summaryrefslogtreecommitdiff
path: root/libphobos/libdruntime/core/simd.d
blob: 11a471183193f64289bb4ea9b01a83a35036ce8b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
// Written in the D programming language.

/**
 * Builtin SIMD intrinsics
 *
 * Source: $(DRUNTIMESRC core/_simd.d)
 *
 * Copyright: Copyright Digital Mars 2012-2020
 * License:   $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
 * Authors:   $(HTTP digitalmars.com, Walter Bright),
 * Source:    $(DRUNTIMESRC core/_simd.d)
 */

module core.simd;

pure:
nothrow:
@safe:
@nogc:

/*******************************
 * Create a vector type.
 *
 * Parameters:
 *      T = one of double[2], float[4], void[16], byte[16], ubyte[16],
 *      short[8], ushort[8], int[4], uint[4], long[2], ulong[2].
 *      For 256 bit vectors,
 *      one of double[4], float[8], void[32], byte[32], ubyte[32],
 *      short[16], ushort[16], int[8], uint[8], long[4], ulong[4]
 */

template Vector(T)
{
    /* __vector is compiler magic, hide it behind a template.
     * The compiler will reject T's that don't work.
     */
    alias __vector(T) Vector;
}

/* Handy aliases
 */
static if (is(Vector!(void[8])))    alias Vector!(void[8])    void8;        ///
static if (is(Vector!(double[1])))  alias Vector!(double[1])  double1;      ///
static if (is(Vector!(float[2])))   alias Vector!(float[2])   float2;       ///
static if (is(Vector!(byte[8])))    alias Vector!(byte[8])    byte8;        ///
static if (is(Vector!(ubyte[8])))   alias Vector!(ubyte[8])   ubyte8;       ///
static if (is(Vector!(short[4])))   alias Vector!(short[4])   short4;       ///
static if (is(Vector!(ushort[4])))  alias Vector!(ushort[4])  ushort4;      ///
static if (is(Vector!(int[2])))     alias Vector!(int[2])     int2;         ///
static if (is(Vector!(uint[2])))    alias Vector!(uint[2])    uint2;        ///
static if (is(Vector!(long[1])))    alias Vector!(long[1])    long1;        ///
static if (is(Vector!(ulong[1])))   alias Vector!(ulong[1])   ulong1;       ///

static if (is(Vector!(void[16])))   alias Vector!(void[16])   void16;       ///
static if (is(Vector!(double[2])))  alias Vector!(double[2])  double2;      ///
static if (is(Vector!(float[4])))   alias Vector!(float[4])   float4;       ///
static if (is(Vector!(byte[16])))   alias Vector!(byte[16])   byte16;       ///
static if (is(Vector!(ubyte[16])))  alias Vector!(ubyte[16])  ubyte16;      ///
static if (is(Vector!(short[8])))   alias Vector!(short[8])   short8;       ///
static if (is(Vector!(ushort[8])))  alias Vector!(ushort[8])  ushort8;      ///
static if (is(Vector!(int[4])))     alias Vector!(int[4])     int4;         ///
static if (is(Vector!(uint[4])))    alias Vector!(uint[4])    uint4;        ///
static if (is(Vector!(long[2])))    alias Vector!(long[2])    long2;        ///
static if (is(Vector!(ulong[2])))   alias Vector!(ulong[2])   ulong2;       ///

static if (is(Vector!(void[32])))   alias Vector!(void[32])   void32;       ///
static if (is(Vector!(double[4])))  alias Vector!(double[4])  double4;      ///
static if (is(Vector!(float[8])))   alias Vector!(float[8])   float8;       ///
static if (is(Vector!(byte[32])))   alias Vector!(byte[32])   byte32;       ///
static if (is(Vector!(ubyte[32])))  alias Vector!(ubyte[32])  ubyte32;      ///
static if (is(Vector!(short[16])))  alias Vector!(short[16])  short16;      ///
static if (is(Vector!(ushort[16]))) alias Vector!(ushort[16]) ushort16;     ///
static if (is(Vector!(int[8])))     alias Vector!(int[8])     int8;         ///
static if (is(Vector!(uint[8])))    alias Vector!(uint[8])    uint8;        ///
static if (is(Vector!(long[4])))    alias Vector!(long[4])    long4;        ///
static if (is(Vector!(ulong[4])))   alias Vector!(ulong[4])   ulong4;       ///

