summaryrefslogtreecommitdiff
path: root/gcc/gimple-range-fold.cc
blob: dfacf6f14dc3e162bf21be69cf69e5dbada71721 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
/* Code for GIMPLE range related routines.
   Copyright (C) 2019-2022 Free Software Foundation, Inc.
   Contributed by Andrew MacLeod <amacleod@redhat.com>
   and Aldy Hernandez <aldyh@redhat.com>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "insn-codes.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "optabs-tree.h"
#include "gimple-fold.h"
#include "wide-int.h"
#include "fold-const.h"
#include "case-cfn-macros.h"
#include "omp-general.h"
#include "cfgloop.h"
#include "tree-ssa-loop.h"
#include "tree-scalar-evolution.h"
#include "langhooks.h"
#include "vr-values.h"
#include "range.h"
#include "value-query.h"
#include "range-op.h"
#include "gimple-range.h"
// Construct a fur_source, and set the m_query field.

fur_source::fur_source (range_query *q)
{
  if (q)
    m_query = q;
  else if (cfun)
    m_query = get_range_query (cfun);
  else
    m_query = get_global_range_query ();
  m_gori = NULL;
}

// Invoke range_of_expr on EXPR.

bool
fur_source::get_operand (irange &r, tree expr)
{
  return m_query->range_of_expr (r, expr);
}

// Evaluate EXPR for this stmt as a PHI argument on edge E.  Use the current
// range_query to get the range on the edge.

bool
fur_source::get_phi_operand (irange &r, tree expr, edge e)
{
  return m_query->range_on_edge (r, e, expr);
}

// Default is no relation.

relation_kind
fur_source::query_relation (tree op1 ATTRIBUTE_UNUSED,
			    tree op2 ATTRIBUTE_UNUSED)
{
  return VREL_NONE;
}

// Default registers nothing.

void
fur_source::register_relation (gimple *s ATTRIBUTE_UNUSED,
			       relation_kind k ATTRIBUTE_UNUSED,
			       tree op1 ATTRIBUTE_UNUSED,
			       tree op2 ATTRIBUTE_UNUSED)
{
}

// Default registers nothing.

void
fur_source::register_relation (edge e ATTRIBUTE_UNUSED,
			       relation_kind k ATTRIBUTE_UNUSED,
			       tree op1 ATTRIBUTE_UNUSED,
			       tree op2 ATTRIBUTE_UNUSED)
{
}

// This version of fur_source will pick a range up off an edge.

class fur_edge : public fur_source
{
public:
  fur_edge (edge e, range_query *q = NULL);
  virtual bool get_operand (irange &r, tree expr) OVERRIDE;
  virtual bool get_phi_operand (irange &r, tree expr, edge e) OVERRIDE;
private:
  edge m_edge;
};

// Instantiate an edge based fur_source.

inline
fur_edge::fur_edge (edge e, range_query *q) : fur_source (q)
{
  m_edge = e;
}

// Get the value of EXPR on edge m_edge.

bool
fur_edge::get_operand (irange &r, tree expr)
{
  return m_query->range_on_edge (r, m_edge, expr);
}

// Evaluate EXPR for this stmt as a PHI argument on edge E.  Use the current
// range_query to get the range on the edge.

bool
fur_edge::get_phi_operand (irange &r, tree expr, edge e)
{
  // Edge to edge recalculations not supoprted yet, until we sort it out.
  gcc_checking_assert (e == m_edge);
  return m_query->range_on_edge (r, e, expr);
}

// Instantiate a stmt based fur_source.

fur_stmt::fur_stmt (gimple *s, range_query *q) : fur_source (q)
{
  m_stmt = s;
}

// Retreive range of EXPR as it occurs as a use on stmt M_STMT.

bool
fur_stmt::get_operand (irange &r, tree expr)
{
  return m_query->range_of_expr (r, expr, m_stmt);
}

// Evaluate EXPR for this stmt as a PHI argument on edge E.  Use the current
// range_query to get the range on the edge.

