summaryrefslogtreecommitdiff
path: root/libphobos/libdruntime/rt/lifetime.d
blob: b0e25b570541dd4c022706c88fe273fb1765c37e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
/**
 * This module contains all functions related to an object's lifetime:
 * allocation, resizing, deallocation, and finalization.
 *
 * Copyright: Copyright Digital Mars 2000 - 2012.
 * License: Distributed under the
 *      $(LINK2 http://www.boost.org/LICENSE_1_0.txt, Boost Software License 1.0).
 *    (See accompanying file LICENSE)
 * Authors:   Walter Bright, Sean Kelly, Steven Schveighoffer
 * Source: $(DRUNTIMESRC rt/_lifetime.d)
 */

module rt.lifetime;

import core.attribute : weak;
import core.memory;
debug(PRINTF) import core.stdc.stdio;
static import rt.tlsgc;

alias BlkInfo = GC.BlkInfo;
alias BlkAttr = GC.BlkAttr;

private
{
    alias bool function(Object) CollectHandler;
    __gshared CollectHandler collectHandler = null;

    extern (C) void _d_monitordelete(Object h, bool det);

    enum : size_t
    {
        PAGESIZE = 4096,
        BIGLENGTHMASK = ~(PAGESIZE - 1),
        SMALLPAD = 1,
        MEDPAD = ushort.sizeof,
        LARGEPREFIX = 16, // 16 bytes padding at the front of the array
        LARGEPAD = LARGEPREFIX + 1,
        MAXSMALLSIZE = 256-SMALLPAD,
        MAXMEDSIZE = (PAGESIZE / 2) - MEDPAD
    }
}

extern (C) void lifetime_init()
{
    // this is run before static ctors, so it is safe to modify immutables
}

/**
 *
 */
extern (C) void* _d_allocmemory(size_t sz) @weak
{
    return GC.malloc(sz);
}

/**
 *
 */
extern (C) Object _d_newclass(const ClassInfo ci) @weak
{
    import core.stdc.stdlib;
    import core.exception : onOutOfMemoryError;
    void* p;
    auto init = ci.initializer;

    debug(PRINTF) printf("_d_newclass(ci = %p, %s)\n", ci, cast(char *)ci.name);
    if (ci.m_flags & TypeInfo_Class.ClassFlags.isCOMclass)
    {   /* COM objects are not garbage collected, they are reference counted
         * using AddRef() and Release().  They get free'd by C's free()
         * function called by Release() when Release()'s reference count goes
         * to zero.
     */
        p = malloc(init.length);
        if (!p)
            onOutOfMemoryError();
    }
    else
    {
        // TODO: should this be + 1 to avoid having pointers to the next block?
        BlkAttr attr = BlkAttr.NONE;
        // extern(C++) classes don't have a classinfo pointer in their vtable so the GC can't finalize them
        if (ci.m_flags & TypeInfo_Class.ClassFlags.hasDtor
            && !(ci.m_flags & TypeInfo_Class.ClassFlags.isCPPclass))
            attr |= BlkAttr.FINALIZE;
        if (ci.m_flags & TypeInfo_Class.ClassFlags.noPointers)
            attr |= BlkAttr.NO_SCAN;
        p = GC.malloc(init.length, attr, ci);
        debug(PRINTF) printf(" p = %p\n", p);
    }

    debug(PRINTF)
    {
        printf("p = %p\n", p);
        printf("ci = %p, ci.init.ptr = %p, len = %llu\n", ci, init.ptr, cast(ulong)init.length);
        printf("vptr = %p\n", *cast(void**) init);
        printf("vtbl[0] = %p\n", (*cast(void***) init)[0]);
        printf("vtbl[1] = %p\n", (*cast(void***) init)[1]);
        printf("init[0] = %x\n", (cast(uint*) init)[0]);
        printf("init[1] = %x\n", (cast(uint*) init)[1]);
        printf("init[2] = %x\n", (cast(uint*) init)[2]);
        printf("init[3] = %x\n", (cast(uint*) init)[3]);
        printf("init[4] = %x\n", (cast(uint*) init)[4]);
    }

    // initialize it
    p[0 .. init.length] = init[];

    debug(PRINTF) printf("initialization done\n");
    return cast(Object) p;
}


/**
 *
 */
extern (C) void _d_delinterface(void** p)
{
    if (*p)
    {
        Interface* pi = **cast(Interface ***)*p;
        Object     o  = cast(Object)(*p - pi.offset);

        _d_delclass(&o);
        *p = null;
    }
}


// used for deletion
private extern (D) alias void function (Object) fp_t;


/**
 *
 */
extern (C) void _d_delclass(Object* p) @weak
{
    if (*p)
    {
        debug(PRINTF) printf("_d_delclass(%p)\n", *p);

        ClassInfo **pc = cast(ClassInfo **)*p;
        if (*pc)
        {
            ClassInfo c = **pc;

            rt_finalize(cast(void*) *p);

            if (c.deallocator)
            {
                fp_t fp = cast(fp_t)c.deallocator;
                (*fp)(*p); // call deallocator
                *p = null;
                return;
            }
        }
        else
        {
            rt_finalize(cast(void*) *p);
        }
        GC.free(cast(void*) *p);
        *p = null;
    }
}

/**
 * This is called for a delete statement where the value
 * being deleted is a pointer to a struct with a destructor
 * but doesn't have an overloaded delete operator.
 */
extern (C) void _d_delstruct(void** p, TypeInfo_Struct inf) @weak
{
    if (*p)
    {
        debug(PRINTF) printf("_d_delstruct(%p, %p)\n", *p, cast(void*)inf);

        inf.destroy(*p);
        GC.free(*p);
        *p = null;
    }
}

// strip const/immutable/shared/inout from type info
inout(TypeInfo) unqualify(return scope inout(TypeInfo) cti) pure nothrow @nogc
{
    TypeInfo ti = cast() cti;
    while (ti)
    {
        // avoid dynamic type casts
        auto tti = typeid(ti);
        if (tti is typeid(TypeInfo_Const))
            ti = (cast(TypeInfo_Const)cast(void*)ti).base;
        else if (tti is typeid(TypeInfo_Invariant))
            ti = (cast(TypeInfo_Invariant)cast(void*)ti).base;
        else if (tti is typeid(TypeInfo_Shared))
            ti = (cast(TypeInfo_Shared)cast(void*)ti).base;
        else if (tti is typeid(TypeInfo_Inout))
            ti = (cast(TypeInfo_Inout)cast(void*)ti).base;
        else
            break;
    }
    return ti;
}

// size used to store the TypeInfo at the end of an allocation for structs that have a destructor
size_t structTypeInfoSize(const TypeInfo ti) pure nothrow @nogc
{
    if (ti && typeid(ti) is typeid(TypeInfo_Struct)) // avoid a complete dynamic type cast
    {
        auto sti = cast(TypeInfo_Struct)cast(void*)ti;
        if (sti.xdtor)
            return size_t.sizeof;
    }
    return 0;
}

/** dummy class used to lock for shared array appending */
private class ArrayAllocLengthLock
{}


/**
  Set the allocated length of the array block.  This is called
  any time an array is appended to or its length is set.

  The allocated block looks like this for blocks < PAGESIZE:

  |elem0|elem1|elem2|...|elemN-1|emptyspace|N*elemsize|


  The size of the allocated length at the end depends on the block size:

  a block of 16 to 256 bytes has an 8-bit length.

  a block with 512 to pagesize/2 bytes has a 16-bit length.

  For blocks >= pagesize, the length is a size_t and is at the beginning of the
  block.  The reason we have to do this is because the block can extend into
  more pages, so we cannot trust the block length if it sits at the end of the
  block, because it might have just been extended.  If we can prove in the
  future that the block is unshared, we may be able to change this, but I'm not
  sure it's important.

  In order to do put the length at the front, we have to provide 16 bytes
  buffer space in case the block has to be aligned properly.  In x86, certain
  SSE instructions will only work if the data is 16-byte aligned.  In addition,
  we need the sentinel byte to prevent accidental pointers to the next block.
  Because of the extra overhead, we only do this for page size and above, where
  the overhead is minimal compared to the block size.

  So for those blocks, it looks like:

  |N*elemsize|padding|elem0|elem1|...|elemN-1|emptyspace|sentinelbyte|

  where elem0 starts 16 bytes after the first byte.
  */
bool __setArrayAllocLength(ref BlkInfo info, size_t newlength, bool isshared, const TypeInfo tinext, size_t oldlength = ~0) pure nothrow
{
    import core.atomic;

    size_t typeInfoSize = structTypeInfoSize(tinext);

    if (info.size <= 256)
    {
        import core.checkedint;

        bool overflow;
        auto newlength_padded = addu(newlength,
                                     addu(SMALLPAD, typeInfoSize, overflow),
                                     overflow);

        if (newlength_padded > info.size || overflow)
            // new size does not fit inside block
            return false;

        auto length = cast(ubyte *)(info.base + info.size - typeInfoSize - SMALLPAD);
        if (oldlength != ~0)
        {
            if (isshared)
            {
                return cas(cast(shared)length, cast(ubyte)oldlength, cast(ubyte)newlength);
            }
            else
            {
                if (*length == cast(ubyte)oldlength)
                    *length = cast(ubyte)newlength;
                else
                    return false;
            }
        }
        else
        {
            // setting the initial length, no cas needed
            *length = cast(ubyte)newlength;
        }
        if (typeInfoSize)
        {
            auto typeInfo = cast(TypeInfo*)(info.base + info.size - size_t.sizeof);
            *typeInfo = cast() tinext;
        }
    }
    else if (info.size < PAGESIZE)
    {
        if (newlength + MEDPAD + typeInfoSize > info.size)
            // new size does not fit inside block
            return false;
        auto length = cast(ushort *)(info.base + info.size - typeInfoSize - MEDPAD);
        if (oldlength != ~0)
        {
            if (isshared)
            {
                return cas(cast(shared)length, cast(ushort)oldlength, cast(ushort)newlength);
            }
            else
            {
                if (*length == oldlength)
                    *length = cast(ushort)newlength;
                else
                    return false;
            }
        }
        else
        {
            // setting the initial length, no cas needed
            *length = cast(ushort)newlength;
        }
        if (typeInfoSize)
        {
            auto typeInfo = cast(TypeInfo*)(info.base + info.size - size_t.sizeof);
            *typeInfo = cast() tinext;
        }
    }
    else
    {
        if (newlength + LARGEPAD > info.size)
            // new size does not fit inside block
            return false;
        auto length = cast(size_t *)(info.base);
        if (oldlength != ~0)
        {
            if (isshared)
            {
                return cas(cast(shared)length, cast(size_t)oldlength, cast(size_t)newlength);
            }
            else
            {
                if (*length == oldlength)
                    *length = newlength;
                else
                    return false;
            }
        }
        else
        {
            // setting the initial length, no cas needed
            *length = newlength;
        }
        if (typeInfoSize)
        {
            auto typeInfo = cast(TypeInfo*)(info.base + size_t.sizeof);
            *typeInfo = cast()tinext;
        }
    }
    return true; // resize succeeded
}