static if (is(Vector!(void[64])))   alias Vector!(void[64])   void64;       ///
static if (is(Vector!(double[8])))  alias Vector!(double[8])  double8;      ///
static if (is(Vector!(float[16])))  alias Vector!(float[16])  float16;      ///
static if (is(Vector!(byte[64])))   alias Vector!(byte[64])   byte64;       ///
static if (is(Vector!(ubyte[64])))  alias Vector!(ubyte[64])  ubyte64;      ///
static if (is(Vector!(short[32])))  alias Vector!(short[32])  short32;      ///
static if (is(Vector!(ushort[32]))) alias Vector!(ushort[32]) ushort32;     ///
static if (is(Vector!(int[16])))    alias Vector!(int[16])    int16;        ///
static if (is(Vector!(uint[16])))   alias Vector!(uint[16])   uint16;       ///
static if (is(Vector!(long[8])))    alias Vector!(long[8])    long8;        ///
static if (is(Vector!(ulong[8])))   alias Vector!(ulong[8])   ulong8;       ///

version (D_SIMD)
{
    /** XMM opcodes that conform to the following:
    *
    *  opcode xmm1,xmm2/mem
    *
    * and do not have side effects (i.e. do not write to memory).
    */
    enum XMM
    {
        ADDSS = 0xF30F58,
        ADDSD = 0xF20F58,
        ADDPS = 0x000F58,
        ADDPD = 0x660F58,
        PADDB = 0x660FFC,
        PADDW = 0x660FFD,
        PADDD = 0x660FFE,
        PADDQ = 0x660FD4,

        SUBSS = 0xF30F5C,
        SUBSD = 0xF20F5C,
        SUBPS = 0x000F5C,
        SUBPD = 0x660F5C,
        PSUBB = 0x660FF8,
        PSUBW = 0x660FF9,
        PSUBD = 0x660FFA,
        PSUBQ = 0x660FFB,

        MULSS = 0xF30F59,
        MULSD = 0xF20F59,
        MULPS = 0x000F59,
        MULPD = 0x660F59,
        PMULLW = 0x660FD5,

        DIVSS = 0xF30F5E,
        DIVSD = 0xF20F5E,
        DIVPS = 0x000F5E,
        DIVPD = 0x660F5E,

        PAND  = 0x660FDB,
        POR   = 0x660FEB,

        UCOMISS = 0x000F2E,
        UCOMISD = 0x660F2E,

        XORPS = 0x000F57,
        XORPD = 0x660F57,

        // Use STO and LOD instead of MOV to distinguish the direction
        // (Destination is first operand, Source is second operand)
        STOSS  = 0xF30F11,        /// MOVSS xmm1/m32, xmm2
        STOSD  = 0xF20F11,        /// MOVSD xmm1/m64, xmm2
        STOAPS = 0x000F29,        /// MOVAPS xmm2/m128, xmm1
        STOAPD = 0x660F29,        /// MOVAPD xmm2/m128, xmm1
        STODQA = 0x660F7F,        /// MOVDQA xmm2/m128, xmm1
        STOD   = 0x660F7E,        /// MOVD reg/mem64, xmm   66 0F 7E /r
        STOQ   = 0x660FD6,        /// MOVQ xmm2/m64, xmm1

        LODSS  = 0xF30F10,        /// MOVSS xmm1, xmm2/m32
        LODSD  = 0xF20F10,        /// MOVSD xmm1, xmm2/m64
        LODAPS = 0x000F28,        /// MOVAPS xmm1, xmm2/m128
        LODAPD = 0x660F28,        /// MOVAPD xmm1, xmm2/m128
        LODDQA = 0x660F6F,        /// MOVDQA xmm1, xmm2/m128
        LODD   = 0x660F6E,        /// MOVD xmm, reg/mem64   66 0F 6E /r
        LODQ   = 0xF30F7E,        /// MOVQ xmm1, xmm2/m64