bool
fur_stmt::get_phi_operand (irange &r, tree expr, edge e)
{
  // Pick up the range of expr from edge E.
  fur_edge e_src (e, m_query);
  return e_src.get_operand (r, expr);
}

// Return relation based from m_stmt.

relation_kind
fur_stmt::query_relation (tree op1, tree op2)
{
  return m_query->query_relation (m_stmt, op1, op2);
}

// Instantiate a stmt based fur_source with a GORI object.


fur_depend::fur_depend (gimple *s, gori_compute *gori, range_query *q)
  : fur_stmt (s, q)
{
  gcc_checking_assert (gori);
  m_gori = gori;
  // Set relations if there is an oracle in the range_query.
  // This will enable registering of relationships as they are discovered.
  m_oracle = q->oracle ();

}

// Register a relation on a stmt if there is an oracle.

void
fur_depend::register_relation (gimple *s, relation_kind k, tree op1, tree op2)
{
  if (m_oracle)
    m_oracle->register_stmt (s, k, op1, op2);
}

// Register a relation on an edge if there is an oracle.

void
fur_depend::register_relation (edge e, relation_kind k, tree op1, tree op2)
{
  if (m_oracle)
    m_oracle->register_edge (e, k, op1, op2);
}

// This version of fur_source will pick a range up from a list of ranges
// supplied by the caller.

class fur_list : public fur_source
{
public:
  fur_list (irange &r1);
  fur_list (irange &r1, irange &r2);
  fur_list (unsigned num, irange *list);
  virtual bool get_operand (irange &r, tree expr) OVERRIDE;
  virtual bool get_phi_operand (irange &r, tree expr, edge e) OVERRIDE;
private:
  int_range_max m_local[2];
  irange *m_list;
  unsigned m_index;
  unsigned m_limit;
};

// One range supplied for unary operations.

fur_list::fur_list (irange &r1) : fur_source (NULL)
{
  m_list = m_local;
  m_index = 0;
  m_limit = 1;
  m_local[0] = r1;
}

// Two ranges supplied for binary operations.

fur_list::fur_list (irange &r1, irange &r2) : fur_source (NULL)
{
  m_list = m_local;
  m_index = 0;
  m_limit = 2;
  m_local[0] = r1;
  m_local[1] = r2;
}

// Arbitrary number of ranges in a vector.

fur_list::fur_list (unsigned num, irange *list) : fur_source (NULL)
{
  m_list = list;
  m_index = 0;
  m_limit = num;
}

// Get the next operand from the vector, ensure types are compatible.

bool
fur_list::get_operand (irange &r, tree expr)
{
  if (m_index >= m_limit)
    return m_query->range_of_expr (r, expr);
  r = m_list[m_index++];
  gcc_checking_assert (range_compatible_p (TREE_TYPE (expr), r.type ()));
  return true;
}

// This will simply pick the next operand from the vector.
bool
fur_list::get_phi_operand (irange &r, tree expr, edge e ATTRIBUTE_UNUSED)
{
  return get_operand (r, expr);
}

// Fold stmt S into range R using R1 as the first operand.

bool
fold_range (irange &r, gimple *s, irange &r1)
{
  fold_using_range f;
  fur_list src (r1);
  return f.fold_stmt (r, s, src);
}

// Fold stmt S into range R using R1  and R2 as the first two operands.

bool
fold_range (irange &r, gimple *s, irange &r1, irange &r2)
{
  fold_using_range f;
  fur_list src (r1, r2);
  return f.fold_stmt (r, s, src);
}

// Fold stmt S into range R using NUM_ELEMENTS from VECTOR as the initial
// operands encountered.

bool
fold_range (irange &r, gimple *s, unsigned num_elements, irange *vector)
{
  fold_using_range f;
  fur_list src (num_elements, vector);
  return f.fold_stmt (r, s, src);
}

// Fold stmt S into range R using range query Q.

bool
fold_range (irange &r, gimple *s, range_query *q)
{
  fold_using_range f;
  fur_stmt src (s, q);
  return f.fold_stmt (r, s, src);
}