/**
  get the allocation size of the array for the given block (without padding or type info)
  */
size_t __arrayAllocLength(ref BlkInfo info, const TypeInfo tinext) pure nothrow
{
    if (info.size <= 256)
        return *cast(ubyte *)(info.base + info.size - structTypeInfoSize(tinext) - SMALLPAD);

    if (info.size < PAGESIZE)
        return *cast(ushort *)(info.base + info.size - structTypeInfoSize(tinext) - MEDPAD);

    return *cast(size_t *)(info.base);
}

/**
  get the start of the array for the given block
  */
void *__arrayStart(return scope BlkInfo info) nothrow pure
{
    return info.base + ((info.size & BIGLENGTHMASK) ? LARGEPREFIX : 0);
}

/**
  get the padding required to allocate size bytes.  Note that the padding is
  NOT included in the passed in size.  Therefore, do NOT call this function
  with the size of an allocated block.
  */
size_t __arrayPad(size_t size, const TypeInfo tinext) nothrow pure @trusted
{
    return size > MAXMEDSIZE ? LARGEPAD : ((size > MAXSMALLSIZE ? MEDPAD : SMALLPAD) + structTypeInfoSize(tinext));
}

/**
  clear padding that might not be zeroed by the GC (it assumes it is within the
  requested size from the start, but it is actually at the end of the allocated block)
  */
private void __arrayClearPad(ref BlkInfo info, size_t arrsize, size_t padsize) nothrow pure
{
    import core.stdc.string;
    if (padsize > MEDPAD && !(info.attr & BlkAttr.NO_SCAN) && info.base)
    {
        if (info.size < PAGESIZE)
            memset(info.base + arrsize, 0, padsize);
        else
            memset(info.base, 0, LARGEPREFIX);
    }
}

/**
  allocate an array memory block by applying the proper padding and
  assigning block attributes if not inherited from the existing block
  */
BlkInfo __arrayAlloc(size_t arrsize, const scope TypeInfo ti, const TypeInfo tinext) nothrow pure
{
    import core.checkedint;

    size_t typeInfoSize = structTypeInfoSize(tinext);
    size_t padsize = arrsize > MAXMEDSIZE ? LARGEPAD : ((arrsize > MAXSMALLSIZE ? MEDPAD : SMALLPAD) + typeInfoSize);

    bool overflow;
    auto padded_size = addu(arrsize, padsize, overflow);

    if (overflow)
        return BlkInfo();

    uint attr = (!(tinext.flags & 1) ? BlkAttr.NO_SCAN : 0) | BlkAttr.APPENDABLE;
    if (typeInfoSize)
        attr |= BlkAttr.STRUCTFINAL | BlkAttr.FINALIZE;

    auto bi = GC.qalloc(padded_size, attr, tinext);
    __arrayClearPad(bi, arrsize, padsize);
    return bi;
}

BlkInfo __arrayAlloc(size_t arrsize, ref BlkInfo info, const scope TypeInfo ti, const TypeInfo tinext)
{
    import core.checkedint;

    if (!info.base)
        return __arrayAlloc(arrsize, ti, tinext);

    immutable padsize = __arrayPad(arrsize, tinext);
    bool overflow;
    auto padded_size = addu(arrsize, padsize, overflow);
    if (overflow)
    {
        return BlkInfo();
    }

    auto bi = GC.qalloc(padded_size, info.attr, tinext);
    __arrayClearPad(bi, arrsize, padsize);
    return bi;
}

/**
  cache for the lookup of the block info
  */
enum N_CACHE_BLOCKS=8;

// note this is TLS, so no need to sync.
BlkInfo *__blkcache_storage;

static if (N_CACHE_BLOCKS==1)
{
    version=single_cache;
}
else
{
    //version=simple_cache; // uncomment to test simple cache strategy
    //version=random_cache; // uncomment to test random cache strategy

    // ensure N_CACHE_BLOCKS is power of 2.
    static assert(!((N_CACHE_BLOCKS - 1) & N_CACHE_BLOCKS));

    version (random_cache)
    {
        int __nextRndNum = 0;
    }
    int __nextBlkIdx;
}

@property BlkInfo *__blkcache() nothrow
{
    if (!__blkcache_storage)
    {
        import core.stdc.stdlib;
        import core.stdc.string;
        // allocate the block cache for the first time
        immutable size = BlkInfo.sizeof * N_CACHE_BLOCKS;
        __blkcache_storage = cast(BlkInfo *)malloc(size);
        memset(__blkcache_storage, 0, size);
    }
    return __blkcache_storage;
}

// called when thread is exiting.
static ~this()
{
    // free the blkcache
    if (__blkcache_storage)
    {
        import core.stdc.stdlib;
        free(__blkcache_storage);
        __blkcache_storage = null;
    }
}


// we expect this to be called with the lock in place
void processGCMarks(BlkInfo* cache, scope rt.tlsgc.IsMarkedDg isMarked) nothrow
{
    // called after the mark routine to eliminate block cache data when it
    // might be ready to sweep

    debug(PRINTF) printf("processing GC Marks, %x\n", cache);
    if (cache)
    {
        debug(PRINTF) foreach (i; 0 .. N_CACHE_BLOCKS)
        {
            printf("cache entry %d has base ptr %x\tsize %d\tflags %x\n", i, cache[i].base, cache[i].size, cache[i].attr);
        }
        auto cache_end = cache + N_CACHE_BLOCKS;
        for (;cache < cache_end; ++cache)
        {
            if (cache.base != null && !isMarked(cache.base))
            {
                debug(PRINTF) printf("clearing cache entry at %x\n", cache.base);
                cache.base = null; // clear that data.
            }
        }
    }
}

unittest
{
    // Bugzilla 10701 - segfault in GC
    ubyte[] result; result.length = 4096;
    GC.free(result.ptr);
    GC.collect();
}

/**
  Get the cached block info of an interior pointer.  Returns null if the
  interior pointer's block is not cached.

  NOTE: The base ptr in this struct can be cleared asynchronously by the GC,
        so any use of the returned BlkInfo should copy it and then check the
        base ptr of the copy before actually using it.

  TODO: Change this function so the caller doesn't have to be aware of this
        issue.  Either return by value and expect the caller to always check
        the base ptr as an indication of whether the struct is valid, or set
        the BlkInfo as a side-effect and return a bool to indicate success.
  */
BlkInfo *__getBlkInfo(void *interior) nothrow
{
    BlkInfo *ptr = __blkcache;
    version (single_cache)
    {
        if (ptr.base && ptr.base <= interior && (interior - ptr.base) < ptr.size)
            return ptr;
        return null; // not in cache.
    }
    else version (simple_cache)
    {
        foreach (i; 0..N_CACHE_BLOCKS)
        {
            if (ptr.base && ptr.base <= interior && (interior - ptr.base) < ptr.size)
                return ptr;
            ptr++;
        }
    }
    else
    {
        // try to do a smart lookup, using __nextBlkIdx as the "head"
        auto curi = ptr + __nextBlkIdx;
        for (auto i = curi; i >= ptr; --i)
        {
            if (i.base && i.base <= interior && cast(size_t)(interior - i.base) < i.size)
                return i;
        }

        for (auto i = ptr + N_CACHE_BLOCKS - 1; i > curi; --i)
        {
            if (i.base && i.base <= interior && cast(size_t)(interior - i.base) < i.size)
                return i;
        }
    }
    return null; // not in cache.
}

void __insertBlkInfoCache(BlkInfo bi, BlkInfo *curpos) nothrow
{
    version (single_cache)
    {
        *__blkcache = bi;
    }
    else
    {
        version (simple_cache)
        {
            if (curpos)
                *curpos = bi;
            else
            {
                // note, this is a super-simple algorithm that does not care about
                // most recently used.  It simply uses a round-robin technique to
                // cache block info.  This means that the ordering of the cache
                // doesn't mean anything.  Certain patterns of allocation may
                // render the cache near-useless.
                __blkcache[__nextBlkIdx] = bi;
                __nextBlkIdx = (__nextBlkIdx+1) & (N_CACHE_BLOCKS - 1);
            }
        }
        else version (random_cache)
        {
            // strategy: if the block currently is in the cache, move the
            // current block index to the a random element and evict that
            // element.
            auto cache = __blkcache;
            if (!curpos)
            {
                __nextBlkIdx = (__nextRndNum = 1664525 * __nextRndNum + 1013904223) & (N_CACHE_BLOCKS - 1);
                curpos = cache + __nextBlkIdx;
            }
            else
            {
                __nextBlkIdx = curpos - cache;
            }
            *curpos = bi;
        }
        else
        {
            //
            // strategy: If the block currently is in the cache, swap it with
            // the head element.  Otherwise, move the head element up by one,
            // and insert it there.
            //
            auto cache = __blkcache;
            if (!curpos)
            {
                __nextBlkIdx = (__nextBlkIdx+1) & (N_CACHE_BLOCKS - 1);
                curpos = cache + __nextBlkIdx;
            }
            else if (curpos !is cache + __nextBlkIdx)
            {
                *curpos = cache[__nextBlkIdx];
                curpos = cache + __nextBlkIdx;
            }
            *curpos = bi;
        }
    }
}

/**
 * Shrink the "allocated" length of an array to be the exact size of the array.
 * It doesn't matter what the current allocated length of the array is, the
 * user is telling the runtime that he knows what he is doing.
 */
extern(C) void _d_arrayshrinkfit(const TypeInfo ti, void[] arr) /+nothrow+/
{
    // note, we do not care about shared.  We are setting the length no matter
    // what, so no lock is required.
    debug(PRINTF) printf("_d_arrayshrinkfit, elemsize = %d, arr.ptr = x%x arr.length = %d\n", ti.next.tsize, arr.ptr, arr.length);
    auto tinext = unqualify(ti.next);
    auto size = tinext.tsize;                  // array element size
    auto cursize = arr.length * size;
    auto isshared = typeid(ti) is typeid(TypeInfo_Shared);
    auto bic = isshared ? null : __getBlkInfo(arr.ptr);
    auto info = bic ? *bic : GC.query(arr.ptr);
    if (info.base && (info.attr & BlkAttr.APPENDABLE))
    {
        auto newsize = (arr.ptr - __arrayStart(info)) + cursize;

        debug(PRINTF) printf("setting allocated size to %d\n", (arr.ptr - info.base) + cursize);

