with 'same' or 'replace', but I think
  // it's just not worth it (performance- and complexity-wise).

  Shadow old(0);

  // It release mode we manually unroll the loop,
  // because empirically gcc generates better code this way.
  // However, we can't afford unrolling in debug mode, because the function
  // consumes almost 4K of stack. Gtest gives only 4K of stack to death test
  // threads, which is not enough for the unrolled loop.
#if SANITIZER_DEBUG
  for (int idx = 0; idx < 4; idx++) {
#  include "tsan_update_shadow_word.inc"
  }
#else
  int idx = 0;
#  include "tsan_update_shadow_word.inc"
  idx = 1;
  if (stored) {
#  include "tsan_update_shadow_word.inc"
  } else {
#  include "tsan_update_shadow_word.inc"
  }
  idx = 2;
  if (stored) {
#  include "tsan_update_shadow_word.inc"
  } else {
#  include "tsan_update_shadow_word.inc"
  }
  idx = 3;
  if (stored) {
#  include "tsan_update_shadow_word.inc"
  } else {
#  include "tsan_update_shadow_word.inc"
  }
#endif

  // we did not find any races and had already stored
  // the current access info, so we are done
  if (LIKELY(stored))
    return;
  // choose a random candidate slot and replace it
  StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word);
  return;
RACE:
  HandleRace(thr, shadow_mem, cur, old);
  return;
}

void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
                           AccessType typ) {
  DCHECK(!(typ & kAccessAtomic));
  const bool kAccessIsWrite = !(typ & kAccessRead);
  const bool kIsAtomic = false;
  while (size) {
    int size1 = 1;
    int kAccessSizeLog = kSizeLog1;
    if (size >= 8 && (addr & ~7) == ((addr + 7) & ~7)) {
      size1 = 8;
      kAccessSizeLog = kSizeLog8;
    } else if (size >= 4 && (addr & ~7) == ((addr + 3) & ~7)) {
      size1 = 4;
      kAccessSizeLog = kSizeLog4;
    } else if (size >= 2 && (addr & ~7) == ((addr + 1) & ~7)) {
      size1 = 2;
      kAccessSizeLog = kSizeLog2;
    }
    MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic);
    addr += size1;
    size -= size1;
  }
}

ALWAYS_INLINE
bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
  Shadow cur(a);
  for (uptr i = 0; i < kShadowCnt; i++) {
    Shadow old(LoadShadow(&s[i]));
    if (Shadow::Addr0AndSizeAreEqual(cur, old) &&
        old.TidWithIgnore() == cur.TidWithIgnore() &&
        old.epoch() > sync_epoch && old.IsAtomic() == cur.IsAtomic() &&
        old.IsRead() <= cur.IsRead())
      return true;
  }
  return false;
}

#if TSAN_VECTORIZE
#  define SHUF(v0, v1, i0, i1, i2, i3)                    \
    _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(v0), \
                                    _mm_castsi128_ps(v1), \
                                    (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64))
ALWAYS_INLINE
bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
  // This is an optimized version of ContainsSameAccessSlow.
  // load current access into access[0:63]
  const m128 access = _mm_cvtsi64_si128(a);
  // duplicate high part of access in addr0:
  // addr0[0:31]        = access[32:63]
  // addr0[32:63]       = access[32:63]
  // addr0[64:95]       = access[32:63]
  // addr0[96:127]      = access[32:63]
  const m128 addr0 = SHUF(access, access, 1, 1, 1, 1);
  // load 4 shadow slots
  const m128 shadow0 = _mm_load_si128((__m128i *)s);
  const m128 shadow1 = _mm_load_si128((__m128i *)s + 1);
  // load high parts of 4 shadow slots into addr_vect:
  // addr_vect[0:31]    = shadow0[32:63]
  // addr_vect[32:63]   = shadow0[96:127]
  // addr_vect[64:95]   = shadow1[32:63]
  // addr_vect[96:127]  = shadow1[96:127]
  m128 addr_vect = SHUF(shadow0, shadow1, 1, 3, 1, 3);
  if (!is_write) {
    // set IsRead bit in addr_vect
    const m128 rw_mask1 = _mm_cvtsi64_si128(1 << 15);
    const m128 rw_mask = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0);
    addr_vect = _mm_or_si128(addr_vect, rw_mask);
  }
  // addr0 == addr_vect?
  const m128 addr_res = _mm_cmpeq_epi32(addr0, addr_vect);
  // epoch1[0:63]       = sync_epoch
  const m128 epoch1 = _mm_cvtsi64_si128(sync_epoch);
  // epoch[0:31]        = sync_epoch[0:31]
  // epoch[32:63]       = sync_epoch[0:31]
  // epoch[64:95]       = sync_epoch[0:31]
  // epoch[96:127]      = sync_epoch[0:31]
  const m128 epoch = SHUF(epoch1, epoch1, 0, 0, 0, 0);
  // load low parts of shadow cell epochs into epoch_vect:
  // epoch_vect[0:31]   = shadow0[0:31]
  // epoch_vect[32:63]  = shadow0[64:95]
  // epoch_vect[64:95]  = shadow1[0:31]
  // epoch_vect[96:127] = shadow1[64:95]
  const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2);
  // epoch_vect >= sync_epoch?
  const m128 epoch_res = _mm_cmpgt_epi32(epoch_vect, epoch);
  // addr_res & epoch_res
  const m128 res = _mm_and_si128(addr_res, epoch_res);
  // mask[0] = res[7]
  // mask[1] = res[15]
  // ...
  // mask[15] = res[127]
  const int mask = _mm_movemask_epi8(res);
  return mask != 0;
}
#endif