// Recalculate stmt S into R using range query Q as if it were on edge ON_EDGE.

bool
fold_range (irange &r, gimple *s, edge on_edge, range_query *q)
{
  fold_using_range f;
  fur_edge src (on_edge, q);
  return f.fold_stmt (r, s, src);
}

// -------------------------------------------------------------------------

// Adjust the range for a pointer difference where the operands came
// from a memchr.
//
// This notices the following sequence:
//
//	def = __builtin_memchr (arg, 0, sz)
//	n = def - arg
//
// The range for N can be narrowed to [0, PTRDIFF_MAX - 1].

static void
adjust_pointer_diff_expr (irange &res, const gimple *diff_stmt)
{
  tree op0 = gimple_assign_rhs1 (diff_stmt);
  tree op1 = gimple_assign_rhs2 (diff_stmt);
  tree op0_ptype = TREE_TYPE (TREE_TYPE (op0));
  tree op1_ptype = TREE_TYPE (TREE_TYPE (op1));
  gimple *call;

  if (TREE_CODE (op0) == SSA_NAME
      && TREE_CODE (op1) == SSA_NAME
      && (call = SSA_NAME_DEF_STMT (op0))
      && is_gimple_call (call)
      && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
      && TYPE_MODE (op0_ptype) == TYPE_MODE (char_type_node)
      && TYPE_PRECISION (op0_ptype) == TYPE_PRECISION (char_type_node)
      && TYPE_MODE (op1_ptype) == TYPE_MODE (char_type_node)
      && TYPE_PRECISION (op1_ptype) == TYPE_PRECISION (char_type_node)
      && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
      && vrp_operand_equal_p (op1, gimple_call_arg (call, 0))
      && integer_zerop (gimple_call_arg (call, 1)))
    {
      tree max = vrp_val_max (ptrdiff_type_node);
      unsigned prec = TYPE_PRECISION (TREE_TYPE (max));
      wide_int wmaxm1 = wi::to_wide (max, prec) - 1;
      res.intersect (wi::zero (prec), wmaxm1);
    }
}

// Adjust the range for an IMAGPART_EXPR.

static void
adjust_imagpart_expr (irange &res, const gimple *stmt)
{
  tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);

  if (TREE_CODE (name) != SSA_NAME || !SSA_NAME_DEF_STMT (name))
    return;

  gimple *def_stmt = SSA_NAME_DEF_STMT (name);
  if (is_gimple_call (def_stmt) && gimple_call_internal_p (def_stmt))
    {
      switch (gimple_call_internal_fn (def_stmt))
	{
	case IFN_ADD_OVERFLOW:
	case IFN_SUB_OVERFLOW:
	case IFN_MUL_OVERFLOW:
	case IFN_ATOMIC_COMPARE_EXCHANGE:
	  {
	    int_range<2> r;
	    r.set_varying (boolean_type_node);
	    tree type = TREE_TYPE (gimple_assign_lhs (stmt));
	    range_cast (r, type);
	    res.intersect (r);
	  }
	default:
	  break;
	}
      return;
    }
  if (is_gimple_assign (def_stmt)
      && gimple_assign_rhs_code (def_stmt) == COMPLEX_CST)
    {
      tree cst = gimple_assign_rhs1 (def_stmt);
      if (TREE_CODE (cst) == COMPLEX_CST)
	{
	  wide_int imag = wi::to_wide (TREE_IMAGPART (cst));
	  res.intersect (imag, imag);
	}
    }
}

// Adjust the range for a REALPART_EXPR.

static void
adjust_realpart_expr (irange &res, const gimple *stmt)
{
  tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);

  if (TREE_CODE (name) != SSA_NAME)
    return;

  gimple *def_stmt = SSA_NAME_DEF_STMT (name);
  if (!SSA_NAME_DEF_STMT (name))
    return;

  if (is_gimple_assign (def_stmt)
      && gimple_assign_rhs_code (def_stmt) == COMPLEX_CST)
    {
      tree cst = gimple_assign_rhs1 (def_stmt);
      if (TREE_CODE (cst) == COMPLEX_CST)
	{
	  tree imag = TREE_REALPART (cst);
	  int_range<2> tmp (imag, imag);
	  res.intersect (tmp);
	}
    }
}