        // destroy structs that become unused memory when array size is shrinked
        if (typeid(tinext) is typeid(TypeInfo_Struct)) // avoid a complete dynamic type cast
        {
            auto sti = cast(TypeInfo_Struct)cast(void*)tinext;
            if (sti.xdtor)
            {
                auto oldsize = __arrayAllocLength(info, tinext);
                if (oldsize > cursize)
                    finalize_array(arr.ptr + cursize, oldsize - cursize, sti);
            }
        }
        // Note: Since we "assume" the append is safe, it means it is not shared.
        // Since it is not shared, we also know it won't throw (no lock).
        if (!__setArrayAllocLength(info, newsize, false, tinext))
        {
            import core.exception : onInvalidMemoryOperationError;
            onInvalidMemoryOperationError();
        }

        // cache the block if not already done.
        if (!isshared && !bic)
            __insertBlkInfoCache(info, null);
    }
}

package bool hasPostblit(in TypeInfo ti)
{
    return (&ti.postblit).funcptr !is &TypeInfo.postblit;
}

void __doPostblit(void *ptr, size_t len, const TypeInfo ti)
{
    if (!hasPostblit(ti))
        return;

    if (auto tis = cast(TypeInfo_Struct)ti)
    {
        // this is a struct, check the xpostblit member
        auto pblit = tis.xpostblit;
        if (!pblit)
            // postblit not specified, no point in looping.
            return;

        // optimized for struct, call xpostblit directly for each element
        immutable size = ti.tsize;
        const eptr = ptr + len;
        for (;ptr < eptr;ptr += size)
            pblit(ptr);
    }
    else
    {
        // generic case, call the typeinfo's postblit function
        immutable size = ti.tsize;
        const eptr = ptr + len;
        for (;ptr < eptr;ptr += size)
            ti.postblit(ptr);
    }
}


/**
 * set the array capacity.  If the array capacity isn't currently large enough
 * to hold the requested capacity (in number of elements), then the array is
 * resized/reallocated to the appropriate size.  Pass in a requested capacity
 * of 0 to get the current capacity.  Returns the number of elements that can
 * actually be stored once the resizing is done.
 */
extern(C) size_t _d_arraysetcapacity(const TypeInfo ti, size_t newcapacity, void[]* p) @weak
in
{
    assert(ti);
    assert(!(*p).length || (*p).ptr);
}
do
{
    import core.stdc.string;
    import core.exception : onOutOfMemoryError;

    // step 1, get the block
    auto isshared = typeid(ti) is typeid(TypeInfo_Shared);
    auto bic = isshared ? null : __getBlkInfo((*p).ptr);
    auto info = bic ? *bic : GC.query((*p).ptr);
    auto tinext = unqualify(ti.next);
    auto size = tinext.tsize;
    version (D_InlineAsm_X86)
    {
        size_t reqsize = void;

        asm
        {
            mov EAX, newcapacity;
            mul EAX, size;
            mov reqsize, EAX;
            jnc  Lcontinue;
        }
    }
    else version (D_InlineAsm_X86_64)
    {
        size_t reqsize = void;

        asm
        {
            mov RAX, newcapacity;
            mul RAX, size;
            mov reqsize, RAX;
            jnc  Lcontinue;
        }
    }
    else
    {
        import core.checkedint : mulu;

        bool overflow = false;
        size_t reqsize = mulu(size, newcapacity, overflow);
        if (!overflow)
            goto Lcontinue;
    }
Loverflow:
    onOutOfMemoryError();
    assert(0);
Lcontinue:

    // step 2, get the actual "allocated" size.  If the allocated size does not
    // match what we expect, then we will need to reallocate anyways.

    // TODO: this probably isn't correct for shared arrays
    size_t curallocsize = void;
    size_t curcapacity = void;
    size_t offset = void;
    size_t arraypad = void;
    if (info.base && (info.attr & BlkAttr.APPENDABLE))
    {
        if (info.size <= 256)
        {
            arraypad = SMALLPAD + structTypeInfoSize(tinext);
            curallocsize = *(cast(ubyte *)(info.base + info.size - arraypad));
        }
        else if (info.size < PAGESIZE)
        {
            arraypad = MEDPAD + structTypeInfoSize(tinext);
            curallocsize = *(cast(ushort *)(info.base + info.size - arraypad));
        }
        else
        {
            curallocsize = *(cast(size_t *)(info.base));
            arraypad = LARGEPAD;
        }


        offset = (*p).ptr - __arrayStart(info);
        if (offset + (*p).length * size != curallocsize)
        {
            curcapacity = 0;
        }
        else
        {
            // figure out the current capacity of the block from the point
            // of view of the array.
            curcapacity = info.size - offset - arraypad;
        }
    }
    else
    {
        curallocsize = curcapacity = offset = 0;
    }
    debug(PRINTF) printf("_d_arraysetcapacity, p = x%d,%d, newcapacity=%d, info.size=%d, reqsize=%d, curallocsize=%d, curcapacity=%d, offset=%d\n", (*p).ptr, (*p).length, newcapacity, info.size, reqsize, curallocsize, curcapacity, offset);

    if (curcapacity >= reqsize)
    {
        // no problems, the current allocated size is large enough.
        return curcapacity / size;
    }

    // step 3, try to extend the array in place.
    if (info.size >= PAGESIZE && curcapacity != 0)
    {
        auto extendsize = reqsize + offset + LARGEPAD - info.size;
        auto u = GC.extend(info.base, extendsize, extendsize);
        if (u)
        {
            // extend worked, save the new current allocated size
            if (bic)
                bic.size = u; // update cache
            curcapacity = u - offset - LARGEPAD;
            return curcapacity / size;
        }
    }

    // step 4, if extending doesn't work, allocate a new array with at least the requested allocated size.
    auto datasize = (*p).length * size;
    // copy attributes from original block, or from the typeinfo if the
    // original block doesn't exist.
    info = __arrayAlloc(reqsize, info, ti, tinext);
    if (info.base is null)
        goto Loverflow;
    // copy the data over.
    // note that malloc will have initialized the data we did not request to 0.
    auto tgt = __arrayStart(info);
    memcpy(tgt, (*p).ptr, datasize);

    // handle postblit
    __doPostblit(tgt, datasize, tinext);

    if (!(info.attr & BlkAttr.NO_SCAN))
    {
        // need to memset the newly requested data, except for the data that
        // malloc returned that we didn't request.
        void *endptr = tgt + reqsize;
        void *begptr = tgt + datasize;

        // sanity check
        assert(endptr >= begptr);
        memset(begptr, 0, endptr - begptr);
    }

    // set up the correct length
    __setArrayAllocLength(info, datasize, isshared, tinext);
    if (!isshared)
        __insertBlkInfoCache(info, bic);

    *p = (cast(void*)tgt)[0 .. (*p).length];

    // determine the padding.  This has to be done manually because __arrayPad
    // assumes you are not counting the pad size, and info.size does include
    // the pad.
    if (info.size <= 256)
        arraypad = SMALLPAD + structTypeInfoSize(tinext);
    else if (info.size < PAGESIZE)
        arraypad = MEDPAD + structTypeInfoSize(tinext);
    else
        arraypad = LARGEPAD;

    curcapacity = info.size - arraypad;
    return curcapacity / size;
}

/**
 * Allocate a new uninitialized array of length elements.
 * ti is the type of the resulting array, or pointer to element.
 */
extern (C) void[] _d_newarrayU(const scope TypeInfo ti, size_t length) pure nothrow @weak
{
    import core.exception : onOutOfMemoryError;

    auto tinext = unqualify(ti.next);
    auto size = tinext.tsize;

    debug(PRINTF) printf("_d_newarrayU(length = x%x, size = %d)\n", length, size);
    if (length == 0 || size == 0)
        return null;

    version (D_InlineAsm_X86)
    {
        asm pure nothrow @nogc
        {
            mov     EAX,size        ;
            mul     EAX,length      ;
            mov     size,EAX        ;
            jnc     Lcontinue       ;
        }
    }
    else version (D_InlineAsm_X86_64)
    {
        asm pure nothrow @nogc
        {
            mov     RAX,size        ;
            mul     RAX,length      ;
            mov     size,RAX        ;
            jnc     Lcontinue       ;
        }
    }
    else
    {
        import core.checkedint : mulu;

        bool overflow = false;
        size = mulu(size, length, overflow);
        if (!overflow)
            goto Lcontinue;
    }
Loverflow:
    onOutOfMemoryError();
    assert(0);
Lcontinue:

    auto info = __arrayAlloc(size, ti, tinext);
    if (!info.base)
        goto Loverflow;
    debug(PRINTF) printf(" p = %p\n", info.base);
    // update the length of the array
    auto arrstart = __arrayStart(info);
    auto isshared = typeid(ti) is typeid(TypeInfo_Shared);
    __setArrayAllocLength(info, size, isshared, tinext);
    return arrstart[0..length];
}

/**
 * Allocate a new array of length elements.
 * ti is the type of the resulting array, or pointer to element.
 * (For when the array is initialized to 0)
 */
extern (C) void[] _d_newarrayT(const TypeInfo ti, size_t length) pure nothrow @weak
{
    import core.stdc.string;

    void[] result = _d_newarrayU(ti, length);
    auto tinext = unqualify(ti.next);
    auto size = tinext.tsize;

    memset(result.ptr, 0, size * length);
    return result;
}

/**
 * For when the array has a non-zero initializer.
 */
extern (C) void[] _d_newarrayiT(const TypeInfo ti, size_t length) pure nothrow @weak
{
    import core.internal.traits : AliasSeq;

    void[] result = _d_newarrayU(ti, length);
    auto tinext = unqualify(ti.next);
    auto size = tinext.tsize;

    auto init = tinext.initializer();

    switch (init.length)
    {
    foreach (T; AliasSeq!(ubyte, ushort, uint, ulong))
    {
    case T.sizeof:
        if (tinext.talign % T.alignof == 0)
        {
            (cast(T*)result.ptr)[0 .. size * length / T.sizeof] = *cast(T*)init.ptr;
            return result;
        }
        goto default;
    }

    default:
    {
        import core.stdc.string;
        immutable sz = init.length;
        for (size_t u = 0; u < size * length; u += sz)
            memcpy(result.ptr + u, init.ptr, sz);
        return result;
    }
    }
}