ALWAYS_INLINE
bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
#if TSAN_VECTORIZE
  bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write);
  // NOTE: this check can fail if the shadow is concurrently mutated
  // by other threads. But it still can be useful if you modify
  // ContainsSameAccessFast and want to ensure that it's not completely broken.
  // DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write));
  return res;
#else
  return ContainsSameAccessSlow(s, a, sync_epoch, is_write);
#endif
}

ALWAYS_INLINE USED void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
                                     int kAccessSizeLog, bool kAccessIsWrite,
                                     bool kIsAtomic) {
  RawShadow *shadow_mem = MemToShadow(addr);
  DPrintf2(
      "#%d: MemoryAccess: @%p %p size=%d"
      " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n",
      (int)thr->fast_state.tid(), (void *)pc, (void *)addr,
      (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem,
      (uptr)shadow_mem[0], (uptr)shadow_mem[1], (uptr)shadow_mem[2],
      (uptr)shadow_mem[3]);
#if SANITIZER_DEBUG
  if (!IsAppMem(addr)) {
    Printf("Access to non app mem %zx\n", addr);
    DCHECK(IsAppMem(addr));
  }
  if (!IsShadowMem(shadow_mem)) {
    Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
    DCHECK(IsShadowMem(shadow_mem));
  }
#endif

  if (!SANITIZER_GO && !kAccessIsWrite && *shadow_mem == kShadowRodata) {
    // Access to .rodata section, no races here.
    // Measurements show that it can be 10-20% of all memory accesses.
    return;
  }

  FastState fast_state = thr->fast_state;
  if (UNLIKELY(fast_state.GetIgnoreBit())) {
    return;
  }

  Shadow cur(fast_state);
  cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog);
  cur.SetWrite(kAccessIsWrite);
  cur.SetAtomic(kIsAtomic);

  if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(), thr->fast_synch_epoch,
                                kAccessIsWrite))) {
    return;
  }

  if (kCollectHistory) {
    fast_state.IncrementEpoch();
    thr->fast_state = fast_state;
    TraceAddEvent(thr, fast_state, EventTypeMop, pc);
    cur.IncrementEpoch();
  }

  MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
                    shadow_mem, cur);
}

// Called by MemoryAccessRange in tsan_rtl_thread.cpp
ALWAYS_INLINE USED void MemoryAccessImpl(ThreadState *thr, uptr addr,
                                         int kAccessSizeLog,
                                         bool kAccessIsWrite, bool kIsAtomic,
                                         u64 *shadow_mem, Shadow cur) {
  if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(), thr->fast_synch_epoch,
                                kAccessIsWrite))) {
    return;
  }

  MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
                    shadow_mem, cur);
}

static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size,
                           u64 val) {
  (void)thr;
  (void)pc;
  if (size == 0)
    return;
  // FIXME: fix me.
  uptr offset = addr % kShadowCell;
  if (offset) {
    offset = kShadowCell - offset;
    if (size <= offset)
      return;
    addr += offset;
    size -= offset;
  }
  DCHECK_EQ(addr % 8, 0);
  // If a user passes some insane arguments (memset(0)),
  // let it just crash as usual.
  if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
    return;
  // Don't want to touch lots of shadow memory.
  // If a program maps 10MB stack, there is no need reset the whole range.
  size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1);
  // UnmapOrDie/MmapFixedNoReserve does not work on Windows.
  if (SANITIZER_WINDOWS || size < common_flags()->clear_shadow_mmap_threshold) {
    RawShadow *p = MemToShadow(addr);
    CHECK(IsShadowMem(p));
    CHECK(IsShadowMem(p + size * kShadowCnt / kShadowCell - 1));
    // FIXME: may overwrite a part outside the region
    for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) {
      p[i++] = val;
      for (uptr j = 1; j < kShadowCnt; j++) p[i++] = 0;
    }
  } else {
    // The region is big, reset only beginning and end.
    const uptr kPageSize = GetPageSizeCached();
    RawShadow *begin = MemToShadow(addr);
    RawShadow *end = begin + size / kShadowCell * kShadowCnt;
    RawShadow *p = begin;
    // Set at least first kPageSize/2 to page boundary.
    while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) {
      *p++ = val;
      for (uptr j = 1; j < kShadowCnt; j++) *p++ = 0;
    }
    // Reset middle part.
    RawShadow *p1 = p;
    p = RoundDown(end, kPageSize);
    if (!MmapFixedSuperNoReserve((uptr)p1, (uptr)p - (uptr)p1))
      Die();
    // Set the ending.
    while (p < end) {
      *p++ = val;
      for (uptr j = 1; j < kShadowCnt; j++) *p++ = 0;
    }
  }
}