        LODDQU   = 0xF30F6F,      /// MOVDQU xmm1, xmm2/mem128  F3 0F 6F /r
        STODQU   = 0xF30F7F,      /// MOVDQU xmm1/mem128, xmm2  F3 0F 7F /r
        MOVDQ2Q  = 0xF20FD6,      /// MOVDQ2Q mmx, xmm          F2 0F D6 /r
        MOVHLPS  = 0x0F12,        /// MOVHLPS xmm1, xmm2        0F 12 /r
        LODHPD   = 0x660F16,      /// MOVHPD xmm1, m64
        STOHPD   = 0x660F17,      /// MOVHPD mem64, xmm1        66 0F 17 /r
        LODHPS   = 0x0F16,        /// MOVHPS xmm1, m64
        STOHPS   = 0x0F17,        /// MOVHPS m64, xmm1
        MOVLHPS  = 0x0F16,        /// MOVLHPS xmm1, xmm2
        LODLPD   = 0x660F12,      /// MOVLPD xmm1, m64
        STOLPD   = 0x660F13,      /// MOVLPD m64, xmm1
        LODLPS   = 0x0F12,        /// MOVLPS xmm1, m64
        STOLPS   = 0x0F13,        /// MOVLPS m64, xmm1
        MOVMSKPD = 0x660F50,      /// MOVMSKPD reg, xmm
        MOVMSKPS = 0x0F50,        /// MOVMSKPS reg, xmm
        MOVNTDQ  = 0x660FE7,      /// MOVNTDQ m128, xmm1
        MOVNTI   = 0x0FC3,        /// MOVNTI m32, r32
        MOVNTPD  = 0x660F2B,      /// MOVNTPD m128, xmm1
        MOVNTPS  = 0x0F2B,        /// MOVNTPS m128, xmm1
        MOVNTQ   = 0x0FE7,        /// MOVNTQ m64, mm
        MOVQ2DQ  = 0xF30FD6,      /// MOVQ2DQ
        LODUPD   = 0x660F10,      /// MOVUPD xmm1, xmm2/m128
        STOUPD   = 0x660F11,      /// MOVUPD xmm2/m128, xmm1
        LODUPS   = 0x0F10,        /// MOVUPS xmm1, xmm2/m128
        STOUPS   = 0x0F11,        /// MOVUPS xmm2/m128, xmm1