/**
 *
 */
void[] _d_newarrayOpT(alias op)(const TypeInfo ti, size_t[] dims)
{
    debug(PRINTF) printf("_d_newarrayOpT(ndims = %d)\n", dims.length);
    if (dims.length == 0)
        return null;

    void[] foo(const TypeInfo ti, size_t[] dims)
    {
        auto tinext = unqualify(ti.next);
        auto dim = dims[0];

        debug(PRINTF) printf("foo(ti = %p, ti.next = %p, dim = %d, ndims = %d\n", ti, ti.next, dim, dims.length);
        if (dims.length == 1)
        {
            auto r = op(ti, dim);
            return *cast(void[]*)(&r);
        }

        auto allocsize = (void[]).sizeof * dim;
        auto info = __arrayAlloc(allocsize, ti, tinext);
        auto isshared = typeid(ti) is typeid(TypeInfo_Shared);
        __setArrayAllocLength(info, allocsize, isshared, tinext);
        auto p = __arrayStart(info)[0 .. dim];

        foreach (i; 0..dim)
        {
            (cast(void[]*)p.ptr)[i] = foo(tinext, dims[1..$]);
        }
        return p;
    }

    auto result = foo(ti, dims);
    debug(PRINTF) printf("result = %llx\n", result.ptr);

    return result;
}


/**
 *
 */
extern (C) void[] _d_newarraymTX(const TypeInfo ti, size_t[] dims) @weak
{
    debug(PRINTF) printf("_d_newarraymT(dims.length = %d)\n", dims.length);

    if (dims.length == 0)
        return null;
    else
    {
        return _d_newarrayOpT!(_d_newarrayT)(ti, dims);
    }
}


/**
 *
 */
extern (C) void[] _d_newarraymiTX(const TypeInfo ti, size_t[] dims) @weak
{
    debug(PRINTF) printf("_d_newarraymiT(dims.length = %d)\n", dims.length);

    if (dims.length == 0)
        return null;
    else
    {
        return _d_newarrayOpT!(_d_newarrayiT)(ti, dims);
    }
}

/**
 * Allocate an uninitialized non-array item.
 * This is an optimization to avoid things needed for arrays like the __arrayPad(size).
 */
extern (C) void* _d_newitemU(scope const TypeInfo _ti) pure nothrow @weak
{
    auto ti = unqualify(_ti);
    auto flags = !(ti.flags & 1) ? BlkAttr.NO_SCAN : 0;
    immutable tiSize = structTypeInfoSize(ti);
    immutable itemSize = ti.tsize;
    immutable size = itemSize + tiSize;
    if (tiSize)
        flags |= BlkAttr.STRUCTFINAL | BlkAttr.FINALIZE;

    auto blkInf = GC.qalloc(size, flags, ti);
    auto p = blkInf.base;

    if (tiSize)
    {
        // the GC might not have cleared the padding area in the block
        *cast(TypeInfo*)(p + (itemSize & ~(size_t.sizeof - 1))) = null;
        *cast(TypeInfo*)(p + blkInf.size - tiSize) = cast() ti;
    }

    return p;
}

/// Same as above, zero initializes the item.
extern (C) void* _d_newitemT(in TypeInfo _ti) pure nothrow @weak
{
    import core.stdc.string;
    auto p = _d_newitemU(_ti);
    memset(p, 0, _ti.tsize);
    return p;
}

/// Same as above, for item with non-zero initializer.
extern (C) void* _d_newitemiT(in TypeInfo _ti) pure nothrow @weak
{
    import core.stdc.string;
    auto p = _d_newitemU(_ti);
    auto init = _ti.initializer();
    assert(init.length <= _ti.tsize);
    memcpy(p, init.ptr, init.length);
    return p;
}

/**
 *
 */
struct Array
{
    size_t length;
    byte*  data;
}

debug(PRINTF)
{
    extern(C) void printArrayCache()
    {
        auto ptr = __blkcache;
        printf("CACHE: \n");
        foreach (i; 0 .. N_CACHE_BLOCKS)
        {
            printf("  %d\taddr:% .8x\tsize:% .10d\tflags:% .8x\n", i, ptr[i].base, ptr[i].size, ptr[i].attr);
        }
    }
}

/**
 *
 */
extern (C) void _d_delarray_t(void[]* p, const TypeInfo_Struct ti) @weak
{
    if (p)
    {
        auto bic = __getBlkInfo(p.ptr);
        auto info = bic ? *bic : GC.query(p.ptr);

        if (info.base && (info.attr & BlkAttr.APPENDABLE))
        {
            if (ti) // ti non-null only if ti is a struct with dtor
            {
                void* start = __arrayStart(info);
                size_t length = __arrayAllocLength(info, ti);
                finalize_array(start, length, ti);
            }

            // if p is in the cache, clear it there as well
            if (bic)
                bic.base = null;

            GC.free(info.base);
            *p = null;
        }
    }
}

deprecated unittest
{
    __gshared size_t countDtor = 0;
    struct S
    {
        int x;
        ~this() { countDtor++; }
    }
    // destroy large array with x.ptr not base address of allocation
    auto x = new S[10000];
    void* p = x.ptr;
    assert(GC.addrOf(p) != null);
    _d_delarray_t(cast(void[]*)&x, typeid(typeof(x[0]))); // delete x;
    assert(GC.addrOf(p) == null);
    assert(countDtor == 10000);

    // destroy full array even if only slice passed
    auto y = new S[400];
    auto z = y[200 .. 300];
    p = z.ptr;
    assert(GC.addrOf(p) != null);
    _d_delarray_t(cast(void[]*)&z, typeid(typeof(z[0]))); // delete z;
    assert(GC.addrOf(p) == null);
    assert(countDtor == 10000 + 400);
}

/**
 *
 */
extern (C) void _d_delmemory(void* *p) @weak
{
    if (*p)
    {
        GC.free(*p);
        *p = null;
    }
}


/**
 *
 */
extern (C) void _d_callinterfacefinalizer(void *p) @weak
{
    if (p)
    {
        Interface *pi = **cast(Interface ***)p;
        Object o = cast(Object)(p - pi.offset);
        rt_finalize(cast(void*)o);
    }
}


/**
 *
 */
extern (C) void _d_callfinalizer(void* p) @weak
{
    rt_finalize( p );
}


/**
 *
 */
extern (C) void rt_setCollectHandler(CollectHandler h)
{
    collectHandler = h;
}


/**
 *
 */
extern (C) CollectHandler rt_getCollectHandler()
{
    return collectHandler;
}


/**
 *
 */
extern (C) int rt_hasFinalizerInSegment(void* p, size_t size, uint attr, in void[] segment) nothrow
{
    if (attr & BlkAttr.STRUCTFINAL)
    {
        if (attr & BlkAttr.APPENDABLE)
            return hasArrayFinalizerInSegment(p, size, segment);
        return hasStructFinalizerInSegment(p, size, segment);
    }

    // otherwise class
    auto ppv = cast(void**) p;
    if (!p || !*ppv)
        return false;

    auto c = *cast(ClassInfo*)*ppv;
    do
    {
        auto pf = c.destructor;
        if (cast(size_t)(pf - segment.ptr) < segment.length) return true;
    }
    while ((c = c.base) !is null);

    return false;
}

int hasStructFinalizerInSegment(void* p, size_t size, in void[] segment) nothrow
{
    if (!p)
        return false;

    auto ti = *cast(TypeInfo_Struct*)(p + size - size_t.sizeof);
    return cast(size_t)(cast(void*)ti.xdtor - segment.ptr) < segment.length;
}

int hasArrayFinalizerInSegment(void* p, size_t size, in void[] segment) nothrow
{
    if (!p)
        return false;

    TypeInfo_Struct si = void;
    if (size < PAGESIZE)
        si = *cast(TypeInfo_Struct*)(p + size - size_t.sizeof);
    else
        si = *cast(TypeInfo_Struct*)(p + size_t.sizeof);

    return cast(size_t)(cast(void*)si.xdtor - segment.ptr) < segment.length;
}

// called by the GC
void finalize_array2(void* p, size_t size) nothrow
{
    debug(PRINTF) printf("rt_finalize_array2(p = %p)\n", p);

    TypeInfo_Struct si = void;
    if (size <= 256)
    {
        si = *cast(TypeInfo_Struct*)(p + size - size_t.sizeof);
        size = *cast(ubyte*)(p + size - size_t.sizeof - SMALLPAD);
    }
    else if (size < PAGESIZE)
    {
        si = *cast(TypeInfo_Struct*)(p + size - size_t.sizeof);
        size = *cast(ushort*)(p + size - size_t.sizeof - MEDPAD);
    }
    else
    {
        si = *cast(TypeInfo_Struct*)(p + size_t.sizeof);
        size = *cast(size_t*)p;
        p += LARGEPREFIX;
    }

    try
    {
        finalize_array(p, size, si);
    }
    catch (Exception e)
    {
        import core.exception : onFinalizeError;
        onFinalizeError(si, e);
    }
}

void finalize_array(void* p, size_t size, const TypeInfo_Struct si)
{
    // Due to the fact that the delete operator calls destructors
    // for arrays from the last element to the first, we maintain
    // compatibility here by doing the same.
    auto tsize = si.tsize;
    for (auto curP = p + size - tsize; curP >= p; curP -= tsize)
    {
        // call destructor
        si.destroy(curP);
    }
}

// called by the GC
void finalize_struct(void* p, size_t size) nothrow
{
    debug(PRINTF) printf("finalize_struct(p = %p)\n", p);

    auto ti = *cast(TypeInfo_Struct*)(p + size - size_t.sizeof);
    try
    {
        ti.destroy(p); // call destructor
    }
    catch (Exception e)
    {
        import core.exception : onFinalizeError;
        onFinalizeError(ti, e);
    }
}

/**
 *
 */
extern (C) void rt_finalize2(void* p, bool det = true, bool resetMemory = true) nothrow
{
    debug(PRINTF) printf("rt_finalize2(p = %p)\n", p);

    auto ppv = cast(void**) p;
    if (!p || !*ppv)
        return;

    auto pc = cast(ClassInfo*) *ppv;
    try
    {
        if (det || collectHandler is null || collectHandler(cast(Object) p))
        {
            auto c = *pc;
            do
            {
                if (c.destructor)
                    (cast(fp_t) c.destructor)(cast(Object) p); // call destructor
            }
            while ((c = c.base) !is null);
        }

        if (ppv[1]) // if monitor is not null
            _d_monitordelete(cast(Object) p, det);

        if (resetMemory)
        {
            auto w = (*pc).initializer;
            p[0 .. w.length] = w[];
        }
    }
    catch (Exception e)
    {
        import core.exception : onFinalizeError;
        onFinalizeError(*pc, e);
    }
    finally
    {
        *ppv = null; // zero vptr even if `resetMemory` is false
    }
}

extern (C) void rt_finalize(void* p, bool det = true) nothrow
{
    rt_finalize2(p, det, true);
}

extern (C) void rt_finalizeFromGC(void* p, size_t size, uint attr) nothrow
{
    // to verify: reset memory necessary?
    if (!(attr & BlkAttr.STRUCTFINAL))
        rt_finalize2(p, false, false); // class
    else if (attr & BlkAttr.APPENDABLE)
        finalize_array2(p, size); // array of structs
    else
        finalize_struct(p, size); // struct
}