void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) {
  MemoryRangeSet(thr, pc, addr, size, 0);
}

void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) {
  // Processing more than 1k (4k of shadow) is expensive,
  // can cause excessive memory consumption (user does not necessary touch
  // the whole range) and most likely unnecessary.
  if (size > 1024)
    size = 1024;
  CHECK_EQ(thr->is_freeing, false);
  thr->is_freeing = true;
  MemoryAccessRange(thr, pc, addr, size, true);
  thr->is_freeing = false;
  if (kCollectHistory) {
    thr->fast_state.IncrementEpoch();
    TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
  }
  Shadow s(thr->fast_state);
  s.ClearIgnoreBit();
  s.MarkAsFreed();
  s.SetWrite(true);
  s.SetAddr0AndSizeLog(0, 3);
  MemoryRangeSet(thr, pc, addr, size, s.raw());
}

void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) {
  if (kCollectHistory) {
    thr->fast_state.IncrementEpoch();
    TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
  }
  Shadow s(thr->fast_state);
  s.ClearIgnoreBit();
  s.SetWrite(true);
  s.SetAddr0AndSizeLog(0, 3);
  MemoryRangeSet(thr, pc, addr, size, s.raw());
}

void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr,
                                         uptr size) {
  if (thr->ignore_reads_and_writes == 0)
    MemoryRangeImitateWrite(thr, pc, addr, size);
  else
    MemoryResetRange(thr, pc, addr, size);
}

void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
                       bool is_write) {
  if (size == 0)
    return;

  RawShadow *shadow_mem = MemToShadow(addr);
  DPrintf2("#%d: MemoryAccessRange: @%p %p size=%d is_write=%d\n", thr->tid,
           (void *)pc, (void *)addr, (int)size, is_write);

#if SANITIZER_DEBUG
  if (!IsAppMem(addr)) {
    Printf("Access to non app mem %zx\n", addr);
    DCHECK(IsAppMem(addr));
  }
  if (!IsAppMem(addr + size - 1)) {
    Printf("Access to non app mem %zx\n", addr + size - 1);
    DCHECK(IsAppMem(addr + size - 1));
  }
  if (!IsShadowMem(shadow_mem)) {
    Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
    DCHECK(IsShadowMem(shadow_mem));
  }
  if (!IsShadowMem(shadow_mem + size * kShadowCnt / 8 - 1)) {
    Printf("Bad shadow addr %p (%zx)\n", shadow_mem + size * kShadowCnt / 8 - 1,
           addr + size - 1);
    DCHECK(IsShadowMem(shadow_mem + size * kShadowCnt / 8 - 1));
  }
#endif

  if (*shadow_mem == kShadowRodata) {
    DCHECK(!is_write);
    // Access to .rodata section, no races here.
    // Measurements show that it can be 10-20% of all memory accesses.
    return;
  }

  FastState fast_state = thr->fast_state;
  if (fast_state.GetIgnoreBit())
    return;

  fast_state.IncrementEpoch();
  thr->fast_state = fast_state;
  TraceAddEvent(thr, fast_state, EventTypeMop, pc);

  bool unaligned = (addr % kShadowCell) != 0;

  // Handle unaligned beginning, if any.
  for (; addr % kShadowCell && size; addr++, size--) {
    int const kAccessSizeLog = 0;
    Shadow cur(fast_state);
    cur.SetWrite(is_write);
    cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
    MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false, shadow_mem,
                     cur);
  }
  if (unaligned)
    shadow_mem += kShadowCnt;
  // Handle middle part, if any.
  for (; size >= kShadowCell; addr += kShadowCell, size -= kShadowCell) {
    int const kAccessSizeLog = 3;
    Shadow cur(fast_state);
    cur.SetWrite(is_write);
    cur.SetAddr0AndSizeLog(0, kAccessSizeLog);
    MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false, shadow_mem,
                     cur);
    shadow_mem += kShadowCnt;
  }
  // Handle ending, if any.
  for (; size; addr++, size--) {
    int const kAccessSizeLog = 0;
    Shadow cur(fast_state);
    cur.SetWrite(is_write);
    cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
    MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false, shadow_mem,
                     cur);
  }
}

}  // namespace __tsan

#if !SANITIZER_GO
// Must be included in this file to make sure everything is inlined.
#  include "tsan_interface.inc"
#endif