        PACKSSDW = 0x660F6B,
        PACKSSWB = 0x660F63,
        PACKUSWB = 0x660F67,
        PADDSB = 0x660FEC,
        PADDSW = 0x660FED,
        PADDUSB = 0x660FDC,
        PADDUSW = 0x660FDD,
        PANDN = 0x660FDF,
        PCMPEQB = 0x660F74,
        PCMPEQD = 0x660F76,
        PCMPEQW = 0x660F75,
        PCMPGTB = 0x660F64,
        PCMPGTD = 0x660F66,
        PCMPGTW = 0x660F65,
        PMADDWD = 0x660FF5,
        PSLLW = 0x660FF1,
        PSLLD = 0x660FF2,
        PSLLQ = 0x660FF3,
        PSRAW = 0x660FE1,
        PSRAD = 0x660FE2,
        PSRLW = 0x660FD1,
        PSRLD = 0x660FD2,
        PSRLQ = 0x660FD3,
        PSUBSB = 0x660FE8,
        PSUBSW = 0x660FE9,
        PSUBUSB = 0x660FD8,
        PSUBUSW = 0x660FD9,
        PUNPCKHBW = 0x660F68,
        PUNPCKHDQ = 0x660F6A,
        PUNPCKHWD = 0x660F69,
        PUNPCKLBW = 0x660F60,
        PUNPCKLDQ = 0x660F62,
        PUNPCKLWD = 0x660F61,
        PXOR = 0x660FEF,
        ANDPD = 0x660F54,
        ANDPS = 0x0F54,
        ANDNPD = 0x660F55,
        ANDNPS = 0x0F55,
        CMPPS = 0x0FC2,
        CMPPD = 0x660FC2,
        CMPSD = 0xF20FC2,
        CMPSS = 0xF30FC2,
        COMISD = 0x660F2F,
        COMISS = 0x0F2F,
        CVTDQ2PD = 0xF30FE6,
        CVTDQ2PS = 0x0F5B,
        CVTPD2DQ = 0xF20FE6,
        CVTPD2PI = 0x660F2D,
        CVTPD2PS = 0x660F5A,
        CVTPI2PD = 0x660F2A,
        CVTPI2PS = 0x0F2A,
        CVTPS2DQ = 0x660F5B,
        CVTPS2PD = 0x0F5A,
        CVTPS2PI = 0x0F2D,
        CVTSD2SI = 0xF20F2D,
        CVTSD2SS = 0xF20F5A,
        CVTSI2SD = 0xF20F2A,
        CVTSI2SS = 0xF30F2A,
        CVTSS2SD = 0xF30F5A,
        CVTSS2SI = 0xF30F2D,
        CVTTPD2PI = 0x660F2C,
        CVTTPD2DQ = 0x660FE6,
        CVTTPS2DQ = 0xF30F5B,
        CVTTPS2PI = 0x0F2C,
        CVTTSD2SI = 0xF20F2C,
        CVTTSS2SI = 0xF30F2C,
        MASKMOVDQU = 0x660FF7,
        MASKMOVQ = 0x0FF7,
        MAXPD = 0x660F5F,
        MAXPS = 0x0F5F,
        MAXSD = 0xF20F5F,
        MAXSS = 0xF30F5F,
        MINPD = 0x660F5D,
        MINPS = 0x0F5D,
        MINSD = 0xF20F5D,
        MINSS = 0xF30F5D,
        ORPD = 0x660F56,
        ORPS = 0x0F56,
        PAVGB = 0x660FE0,
        PAVGW = 0x660FE3,
        PMAXSW = 0x660FEE,
        //PINSRW = 0x660FC4,
        PMAXUB = 0x660FDE,
        PMINSW = 0x660FEA,
        PMINUB = 0x660FDA,
        //PMOVMSKB = 0x660FD7,
        PMULHUW = 0x660FE4,
        PMULHW = 0x660FE5,
        PMULUDQ = 0x660FF4,
        PSADBW = 0x660FF6,
        PUNPCKHQDQ = 0x660F6D,
        PUNPCKLQDQ = 0x660F6C,
        RCPPS = 0x0F53,
        RCPSS = 0xF30F53,
        RSQRTPS = 0x0F52,
        RSQRTSS = 0xF30F52,
        SQRTPD = 0x660F51,
        SHUFPD = 0x660FC6,
        SHUFPS = 0x0FC6,
        SQRTPS = 0x0F51,
        SQRTSD = 0xF20F51,
        SQRTSS = 0xF30F51,
        UNPCKHPD = 0x660F15,
        UNPCKHPS = 0x0F15,
        UNPCKLPD = 0x660F14,
        UNPCKLPS = 0x0F14,

        PSHUFD = 0x660F70,
        PSHUFHW = 0xF30F70,
        PSHUFLW = 0xF20F70,
        PSHUFW = 0x0F70,
        PSLLDQ = 0x07660F73,
        PSRLDQ = 0x03660F73,

        //PREFETCH = 0x0F18,

        // SSE3 Pentium 4 (Prescott)

        ADDSUBPD = 0x660FD0,
        ADDSUBPS = 0xF20FD0,
        HADDPD   = 0x660F7C,
        HADDPS   = 0xF20F7C,
        HSUBPD   = 0x660F7D,
        HSUBPS   = 0xF20F7D,
        MOVDDUP  = 0xF20F12,
        MOVSHDUP = 0xF30F16,
        MOVSLDUP = 0xF30F12,
        LDDQU    = 0xF20FF0,
        MONITOR  = 0x0F01C8,
        MWAIT    = 0x0F01C9,