/**
 * Resize dynamic arrays with 0 initializers.
 */
extern (C) void[] _d_arraysetlengthT(const TypeInfo ti, size_t newlength, void[]* p) @weak
in
{
    assert(ti);
    assert(!(*p).length || (*p).ptr);
}
do
{
    import core.stdc.string;
    import core.exception : onOutOfMemoryError;

    debug(PRINTF)
    {
        //printf("_d_arraysetlengthT(p = %p, sizeelem = %d, newlength = %d)\n", p, sizeelem, newlength);
        if (p)
            printf("\tp.ptr = %p, p.length = %d\n", (*p).ptr, (*p).length);
    }

    if (newlength <= (*p).length)
    {
        *p = (*p)[0 .. newlength];
        void* newdata = (*p).ptr;
        return newdata[0 .. newlength];
    }
    auto tinext = unqualify(ti.next);
    size_t sizeelem = tinext.tsize;

    /* Calculate: newsize = newlength * sizeelem
     */
    bool overflow = false;
    version (D_InlineAsm_X86)
    {
        size_t newsize = void;

        asm pure nothrow @nogc
        {
            mov EAX, newlength;
            mul EAX, sizeelem;
            mov newsize, EAX;
            setc overflow;
        }
    }
    else version (D_InlineAsm_X86_64)
    {
        size_t newsize = void;

        asm pure nothrow @nogc
        {
            mov RAX, newlength;
            mul RAX, sizeelem;
            mov newsize, RAX;
            setc overflow;
        }
    }
    else
    {
        import core.checkedint : mulu;
        const size_t newsize = mulu(sizeelem, newlength, overflow);
    }
    if (overflow)
    {
        onOutOfMemoryError();
        assert(0);
    }

    debug(PRINTF) printf("newsize = %x, newlength = %x\n", newsize, newlength);

    const isshared = typeid(ti) is typeid(TypeInfo_Shared);

    if (!(*p).ptr)
    {
        // pointer was null, need to allocate
        auto info = __arrayAlloc(newsize, ti, tinext);
        if (info.base is null)
        {
            onOutOfMemoryError();
            assert(0);
        }
        __setArrayAllocLength(info, newsize, isshared, tinext);
        if (!isshared)
            __insertBlkInfoCache(info, null);
        void* newdata = cast(byte *)__arrayStart(info);
        memset(newdata, 0, newsize);
        *p = newdata[0 .. newlength];
        return *p;
    }

    const size_t size = (*p).length * sizeelem;
    auto   bic = isshared ? null : __getBlkInfo((*p).ptr);
    auto   info = bic ? *bic : GC.query((*p).ptr);

    /* Attempt to extend past the end of the existing array.
     * If not possible, allocate new space for entire array and copy.
     */
    bool allocateAndCopy = false;
    void* newdata = (*p).ptr;
    if (info.base && (info.attr & BlkAttr.APPENDABLE))
    {
        // calculate the extent of the array given the base.
        const size_t offset = (*p).ptr - __arrayStart(info);
        if (info.size >= PAGESIZE)
        {
            // size of array is at the front of the block
            if (!__setArrayAllocLength(info, newsize + offset, isshared, tinext, size + offset))
            {
                // check to see if it failed because there is not
                // enough space
                if (*(cast(size_t*)info.base) == size + offset)
                {
                    // not enough space, try extending
                    auto extendsize = newsize + offset + LARGEPAD - info.size;
                    auto u = GC.extend(info.base, extendsize, extendsize);
                    if (u)
                    {
                        // extend worked, now try setting the length
                        // again.
                        info.size = u;
                        if (__setArrayAllocLength(info, newsize + offset, isshared, tinext, size + offset))
                        {
                            if (!isshared)
                                __insertBlkInfoCache(info, bic);
                            memset(newdata + size, 0, newsize - size);
                            *p = newdata[0 .. newlength];
                            return *p;
                        }
                    }
                }

                // couldn't do it, reallocate
                allocateAndCopy = true;
            }
            else if (!isshared && !bic)
            {
                // add this to the cache, it wasn't present previously.
                __insertBlkInfoCache(info, null);
            }
        }
        else if (!__setArrayAllocLength(info, newsize + offset, isshared, tinext, size + offset))
        {
            // could not resize in place
            allocateAndCopy = true;
        }
        else if (!isshared && !bic)
        {
            // add this to the cache, it wasn't present previously.
            __insertBlkInfoCache(info, null);
        }
    }
    else
        allocateAndCopy = true;

    if (allocateAndCopy)
    {
        if (info.base)
        {
            if (bic)
            {
                // a chance that flags have changed since this was cached, we should fetch the most recent flags
                info.attr = GC.getAttr(info.base) | BlkAttr.APPENDABLE;
            }
            info = __arrayAlloc(newsize, info, ti, tinext);
        }
        else
        {
            info = __arrayAlloc(newsize, ti, tinext);
        }

        if (info.base is null)
        {
            onOutOfMemoryError();
            assert(0);
        }

        __setArrayAllocLength(info, newsize, isshared, tinext);
        if (!isshared)
            __insertBlkInfoCache(info, bic);
        newdata = cast(byte *)__arrayStart(info);
        newdata[0 .. size] = (*p).ptr[0 .. size];

        /* Do postblit processing, as we are making a copy and the
         * original array may have references.
         * Note that this may throw.
         */
        __doPostblit(newdata, size, tinext);
    }

    // Zero the unused portion of the newly allocated space
    memset(newdata + size, 0, newsize - size);

    *p = newdata[0 .. newlength];
    return *p;
}


/**
 * Resize arrays for non-zero initializers.
 *      p               pointer to array lvalue to be updated
 *      newlength       new .length property of array
 *      sizeelem        size of each element of array
 *      initsize        size of initializer
 *      ...             initializer
 */
extern (C) void[] _d_arraysetlengthiT(const TypeInfo ti, size_t newlength, void[]* p) @weak
in
{
    assert(!(*p).length || (*p).ptr);
}
do
{
    import core.stdc.string;
    import core.exception : onOutOfMemoryError;

    debug(PRINTF)
    {
        //printf("_d_arraysetlengthiT(p = %p, sizeelem = %d, newlength = %d)\n", p, sizeelem, newlength);
        if (p)
            printf("\tp.ptr = %p, p.length = %d\n", (*p).ptr, (*p).length);
    }

    if (newlength <= (*p).length)
    {
        *p = (*p)[0 .. newlength];
        void* newdata = (*p).ptr;
        return newdata[0 .. newlength];
    }
    auto tinext = unqualify(ti.next);
    size_t sizeelem = tinext.tsize;

    /* Calculate: newsize = newlength * sizeelem
     */
    bool overflow = false;
    version (D_InlineAsm_X86)
    {
        size_t newsize = void;

        asm pure nothrow @nogc
        {
            mov EAX, newlength;
            mul EAX, sizeelem;
            mov newsize, EAX;
            setc overflow;
        }
    }
    else version (D_InlineAsm_X86_64)
    {
        size_t newsize = void;

        asm pure nothrow @nogc
        {
            mov RAX, newlength;
            mul RAX, sizeelem;
            mov newsize, RAX;
            setc overflow;
        }
    }
    else
    {
        import core.checkedint : mulu;
        const size_t newsize = mulu(sizeelem, newlength, overflow);
    }
    if (overflow)
    {
        onOutOfMemoryError();
        assert(0);
    }

    debug(PRINTF) printf("newsize = %x, newlength = %x\n", newsize, newlength);

    const isshared = typeid(ti) is typeid(TypeInfo_Shared);

    static void doInitialize(void *start, void *end, const void[] initializer)
    {
        if (initializer.length == 1)
        {
            memset(start, *(cast(ubyte*)initializer.ptr), end - start);
        }
        else
        {
            auto q = initializer.ptr;
            immutable initsize = initializer.length;
            for (; start < end; start += initsize)
            {
                memcpy(start, q, initsize);
            }
        }
    }

    if (!(*p).ptr)
    {
        // pointer was null, need to allocate
        auto info = __arrayAlloc(newsize, ti, tinext);
        if (info.base is null)
        {
            onOutOfMemoryError();
            assert(0);
        }
        __setArrayAllocLength(info, newsize, isshared, tinext);
        if (!isshared)
            __insertBlkInfoCache(info, null);
        void* newdata = cast(byte *)__arrayStart(info);
        doInitialize(newdata, newdata + newsize, tinext.initializer);
        *p = newdata[0 .. newlength];
        return *p;
    }

    const size_t size = (*p).length * sizeelem;
    auto   bic = isshared ? null : __getBlkInfo((*p).ptr);
    auto   info = bic ? *bic : GC.query((*p).ptr);

    /* Attempt to extend past the end of the existing array.
     * If not possible, allocate new space for entire array and copy.
     */
    bool allocateAndCopy = false;
    void* newdata = (*p).ptr;

    if (info.base && (info.attr & BlkAttr.APPENDABLE))
    {
        // calculate the extent of the array given the base.
        const size_t offset = (*p).ptr - __arrayStart(info);
        if (info.size >= PAGESIZE)
        {
            // size of array is at the front of the block
            if (!__setArrayAllocLength(info, newsize + offset, isshared, tinext, size + offset))
            {
                // check to see if it failed because there is not
                // enough space
                if (*(cast(size_t*)info.base) == size + offset)
                {
                    // not enough space, try extending
                    auto extendsize = newsize + offset + LARGEPAD - info.size;
                    auto u = GC.extend(info.base, extendsize, extendsize);
                    if (u)
                    {
                        // extend worked, now try setting the length
                        // again.
                        info.size = u;
                        if (__setArrayAllocLength(info, newsize + offset, isshared, tinext, size + offset))
                        {
                            if (!isshared)
                                __insertBlkInfoCache(info, bic);
                            doInitialize(newdata + size, newdata + newsize, tinext.initializer);
                            *p = newdata[0 .. newlength];
                            return *p;
                        }
                    }
                }