// This function looks for situations when walking the use/def chains
// may provide additonal contextual range information not exposed on
// this statement.

static void
gimple_range_adjustment (irange &res, const gimple *stmt)
{
  switch (gimple_expr_code (stmt))
    {
    case POINTER_DIFF_EXPR:
      adjust_pointer_diff_expr (res, stmt);
      return;

    case IMAGPART_EXPR:
      adjust_imagpart_expr (res, stmt);
      return;

    case REALPART_EXPR:
      adjust_realpart_expr (res, stmt);
      return;

    default:
      break;
    }
}

// Return the base of the RHS of an assignment.

static tree
gimple_range_base_of_assignment (const gimple *stmt)
{
  gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN);
  tree op1 = gimple_assign_rhs1 (stmt);
  if (gimple_assign_rhs_code (stmt) == ADDR_EXPR)
    return get_base_address (TREE_OPERAND (op1, 0));
  return op1;
}

// Return the first operand of this statement if it is a valid operand
// supported by ranges, otherwise return NULL_TREE.  Special case is
// &(SSA_NAME expr), return the SSA_NAME instead of the ADDR expr.

tree
gimple_range_operand1 (const gimple *stmt)
{
  gcc_checking_assert (gimple_range_handler (stmt));

  switch (gimple_code (stmt))
    {
      case GIMPLE_COND:
	return gimple_cond_lhs (stmt);
      case GIMPLE_ASSIGN:
	{
	  tree base = gimple_range_base_of_assignment (stmt);
	  if (base && TREE_CODE (base) == MEM_REF)
	    {
	      // If the base address is an SSA_NAME, we return it
	      // here.  This allows processing of the range of that
	      // name, while the rest of the expression is simply
	      // ignored.  The code in range_ops will see the
	      // ADDR_EXPR and do the right thing.
	      tree ssa = TREE_OPERAND (base, 0);
	      if (TREE_CODE (ssa) == SSA_NAME)
		return ssa;
	    }
	  return base;
	}
      default:
	break;
    }
  return NULL;
}

// Return the second operand of statement STMT, otherwise return NULL_TREE.

tree
gimple_range_operand2 (const gimple *stmt)
{
  gcc_checking_assert (gimple_range_handler (stmt));

  switch (gimple_code (stmt))
    {
    case GIMPLE_COND:
      return gimple_cond_rhs (stmt);
    case GIMPLE_ASSIGN:
      if (gimple_num_ops (stmt) >= 3)
	return gimple_assign_rhs2 (stmt);
    default:
      break;
    }
  return NULL_TREE;
}

// Calculate a range for statement S and return it in R. If NAME is provided it
// represents the SSA_NAME on the LHS of the statement. It is only required
// if there is more than one lhs/output.  If a range cannot
// be calculated, return false.

bool
fold_using_range::fold_stmt (irange &r, gimple *s, fur_source &src, tree name)
{
  bool res = false;
  // If name and S are specified, make sure it is an LHS of S.
  gcc_checking_assert (!name || !gimple_get_lhs (s) ||
		       name == gimple_get_lhs (s));

  if (!name)
    name = gimple_get_lhs (s);

  // Process addresses.
  if (gimple_code (s) == GIMPLE_ASSIGN
      && gimple_assign_rhs_code (s) == ADDR_EXPR)
    return range_of_address (r, s, src);

  if (gimple_range_handler (s))
    res = range_of_range_op (r, s, src);
  else if (is_a<gphi *>(s))
    res = range_of_phi (r, as_a<gphi *> (s), src);
  else if (is_a<gcall *>(s))
    res = range_of_call (r, as_a<gcall *> (s), src);
  else if (is_a<gassign *> (s) && gimple_assign_rhs_code (s) == COND_EXPR)
    res = range_of_cond_expr (r, as_a<gassign *> (s), src);

  if (!res)
    {
      // If no name specified or range is unsupported, bail.
      if (!name || !gimple_range_ssa_p (name))
	return false;
      // We don't understand the stmt, so return the global range.
      r = gimple_range_global (name);
      return true;
    }

  if (r.undefined_p ())
    return true;