        // SSSE3
        PALIGNR = 0x660F3A0F,
        PHADDD = 0x660F3802,
        PHADDW = 0x660F3801,
        PHADDSW = 0x660F3803,
        PABSB = 0x660F381C,
        PABSD = 0x660F381E,
        PABSW = 0x660F381D,
        PSIGNB = 0x660F3808,
        PSIGND = 0x660F380A,
        PSIGNW = 0x660F3809,
        PSHUFB = 0x660F3800,
        PMADDUBSW = 0x660F3804,
        PMULHRSW = 0x660F380B,
        PHSUBD = 0x660F3806,
        PHSUBW = 0x660F3805,
        PHSUBSW = 0x660F3807,

        // SSE4.1

        BLENDPD   = 0x660F3A0D,
        BLENDPS   = 0x660F3A0C,
        BLENDVPD  = 0x660F3815,
        BLENDVPS  = 0x660F3814,
        DPPD      = 0x660F3A41,
        DPPS      = 0x660F3A40,
        EXTRACTPS = 0x660F3A17,
        INSERTPS  = 0x660F3A21,
        MPSADBW   = 0x660F3A42,
        PBLENDVB  = 0x660F3810,
        PBLENDW   = 0x660F3A0E,
        PEXTRD    = 0x660F3A16,
        PEXTRQ    = 0x660F3A16,
        PINSRB    = 0x660F3A20,
        PINSRD    = 0x660F3A22,
        PINSRQ    = 0x660F3A22,

        MOVNTDQA = 0x660F382A,
        PACKUSDW = 0x660F382B,
        PCMPEQQ = 0x660F3829,
        PEXTRB = 0x660F3A14,
        PHMINPOSUW = 0x660F3841,
        PMAXSB = 0x660F383C,
        PMAXSD = 0x660F383D,
        PMAXUD = 0x660F383F,
        PMAXUW = 0x660F383E,
        PMINSB = 0x660F3838,
        PMINSD = 0x660F3839,
        PMINUD = 0x660F383B,
        PMINUW = 0x660F383A,
        PMOVSXBW = 0x660F3820,
        PMOVSXBD = 0x660F3821,
        PMOVSXBQ = 0x660F3822,
        PMOVSXWD = 0x660F3823,
        PMOVSXWQ = 0x660F3824,
        PMOVSXDQ = 0x660F3825,
        PMOVZXBW = 0x660F3830,
        PMOVZXBD = 0x660F3831,
        PMOVZXBQ = 0x660F3832,
        PMOVZXWD = 0x660F3833,
        PMOVZXWQ = 0x660F3834,
        PMOVZXDQ = 0x660F3835,
        PMULDQ   = 0x660F3828,
        PMULLD   = 0x660F3840,
        PTEST    = 0x660F3817,

        ROUNDPD = 0x660F3A09,
        ROUNDPS = 0x660F3A08,
        ROUNDSD = 0x660F3A0B,
        ROUNDSS = 0x660F3A0A,

        // SSE4.2
        PCMPESTRI  = 0x660F3A61,
        PCMPESTRM  = 0x660F3A60,
        PCMPISTRI  = 0x660F3A63,
        PCMPISTRM  = 0x660F3A62,
        PCMPGTQ    = 0x660F3837,
        //CRC32

        // SSE4a (AMD only)
        // EXTRQ,INSERTQ,MOVNTSD,MOVNTSS

        // POPCNT and LZCNT (have their own CPUID bits)
        POPCNT     = 0xF30FB8,
        // LZCNT
    }

    /**
    * Generate two operand instruction with XMM 128 bit operands.
    *
    * This is a compiler magic function - it doesn't behave like
    * regular D functions.
    *
    * Parameters:
    *      opcode = any of the XMM opcodes; it must be a compile time constant
    *      op1    = first operand
    *      op2    = second operand
    * Returns:
    *      result of opcode
    */
    pure @safe void16 __simd(XMM opcode, void16 op1, void16 op2);

    ///
    unittest
    {
        float4 a;
        a = cast(float4)__simd(XMM.PXOR, a, a);
    }