                // couldn't do it, reallocate
                allocateAndCopy = true;
            }
            else if (!isshared && !bic)
            {
                // add this to the cache, it wasn't present previously.
                __insertBlkInfoCache(info, null);
            }
        }
        else if (!__setArrayAllocLength(info, newsize + offset, isshared, tinext, size + offset))
        {
            // could not resize in place
            allocateAndCopy = true;
        }
        else if (!isshared && !bic)
        {
            // add this to the cache, it wasn't present previously.
            __insertBlkInfoCache(info, null);
        }
    }
    else
        allocateAndCopy = true;

    if (allocateAndCopy)
    {
        if (info.base)
        {
            if (bic)
            {
                // a chance that flags have changed since this was cached, we should fetch the most recent flags
                info.attr = GC.getAttr(info.base) | BlkAttr.APPENDABLE;
            }
            info = __arrayAlloc(newsize, info, ti, tinext);
        }
        else
        {
            info = __arrayAlloc(newsize, ti, tinext);
        }

        if (info.base is null)
        {
            onOutOfMemoryError();
            assert(0);
        }

        __setArrayAllocLength(info, newsize, isshared, tinext);
        if (!isshared)
            __insertBlkInfoCache(info, bic);
        newdata = cast(byte *)__arrayStart(info);
        newdata[0 .. size] = (*p).ptr[0 .. size];

        /* Do postblit processing, as we are making a copy and the
         * original array may have references.
         * Note that this may throw.
         */
        __doPostblit(newdata, size, tinext);
    }

    // Initialize the unused portion of the newly allocated space
    doInitialize(newdata + size, newdata + newsize, tinext.initializer);
    *p = newdata[0 .. newlength];
    return *p;
}

/**
 * Append y[] to array x[]
 */
extern (C) void[] _d_arrayappendT(const TypeInfo ti, ref byte[] x, byte[] y) @weak
{
    import core.stdc.string;
    auto length = x.length;
    auto tinext = unqualify(ti.next);
    auto sizeelem = tinext.tsize;              // array element size
    _d_arrayappendcTX(ti, x, y.length);
    memcpy(x.ptr + length * sizeelem, y.ptr, y.length * sizeelem);

    // do postblit
    __doPostblit(x.ptr + length * sizeelem, y.length * sizeelem, tinext);
    return x;
}


/**
 *
 */
size_t newCapacity(size_t newlength, size_t size)
{
    version (none)
    {
        size_t newcap = newlength * size;
    }
    else
    {
        /*
         * Better version by Dave Fladebo:
         * This uses an inverse logorithmic algorithm to pre-allocate a bit more
         * space for larger arrays.
         * - Arrays smaller than PAGESIZE bytes are left as-is, so for the most
         * common cases, memory allocation is 1 to 1. The small overhead added
         * doesn't affect small array perf. (it's virtually the same as
         * current).
         * - Larger arrays have some space pre-allocated.
         * - As the arrays grow, the relative pre-allocated space shrinks.
         * - The logorithmic algorithm allocates relatively more space for
         * mid-size arrays, making it very fast for medium arrays (for
         * mid-to-large arrays, this turns out to be quite a bit faster than the
         * equivalent realloc() code in C, on Linux at least. Small arrays are
         * just as fast as GCC).
         * - Perhaps most importantly, overall memory usage and stress on the GC
         * is decreased significantly for demanding environments.
         */
        size_t newcap = newlength * size;
        size_t newext = 0;

        if (newcap > PAGESIZE)
        {
            //double mult2 = 1.0 + (size / log10(pow(newcap * 2.0,2.0)));

            // redo above line using only integer math

            /*static int log2plus1(size_t c)
            {   int i;

                if (c == 0)
                    i = -1;
                else
                    for (i = 1; c >>= 1; i++)
                    {
                    }
                return i;
            }*/

            /* The following setting for mult sets how much bigger
             * the new size will be over what is actually needed.
             * 100 means the same size, more means proportionally more.
             * More means faster but more memory consumption.
             */
            //long mult = 100 + (1000L * size) / (6 * log2plus1(newcap));
            //long mult = 100 + (1000L * size) / log2plus1(newcap);
            import core.bitop;
            long mult = 100 + (1000L) / (bsr(newcap) + 1);

            // testing shows 1.02 for large arrays is about the point of diminishing return
            //
            // Commented out because the multipler will never be < 102.  In order for it to be < 2,
            // then 1000L / (bsr(x) + 1) must be > 2.  The highest bsr(x) + 1
            // could be is 65 (64th bit set), and 1000L / 64 is much larger
            // than 2.  We need 500 bit integers for 101 to be achieved :)
            /*if (mult < 102)
                mult = 102;*/
            /*newext = cast(size_t)((newcap * mult) / 100);
            newext -= newext % size;*/
            // This version rounds up to the next element, and avoids using
            // mod.
            newext = cast(size_t)((newlength * mult + 99) / 100) * size;
            debug(PRINTF) printf("mult: %2.2f, alloc: %2.2f\n",mult/100.0,newext / cast(double)size);
        }
        newcap = newext > newcap ? newext : newcap;
        debug(PRINTF) printf("newcap = %d, newlength = %d, size = %d\n", newcap, newlength, size);
    }
    return newcap;
}


/**************************************
 * Extend an array by n elements.
 * Caller must initialize those elements.
 */
extern (C)
byte[] _d_arrayappendcTX(const TypeInfo ti, return scope ref byte[] px, size_t n) @weak
{
    import core.stdc.string;
    // This is a cut&paste job from _d_arrayappendT(). Should be refactored.

    // only optimize array append where ti is not a shared type
    auto tinext = unqualify(ti.next);
    auto sizeelem = tinext.tsize;              // array element size
    auto isshared = typeid(ti) is typeid(TypeInfo_Shared);
    auto bic = isshared ? null : __getBlkInfo(px.ptr);
    auto info = bic ? *bic : GC.query(px.ptr);
    auto length = px.length;
    auto newlength = length + n;
    auto newsize = newlength * sizeelem;
    auto size = length * sizeelem;
    size_t newcap = void; // for scratch space

    // calculate the extent of the array given the base.
    size_t offset = cast(void*)px.ptr - __arrayStart(info);
    if (info.base && (info.attr & BlkAttr.APPENDABLE))
    {
        if (info.size >= PAGESIZE)
        {
            // size of array is at the front of the block
            if (!__setArrayAllocLength(info, newsize + offset, isshared, tinext, size + offset))
            {
                // check to see if it failed because there is not
                // enough space
                newcap = newCapacity(newlength, sizeelem);
                if (*(cast(size_t*)info.base) == size + offset)
                {
                    // not enough space, try extending
                    auto extendoffset = offset + LARGEPAD - info.size;
                    auto u = GC.extend(info.base, newsize + extendoffset, newcap + extendoffset);
                    if (u)
                    {
                        // extend worked, now try setting the length
                        // again.
                        info.size = u;
                        if (__setArrayAllocLength(info, newsize + offset, isshared, tinext, size + offset))
                        {
                            if (!isshared)
                                __insertBlkInfoCache(info, bic);
                            goto L1;
                        }
                    }
                }

                // couldn't do it, reallocate
                goto L2;
            }
            else if (!isshared && !bic)
            {
                __insertBlkInfoCache(info, null);
            }
        }
        else if (!__setArrayAllocLength(info, newsize + offset, isshared, tinext, size + offset))
        {
            // could not resize in place
            newcap = newCapacity(newlength, sizeelem);
            goto L2;
        }
        else if (!isshared && !bic)
        {
            __insertBlkInfoCache(info, null);
        }
    }
    else
    {
        // not appendable or is null
        newcap = newCapacity(newlength, sizeelem);
        if (info.base)
        {
    L2:
            if (bic)
            {
                // a chance that flags have changed since this was cached, we should fetch the most recent flags
                info.attr = GC.getAttr(info.base) | BlkAttr.APPENDABLE;
            }
            info = __arrayAlloc(newcap, info, ti, tinext);
        }
        else
        {
            info = __arrayAlloc(newcap, ti, tinext);
        }
        __setArrayAllocLength(info, newsize, isshared, tinext);
        if (!isshared)
            __insertBlkInfoCache(info, bic);
        auto newdata = cast(byte *)__arrayStart(info);
        memcpy(newdata, px.ptr, length * sizeelem);
        // do postblit processing
        __doPostblit(newdata, length * sizeelem, tinext);
        (cast(void **)(&px))[1] = newdata;
    }

  L1:
    *cast(size_t *)&px = newlength;
    return px;
}


/**
 * Append dchar to char[]
 */
extern (C) void[] _d_arrayappendcd(ref byte[] x, dchar c) @weak
{
    // c could encode into from 1 to 4 characters
    char[4] buf = void;
    char[] appendthis; // passed to appendT
    if (c <= 0x7F)
    {
        buf.ptr[0] = cast(char)c;
        appendthis = buf[0..1];
    }
    else if (c <= 0x7FF)
    {
        buf.ptr[0] = cast(char)(0xC0 | (c >> 6));
        buf.ptr[1] = cast(char)(0x80 | (c & 0x3F));
        appendthis = buf[0..2];
    }
    else if (c <= 0xFFFF)
    {
        buf.ptr[0] = cast(char)(0xE0 | (c >> 12));
        buf.ptr[1] = cast(char)(0x80 | ((c >> 6) & 0x3F));
        buf.ptr[2] = cast(char)(0x80 | (c & 0x3F));
        appendthis = buf[0..3];
    }
    else if (c <= 0x10FFFF)
    {
        buf.ptr[0] = cast(char)(0xF0 | (c >> 18));
        buf.ptr[1] = cast(char)(0x80 | ((c >> 12) & 0x3F));
        buf.ptr[2] = cast(char)(0x80 | ((c >> 6) & 0x3F));
        buf.ptr[3] = cast(char)(0x80 | (c & 0x3F));
        appendthis = buf[0..4];
    }
    else
    {
        import core.exception : onUnicodeError;
        onUnicodeError("Invalid UTF-8 sequence", 0);      // invalid utf character
    }

    //
    // TODO: This always assumes the array type is shared, because we do not
    // get a typeinfo from the compiler.  Assuming shared is the safest option.
    // Once the compiler is fixed, the proper typeinfo should be forwarded.
    //

    // Hack because _d_arrayappendT takes `x` as a reference
    auto xx = cast(shared(char)[])x;
    object._d_arrayappendTImpl!(shared(char)[])._d_arrayappendT(xx, cast(shared(char)[])appendthis);
    x = cast(byte[])xx;
    return x;
}

unittest
{
    import core.exception : UnicodeException;