  // We sometimes get compatible types copied from operands, make sure
  // the correct type is being returned.
  if (name && TREE_TYPE (name) != r.type ())
    {
      gcc_checking_assert (range_compatible_p (r.type (), TREE_TYPE (name)));
      range_cast (r, TREE_TYPE (name));
    }
  return true;
}

// Calculate a range for range_op statement S and return it in R.  If any
// If a range cannot be calculated, return false.

bool
fold_using_range::range_of_range_op (irange &r, gimple *s, fur_source &src)
{
  int_range_max range1, range2;
  tree type = gimple_range_type (s);
  if (!type)
    return false;
  range_operator *handler = gimple_range_handler (s);
  gcc_checking_assert (handler);

  tree lhs = gimple_get_lhs (s);
  tree op1 = gimple_range_operand1 (s);
  tree op2 = gimple_range_operand2 (s);

  if (src.get_operand (range1, op1))
    {
      if (!op2)
	{
	  // Fold range, and register any dependency if available.
	  int_range<2> r2 (type);
	  handler->fold_range (r, type, range1, r2);
	  if (lhs && gimple_range_ssa_p (op1))
	    {
	      if (src.gori ())
		src.gori ()->register_dependency (lhs, op1);
	      relation_kind rel;
	      rel = handler->lhs_op1_relation (r, range1, range1);
	      if (rel != VREL_NONE)
		src.register_relation (s, rel, lhs, op1);
	    }
	}
      else if (src.get_operand (range2, op2))
	{
	  relation_kind rel = src.query_relation (op1, op2);
	  if (dump_file && (dump_flags & TDF_DETAILS) && rel != VREL_NONE)
	    {
	      fprintf (dump_file, " folding with relation ");
	      print_generic_expr (dump_file, op1, TDF_SLIM);
	      print_relation (dump_file, rel);
	      print_generic_expr (dump_file, op2, TDF_SLIM);
	      fputc ('\n', dump_file);
	    }
	  // Fold range, and register any dependency if available.
	  handler->fold_range (r, type, range1, range2, rel);
	  relation_fold_and_or (r, s, src);
	  if (lhs)
	    {
	      if (src.gori ())
		{
		  src.gori ()->register_dependency (lhs, op1);
		  src.gori ()->register_dependency (lhs, op2);
		}
	      if (gimple_range_ssa_p (op1))
		{
		  rel = handler->lhs_op1_relation (r, range1, range2);
		  if (rel != VREL_NONE)
		    src.register_relation (s, rel, lhs, op1);
		}
	      if (gimple_range_ssa_p (op2))
		{
		  rel= handler->lhs_op2_relation (r, range1, range2);
		  if (rel != VREL_NONE)
		    src.register_relation (s, rel, lhs, op2);
		}
	    }
	  // Check for an existing BB, as we maybe asked to fold an
	  // artificial statement not in the CFG.
	  else if (is_a<gcond *> (s) && gimple_bb (s))
	    {
	      basic_block bb = gimple_bb (s);
	      edge e0 = EDGE_SUCC (bb, 0);
	      edge e1 = EDGE_SUCC (bb, 1);

	      if (!single_pred_p (e0->dest))
		e0 = NULL;
	      if (!single_pred_p (e1->dest))
		e1 = NULL;
	      src.register_outgoing_edges (as_a<gcond *> (s), r, e0, e1);
	    }
	}
      else
	r.set_varying (type);
    }
  else
    r.set_varying (type);
  // Make certain range-op adjustments that aren't handled any other way.
  gimple_range_adjustment (r, s);
  return true;
}