    /**
    * Unary SIMD instructions.
    */
    pure @safe void16 __simd(XMM opcode, void16 op1);
    pure @safe void16 __simd(XMM opcode, double d);   ///
    pure @safe void16 __simd(XMM opcode, float f);    ///

    ///
    unittest
    {
        float4 a;
        a = cast(float4)__simd(XMM.LODSS, a);
    }

    /****
    * For instructions:
    * CMPPD, CMPSS, CMPSD, CMPPS,
    * PSHUFD, PSHUFHW, PSHUFLW,
    * BLENDPD, BLENDPS, DPPD, DPPS,
    * MPSADBW, PBLENDW,
    * ROUNDPD, ROUNDPS, ROUNDSD, ROUNDSS
    * Parameters:
    *      opcode = any of the above XMM opcodes; it must be a compile time constant
    *      op1    = first operand
    *      op2    = second operand
    *      imm8   = third operand; must be a compile time constant
    * Returns:
    *      result of opcode
    */
    pure @safe void16 __simd(XMM opcode, void16 op1, void16 op2, ubyte imm8);

    ///
    unittest
    {
        float4 a;
        a = cast(float4)__simd(XMM.CMPPD, a, a, 0x7A);
    }

    /***
    * For instructions with the imm8 version:
    * PSLLD, PSLLQ, PSLLW, PSRAD, PSRAW, PSRLD, PSRLQ, PSRLW,
    * PSRLDQ, PSLLDQ
    * Parameters:
    *      opcode = any of the XMM opcodes; it must be a compile time constant
    *      op1    = first operand
    *      imm8   = second operand; must be a compile time constant
    * Returns:
    *      result of opcode
    */
    pure @safe void16 __simd_ib(XMM opcode, void16 op1, ubyte imm8);

    ///
    unittest
    {
        float4 a;
        a = cast(float4) __simd_ib(XMM.PSRLQ, a, 0x7A);
    }

    /*****
    * For "store" operations of the form:
    *    op1 op= op2
    * Returns:
    *    op2
    * These cannot be marked as pure, as semantic() doesn't check them.
    */
    @safe void16 __simd_sto(XMM opcode, void16 op1, void16 op2);
    @safe void16 __simd_sto(XMM opcode, double op1, void16 op2); ///
    @safe void16 __simd_sto(XMM opcode, float op1, void16 op2);  ///

    ///
    unittest
    {
        void16 a;
        float f = 1;
        double d = 1;

        cast(void)__simd_sto(XMM.STOUPS, a, a);
        cast(void)__simd_sto(XMM.STOUPS, f, a);
        cast(void)__simd_sto(XMM.STOUPS, d, a);
    }

    /* The following use overloading to ensure correct typing.
    * Compile with inlining on for best performance.
    */

    pure @safe short8 pcmpeq()(short8 v1, short8 v2)
    {
        return cast(short8)__simd(XMM.PCMPEQW, v1, v2);
    }

    pure @safe ushort8 pcmpeq()(ushort8 v1, ushort8 v2)
    {
        return cast(ushort8)__simd(XMM.PCMPEQW, v1, v2);
    }

    /*********************
    * Emit prefetch instruction.
    * Params:
    *    address = address to be prefetched
    *    writeFetch = true for write fetch, false for read fetch
    *    locality = 0..3 (0 meaning least local, 3 meaning most local)
    * Note:
    *    The Intel mappings are:
    *    $(TABLE
    *    $(THEAD writeFetch, locality, Instruction)
    *    $(TROW false, 0, prefetchnta)
    *    $(TROW false, 1, prefetch2)
    *    $(TROW false, 2, prefetch1)
    *    $(TROW false, 3, prefetch0)
    *    $(TROW true, 0, prefetchw)
    *    $(TROW true, 1, prefetchw)
    *    $(TROW true, 2, prefetchw)
    *    $(TROW true, 3, prefetchw)
    *    )
    */
    void prefetch(bool writeFetch, ubyte locality)(const(void)* address)
    {
        static if (writeFetch)
            __prefetch(address, 4);
        else static if (locality < 4)
            __prefetch(address, 3 - locality);
        else
            static assert(0, "0..3 expected for locality");
    }

    private void __prefetch(const(void*) address, ubyte encoding);