    /* Using inline try {} catch {} blocks fails to catch the UnicodeException
     * thrown.
     * https://issues.dlang.org/show_bug.cgi?id=16799
     */
    static void assertThrown(T : Throwable = Exception, E)(lazy E expr, string msg)
    {
        try
            expr;
        catch (T e) {
            assert(e.msg == msg);
            return;
        }
    }

    static void f()
    {
        string ret;
        int i = -1;
        ret ~= i;
    }

    assertThrown!UnicodeException(f(), "Invalid UTF-8 sequence");
}


/**
 * Append dchar to wchar[]
 */
extern (C) void[] _d_arrayappendwd(ref byte[] x, dchar c) @weak
{
    // c could encode into from 1 to 2 w characters
    wchar[2] buf = void;
    wchar[] appendthis; // passed to appendT
    if (c <= 0xFFFF)
    {
        buf.ptr[0] = cast(wchar) c;
        appendthis = buf[0..1];
    }
    else
    {
        buf.ptr[0] = cast(wchar) ((((c - 0x10000) >> 10) & 0x3FF) + 0xD800);
        buf.ptr[1] = cast(wchar) (((c - 0x10000) & 0x3FF) + 0xDC00);
        appendthis = buf[0..2];
    }

    //
    // TODO: This always assumes the array type is shared, because we do not
    // get a typeinfo from the compiler.  Assuming shared is the safest option.
    // Once the compiler is fixed, the proper typeinfo should be forwarded.
    //

    auto xx = (cast(shared(wchar)*)x.ptr)[0 .. x.length];
    object._d_arrayappendTImpl!(shared(wchar)[])._d_arrayappendT(xx, cast(shared(wchar)[])appendthis);
    x = (cast(byte*)xx.ptr)[0 .. xx.length];
    return x;
}


/**
 *
 */
extern (C) byte[] _d_arraycatT(const TypeInfo ti, byte[] x, byte[] y) @weak
out (result)
{
    auto tinext = unqualify(ti.next);
    auto sizeelem = tinext.tsize;              // array element size
    debug(PRINTF) printf("_d_arraycatT(%d,%p ~ %d,%p sizeelem = %d => %d,%p)\n", x.length, x.ptr, y.length, y.ptr, sizeelem, result.length, result.ptr);
    assert(result.length == x.length + y.length);

    // If a postblit is involved, the contents of result might rightly differ
    // from the bitwise concatenation of x and y.
    if (!hasPostblit(tinext))
    {
        for (size_t i = 0; i < x.length * sizeelem; i++)
            assert((cast(byte*)result)[i] == (cast(byte*)x)[i]);
        for (size_t i = 0; i < y.length * sizeelem; i++)
            assert((cast(byte*)result)[x.length * sizeelem + i] == (cast(byte*)y)[i]);
    }

    size_t cap = GC.sizeOf(result.ptr);
    assert(!cap || cap > result.length * sizeelem);
}
do
{
    import core.stdc.string;
    version (none)
    {
        /* Cannot use this optimization because:
         *  char[] a, b;
         *  char c = 'a';
         *  b = a ~ c;
         *  c = 'b';
         * will change the contents of b.
         */
        if (!y.length)
            return x;
        if (!x.length)
            return y;
    }

    auto tinext = unqualify(ti.next);
    auto sizeelem = tinext.tsize;              // array element size
    debug(PRINTF) printf("_d_arraycatT(%d,%p ~ %d,%p sizeelem = %d)\n", x.length, x.ptr, y.length, y.ptr, sizeelem);
    size_t xlen = x.length * sizeelem;
    size_t ylen = y.length * sizeelem;
    size_t len  = xlen + ylen;

    if (!len)
        return null;

    auto info = __arrayAlloc(len, ti, tinext);
    byte* p = cast(byte*)__arrayStart(info);
    p[len] = 0; // guessing this is to optimize for null-terminated arrays?
    memcpy(p, x.ptr, xlen);
    memcpy(p + xlen, y.ptr, ylen);
    // do postblit processing
    __doPostblit(p, xlen + ylen, tinext);

    auto isshared = typeid(ti) is typeid(TypeInfo_Shared);
    __setArrayAllocLength(info, len, isshared, tinext);
    return p[0 .. x.length + y.length];
}


/**
 *
 */
extern (C) void[] _d_arraycatnTX(const TypeInfo ti, scope byte[][] arrs) @weak
{
    import core.stdc.string;

    size_t length;
    auto tinext = unqualify(ti.next);
    auto size = tinext.tsize;   // array element size

    foreach (b; arrs)
        length += b.length;

    if (!length)
        return null;

    auto allocsize = length * size;
    auto info = __arrayAlloc(allocsize, ti, tinext);
    auto isshared = typeid(ti) is typeid(TypeInfo_Shared);
    __setArrayAllocLength(info, allocsize, isshared, tinext);
    void *a = __arrayStart (info);

    size_t j = 0;
    foreach (b; arrs)
    {
        if (b.length)
        {
            memcpy(a + j, b.ptr, b.length * size);
            j += b.length * size;
        }
    }

    // do postblit processing
    __doPostblit(a, j, tinext);

    return a[0..length];
}


/**
 * Allocate the array, rely on the caller to do the initialization of the array.
 */
extern (C)
void* _d_arrayliteralTX(const TypeInfo ti, size_t length) @weak
{
    auto tinext = unqualify(ti.next);
    auto sizeelem = tinext.tsize;              // array element size
    void* result;

    debug(PRINTF) printf("_d_arrayliteralTX(sizeelem = %d, length = %d)\n", sizeelem, length);
    if (length == 0 || sizeelem == 0)
        result = null;
    else
    {
        auto allocsize = length * sizeelem;
        auto info = __arrayAlloc(allocsize, ti, tinext);
        auto isshared = typeid(ti) is typeid(TypeInfo_Shared);
        __setArrayAllocLength(info, allocsize, isshared, tinext);
        result = __arrayStart(info);
    }
    return result;
}


unittest
{
    int[] a;
    int[] b;
    int i;

    a = new int[3];
    a[0] = 1; a[1] = 2; a[2] = 3;
    b = a.dup;
    assert(b.length == 3);
    for (i = 0; i < 3; i++)
        assert(b[i] == i + 1);

    // test slice appending
    b = a[0..1];
    b ~= 4;
    for (i = 0; i < 3; i++)
        assert(a[i] == i + 1);

    // test reserving
    char[] arr = new char[4093];
    for (i = 0; i < arr.length; i++)
        arr[i] = cast(char)(i % 256);

    // note that these two commands used to cause corruption, which may not be
    // detected.
    arr.reserve(4094);
    auto arr2 = arr ~ "123";
    assert(arr2[0..arr.length] == arr);
    assert(arr2[arr.length..$] == "123");

    // test postblit on array concat, append, length, etc.
    static struct S
    {
        int x;
        int pad;
        this(this)
        {
            ++x;
        }
    }
    void testPostBlit(T)()
    {
        auto sarr = new T[1];
        debug(SENTINEL) {} else
            assert(sarr.capacity == 1);

        // length extend
        auto sarr2 = sarr;
        assert(sarr[0].x == 0);
        sarr2.length += 1;
        assert(sarr2[0].x == 1);
        assert(sarr[0].x == 0);

        // append
        T s;
        sarr2 = sarr;
        sarr2 ~= s;
        assert(sarr2[0].x == 1);
        assert(sarr2[1].x == 1);
        assert(sarr[0].x == 0);
        assert(s.x == 0);

        // concat
        sarr2 = sarr ~ sarr;
        assert(sarr2[0].x == 1);
        assert(sarr2[1].x == 1);
        assert(sarr[0].x == 0);

        // concat multiple (calls different method)
        sarr2 = sarr ~ sarr ~ sarr;
        assert(sarr2[0].x == 1);
        assert(sarr2[1].x == 1);
        assert(sarr2[2].x == 1);
        assert(sarr[0].x == 0);

        // reserve capacity
        sarr2 = sarr;
        sarr2.reserve(2);
        assert(sarr2[0].x == 1);
        assert(sarr[0].x == 0);
    }
    testPostBlit!(S)();
    testPostBlit!(const(S))();
}

// cannot define structs inside unit test block, or they become nested structs.
version (CoreUnittest)
{
    struct S1
    {
        int x = 5;
    }
    struct S2
    {
        int x;
        this(int x) {this.x = x;}
    }
    struct S3
    {
        int[4] x;
        this(int x)
        {this.x[] = x;}
    }
    struct S4
    {
        int *x;
    }

}

unittest
{
    auto s1 = new S1;
    assert(s1.x == 5);
    assert(GC.getAttr(s1) == BlkAttr.NO_SCAN);

    auto s2 = new S2(3);
    assert(s2.x == 3);
    assert(GC.getAttr(s2) == BlkAttr.NO_SCAN);

    auto s3 = new S3(1);
    assert(s3.x == [1,1,1,1]);
    assert(GC.getAttr(s3) == BlkAttr.NO_SCAN);
    debug(SENTINEL) {} else
        assert(GC.sizeOf(s3) == 16);

    auto s4 = new S4;
    assert(s4.x == null);
    assert(GC.getAttr(s4) == 0);
}

unittest
{
    // Bugzilla 3454 - Inconsistent flag setting in GC.realloc()
    static void test(size_t multiplier)
    {
        auto p = GC.malloc(8 * multiplier, 0);
        assert(GC.getAttr(p) == 0);

        // no move, set attr
        p = GC.realloc(p, 8 * multiplier + 5, BlkAttr.NO_SCAN);
        assert(GC.getAttr(p) == BlkAttr.NO_SCAN);

        // shrink, copy attr
        p = GC.realloc(p, 2 * multiplier, 0);
        assert(GC.getAttr(p) == BlkAttr.NO_SCAN);

        // extend, copy attr
        p = GC.realloc(p, 8 * multiplier, 0);
        assert(GC.getAttr(p) == BlkAttr.NO_SCAN);
    }
    test(16);
    test(1024 * 1024);
}

unittest
{
    import core.exception;
    try
    {
        size_t x = size_t.max;
        byte[] big_buf = new byte[x];
    }
    catch (OutOfMemoryError)
    {
    }
}

unittest
{
    // bugzilla 13854
    auto arr = new ubyte[PAGESIZE]; // ensure page size
    auto info1 = GC.query(arr.ptr);
    assert(info1.base !is arr.ptr); // offset is required for page size or larger

    auto arr2 = arr[0..1];
    assert(arr2.capacity == 0); // cannot append
    arr2 ~= 0; // add a byte
    assert(arr2.ptr !is arr.ptr); // reallocated
    auto info2 = GC.query(arr2.ptr);
    assert(info2.base is arr2.ptr); // no offset, the capacity is small.

    // do the same via setting length
    arr2 = arr[0..1];
    assert(arr2.capacity == 0);
    arr2.length += 1;
    assert(arr2.ptr !is arr.ptr); // reallocated
    info2 = GC.query(arr2.ptr);
    assert(info2.base is arr2.ptr); // no offset, the capacity is small.

    // do the same for char[] since we need a type with an initializer to test certain runtime functions
    auto carr = new char[PAGESIZE];
    info1 = GC.query(carr.ptr);
    assert(info1.base !is carr.ptr); // offset is required for page size or larger

    auto carr2 = carr[0..1];
    assert(carr2.capacity == 0); // cannot append
    carr2 ~= 0; // add a byte
    assert(carr2.ptr !is carr.ptr); // reallocated
    info2 = GC.query(carr2.ptr);
    assert(info2.base is carr2.ptr); // no offset, the capacity is small.

    // do the same via setting length
    carr2 = carr[0..1];
    assert(carr2.capacity == 0);
    carr2.length += 1;
    assert(carr2.ptr !is carr.ptr); // reallocated
    info2 = GC.query(carr2.ptr);
    assert(info2.base is carr2.ptr); // no offset, the capacity is small.
}

unittest
{
    // bugzilla 13878
    auto arr = new ubyte[1];
    auto info = GC.query(arr.ptr);
    assert(info.attr & BlkAttr.NO_SCAN); // should be NO_SCAN
    arr ~= 0; // ensure array is inserted into cache
    debug(SENTINEL) {} else
        assert(arr.ptr is info.base);
    GC.clrAttr(arr.ptr, BlkAttr.NO_SCAN); // remove the attribute
    auto arr2 = arr[0..1];
    assert(arr2.capacity == 0); // cannot append
    arr2 ~= 0;
    assert(arr2.ptr !is arr.ptr);
    info = GC.query(arr2.ptr);
    assert(!(info.attr & BlkAttr.NO_SCAN)); // ensure attribute sticks

    // do the same via setting length
    arr = new ubyte[1];
    arr ~= 0; // ensure array is inserted into cache
    GC.clrAttr(arr.ptr, BlkAttr.NO_SCAN); // remove the attribute
    arr2 = arr[0..1];
    assert(arr2.capacity == 0);
    arr2.length += 1;
    assert(arr2.ptr !is arr.ptr); // reallocated
    info = GC.query(arr2.ptr);
    assert(!(info.attr & BlkAttr.NO_SCAN)); // ensure attribute sticks

    // do the same for char[] since we need a type with an initializer to test certain runtime functions
    auto carr = new char[1];
    info = GC.query(carr.ptr);
    assert(info.attr & BlkAttr.NO_SCAN); // should be NO_SCAN
    carr ~= 0; // ensure array is inserted into cache
    debug(SENTINEL) {} else
        assert(carr.ptr is info.base);
    GC.clrAttr(carr.ptr, BlkAttr.NO_SCAN); // remove the attribute
    auto carr2 = carr[0..1];
    assert(carr2.capacity == 0); // cannot append
    carr2 ~= 0;
    assert(carr2.ptr !is carr.ptr);
    info = GC.query(carr2.ptr);
    assert(!(info.attr & BlkAttr.NO_SCAN)); // ensure attribute sticks

    // do the same via setting length
    carr = new char[1];
    carr ~= 0; // ensure array is inserted into cache
    GC.clrAttr(carr.ptr, BlkAttr.NO_SCAN); // remove the attribute
    carr2 = carr[0..1];
    assert(carr2.capacity == 0);
    carr2.length += 1;
    assert(carr2.ptr !is carr.ptr); // reallocated
    info = GC.query(carr2.ptr);
    assert(!(info.attr & BlkAttr.NO_SCAN)); // ensure attribute sticks
}

// test struct finalizers
debug(SENTINEL) {} else
deprecated unittest
{
    __gshared int dtorCount;
    static struct S1
    {
        int x;

        ~this()
        {
            dtorCount++;
        }
    }

    dtorCount = 0;
    S1* s1 = new S1;
    _d_delstruct(cast(void**)&s1, typeid(typeof(*s1))); // delete s1;
    assert(dtorCount == 1);

    dtorCount = 0;
    S1[] arr1 = new S1[7];
    _d_delarray_t(cast(void[]*)&arr1, typeid(typeof(arr1[0]))); // delete arr1;
    assert(dtorCount == 7);

    dtorCount = 0;
    S1* s2 = new S1;
    GC.runFinalizers((cast(char*)(typeid(S1).xdtor))[0..1]);
    assert(dtorCount == 1);
    GC.free(s2);

    dtorCount = 0;
    const(S1)* s3 = new const(S1);
    GC.runFinalizers((cast(char*)(typeid(S1).xdtor))[0..1]);
    assert(dtorCount == 1);
    GC.free(cast(void*)s3);

    dtorCount = 0;
    shared(S1)* s4 = new shared(S1);
    GC.runFinalizers((cast(char*)(typeid(S1).xdtor))[0..1]);
    assert(dtorCount == 1);
    GC.free(cast(void*)s4);

    dtorCount = 0;
    const(S1)[] carr1 = new const(S1)[5];
    BlkInfo blkinf1 = GC.query(carr1.ptr);
    GC.runFinalizers((cast(char*)(typeid(S1).xdtor))[0..1]);
    assert(dtorCount == 5);
    GC.free(blkinf1.base);

    dtorCount = 0;
    S1[] arr2 = new S1[10];
    arr2.length = 6;
    arr2.assumeSafeAppend;
    assert(dtorCount == 4); // destructors run explicitely?

    dtorCount = 0;
    BlkInfo blkinf = GC.query(arr2.ptr);
    GC.runFinalizers((cast(char*)(typeid(S1).xdtor))[0..1]);
    assert(dtorCount == 6);
    GC.free(blkinf.base);

    // associative arrays
    import rt.aaA : entryDtor;
    // throw away all existing AA entries with dtor
    GC.runFinalizers((cast(char*)(&entryDtor))[0..1]);

    S1[int] aa1;
    aa1[0] = S1(0);
    aa1[1] = S1(1);
    dtorCount = 0;
    aa1 = null;
    GC.runFinalizers((cast(char*)(&entryDtor))[0..1]);
    assert(dtorCount == 2);

    int[S1] aa2;
    aa2[S1(0)] = 0;
    aa2[S1(1)] = 1;
    aa2[S1(2)] = 2;
    dtorCount = 0;
    aa2 = null;
    GC.runFinalizers((cast(char*)(&entryDtor))[0..1]);
    assert(dtorCount == 3);

    S1[2][int] aa3;
    aa3[0] = [S1(0),S1(2)];
    aa3[1] = [S1(1),S1(3)];
    dtorCount = 0;
    aa3 = null;
    GC.runFinalizers((cast(char*)(&entryDtor))[0..1]);
    assert(dtorCount == 4);
}

// test struct dtor handling not causing false pointers
unittest
{
    // for 64-bit, allocate a struct of size 40
    static struct S
    {
        size_t[4] data;
        S* ptr4;
    }
    auto p1 = new S;
    auto p2 = new S;
    p2.ptr4 = p1;

    // a struct with a dtor with size 32, but the dtor will cause
    //  allocation to be larger by a pointer
    static struct A
    {
        size_t[3] data;
        S* ptr3;

        ~this() {}
    }

    GC.free(p2);
    auto a = new A; // reuse same memory
    if (cast(void*)a is cast(void*)p2) // reusage not guaranteed
    {
        auto ptr = cast(S**)(a + 1);
        assert(*ptr != p1); // still same data as p2.ptr4?
    }

    // small array
    static struct SArr
    {
        void*[10] data;
    }
    auto arr1 = new SArr;
    arr1.data[] = p1;
    GC.free(arr1);

    // allocates 2*A.sizeof + (void*).sizeof (TypeInfo) + 1 (array length)
    auto arr2 = new A[2];
    if (cast(void*)arr1 is cast(void*)arr2.ptr) // reusage not guaranteed
    {
        auto ptr = cast(S**)(arr2.ptr + 2);
        assert(*ptr != p1); // still same data as p2.ptr4?
    }

    // large array
    static struct LArr
    {
        void*[1023] data;
    }
    auto larr1 = new LArr;
    larr1.data[] = p1;
    GC.free(larr1);

    auto larr2 = new S[255];
    if (cast(void*)larr1 is cast(void*)larr2.ptr - LARGEPREFIX) // reusage not guaranteed
    {
        auto ptr = cast(S**)larr1;
        assert(ptr[0] != p1); // 16 bytes array header
        assert(ptr[1] != p1);
        version (D_LP64) {} else
        {
            assert(ptr[2] != p1);
            assert(ptr[3] != p1);
        }
    }
}

// test class finalizers exception handling
unittest
{
    bool test(E)()
    {
        import core.exception;
        static class C1
        {
            E exc;
            this(E exc) { this.exc = exc; }
            ~this() { throw exc; }
        }

        bool caught = false;
        C1 c = new C1(new E("test onFinalizeError"));
        try
        {
            GC.runFinalizers((cast(uint*)&C1.__dtor)[0..1]);
        }
        catch (FinalizeError err)
        {
            caught = true;
        }
        catch (E)
        {
        }
        GC.free(cast(void*)c);
        return caught;
    }

    assert( test!Exception);
    import core.exception : InvalidMemoryOperationError;
    assert(!test!InvalidMemoryOperationError);
}

// test struct finalizers exception handling
debug(SENTINEL) {} else
unittest
{
    bool test(E)()
    {
        import core.exception;
        static struct S1
        {
            E exc;
            ~this() { throw exc; }
        }

        bool caught = false;
        S1* s = new S1(new E("test onFinalizeError"));
        try
        {
            GC.runFinalizers((cast(char*)(typeid(S1).xdtor))[0..1]);
        }
        catch (FinalizeError err)
        {
            caught = true;
        }
        catch (E)
        {
        }
        GC.free(s);
        return caught;
    }

    assert( test!Exception);
    import core.exception : InvalidMemoryOperationError;
    assert(!test!InvalidMemoryOperationError);
}

// test bug 14126
unittest
{
    static struct S
    {
        S* thisptr;
        ~this() { assert(&this == thisptr); thisptr = null;}
    }

    S[] test14126 = new S[2048]; // make sure we allocate at least a PAGE
    foreach (ref s; test14126)
    {
        s.thisptr = &s;
    }
}