    /*************************************
    * Load unaligned vector from address.
    * This is a compiler intrinsic.
    * Params:
    *    p = pointer to vector
    * Returns:
    *    vector
    */

    V loadUnaligned(V)(const V* p)
        if (is(V == void16) ||
            is(V == byte16) ||
            is(V == ubyte16) ||
            is(V == short8) ||
            is(V == ushort8) ||
            is(V == int4) ||
            is(V == uint4) ||
            is(V == long2) ||
            is(V == ulong2) ||
            is(V == double2) ||
            is(V == float4))
    {
        pragma(inline, true);
        static if (is(V == double2))
            return cast(V)__simd(XMM.LODUPD, *cast(const void16*)p);
        else static if (is(V == float4))
            return cast(V)__simd(XMM.LODUPS, *cast(const void16*)p);
        else
            return cast(V)__simd(XMM.LODDQU, *cast(const void16*)p);
    }

    @system
    unittest
    {
        // Memory to load into the vector:
        // Should have enough data to test all 16-byte alignments, and still
        // have room for a 16-byte vector
        ubyte[32] data;
        foreach (i; 0..data.length)
        {
            data[i] = cast(ubyte)i;
        }

        // to test all alignments from 1 ~ 16
        foreach (i; 0..16)
        {
            ubyte* d = &data[i];

            void test(T)()
            {
                // load the data
                T v = loadUnaligned(cast(T*)d);

                // check that the data was loaded correctly
                ubyte* ptrToV = cast(ubyte*)&v;
                foreach (j; 0..T.sizeof)
                {
                    assert(ptrToV[j] == d[j]);
                }
            }

            test!void16();
            test!byte16();
            test!ubyte16();
            test!short8();
            test!ushort8();
            test!int4();
            test!uint4();
            test!long2();
            test!ulong2();
            test!double2();
            test!float4();
        }
    }

    /*************************************
    * Store vector to unaligned address.
    * This is a compiler intrinsic.
    * Params:
    *    p = pointer to vector
    *    value = value to store
    * Returns:
    *    value
    */

    V storeUnaligned(V)(V* p, V value)
        if (is(V == void16) ||
            is(V == byte16) ||
            is(V == ubyte16) ||
            is(V == short8) ||
            is(V == ushort8) ||
            is(V == int4) ||
            is(V == uint4) ||
            is(V == long2) ||
            is(V == ulong2) ||
            is(V == double2) ||
            is(V == float4))
    {
        pragma(inline, true);
        static if (is(V == double2))
            return cast(V)__simd_sto(XMM.STOUPD, *cast(void16*)p, value);
        else static if (is(V == float4))
            return cast(V)__simd_sto(XMM.STOUPS, *cast(void16*)p, value);
        else
            return cast(V)__simd_sto(XMM.STODQU, *cast(void16*)p, value);
    }

    @system
    unittest
    {
        // Memory to store the vector to:
        // Should have enough data to test all 16-byte alignments, and still
        // have room for a 16-byte vector
        ubyte[32] data;

        // to test all alignments from 1 ~ 16
        foreach (i; 0..16)
        {
            ubyte* d = &data[i];

            void test(T)()
            {
                T v;

                // populate v` with data
                ubyte* ptrToV = cast(ubyte*)&v;
                foreach (j; 0..T.sizeof)
                {
                    ptrToV[j] = cast(ubyte)j;
                }

                // store `v` to location pointed to by `d`
                storeUnaligned(cast(T*)d, v);

                // check that the the data was stored correctly
                foreach (j; 0..T.sizeof)
                {
                    assert(ptrToV[j] == d[j]);
                }
            }

            test!void16();
            test!byte16();
            test!ubyte16();
            test!short8();
            test!ushort8();
            test!int4();
            test!uint4();
            test!long2();
            test!ulong2();
            test!double2();
            test!float4();
        }
    }
}