// Calculate the range of an assignment containing an ADDR_EXPR.
// Return the range in R.
// If a range cannot be calculated, set it to VARYING and return true.

bool
fold_using_range::range_of_address (irange &r, gimple *stmt, fur_source &src)
{
  gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN);
  gcc_checking_assert (gimple_assign_rhs_code (stmt) == ADDR_EXPR);

  bool strict_overflow_p;
  tree expr = gimple_assign_rhs1 (stmt);
  poly_int64 bitsize, bitpos;
  tree offset;
  machine_mode mode;
  int unsignedp, reversep, volatilep;
  tree base = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize,
				   &bitpos, &offset, &mode, &unsignedp,
				   &reversep, &volatilep);


  if (base != NULL_TREE
      && TREE_CODE (base) == MEM_REF
      && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
    {
      tree ssa = TREE_OPERAND (base, 0);
      tree lhs = gimple_get_lhs (stmt);
      if (lhs && gimple_range_ssa_p (ssa) && src.gori ())
	src.gori ()->register_dependency (lhs, ssa);
      gcc_checking_assert (irange::supports_type_p (TREE_TYPE (ssa)));
      src.get_operand (r, ssa);
      range_cast (r, TREE_TYPE (gimple_assign_rhs1 (stmt)));

      poly_offset_int off = 0;
      bool off_cst = false;
      if (offset == NULL_TREE || TREE_CODE (offset) == INTEGER_CST)
	{
	  off = mem_ref_offset (base);
	  if (offset)
	    off += poly_offset_int::from (wi::to_poly_wide (offset),
					  SIGNED);
	  off <<= LOG2_BITS_PER_UNIT;
	  off += bitpos;
	  off_cst = true;
	}
      /* If &X->a is equal to X, the range of X is the result.  */
      if (off_cst && known_eq (off, 0))
	return true;
      else if (flag_delete_null_pointer_checks
	       && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))
	{
	  /* For -fdelete-null-pointer-checks -fno-wrapv-pointer we don't
	     allow going from non-NULL pointer to NULL.  */
	  if (!range_includes_zero_p (&r))
	    {
	      /* We could here instead adjust r by off >> LOG2_BITS_PER_UNIT
		 using POINTER_PLUS_EXPR if off_cst and just fall back to
		 this.  */
	      r = range_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
	      return true;
	    }
	}
      /* If MEM_REF has a "positive" offset, consider it non-NULL
	 always, for -fdelete-null-pointer-checks also "negative"
	 ones.  Punt for unknown offsets (e.g. variable ones).  */
      if (!TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr))
	  && off_cst
	  && known_ne (off, 0)
	  && (flag_delete_null_pointer_checks || known_gt (off, 0)))
	{
	  r = range_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
	  return true;
	}
      r = int_range<2> (TREE_TYPE (gimple_assign_rhs1 (stmt)));
      return true;
    }

  // Handle "= &a".
  if (tree_single_nonzero_warnv_p (expr, &strict_overflow_p))
    {
      r = range_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
      return true;
    }

  // Otherwise return varying.
  r = int_range<2> (TREE_TYPE (gimple_assign_rhs1 (stmt)));
  return true;
}

// Calculate a range for phi statement S and return it in R.
// If a range cannot be calculated, return false.

bool
fold_using_range::range_of_phi (irange &r, gphi *phi, fur_source &src)
{
  tree phi_def = gimple_phi_result (phi);
  tree type = gimple_range_type (phi);
  int_range_max arg_range;
  int_range_max equiv_range;
  unsigned x;

  if (!type)
    return false;

  // Track if all executable arguments are the same.
  tree single_arg = NULL_TREE;
  bool seen_arg = false;

  // Start with an empty range, unioning in each argument's range.
  r.set_undefined ();
  for (x = 0; x < gimple_phi_num_args (phi); x++)
    {
      tree arg = gimple_phi_arg_def (phi, x);
      // An argument that is the same as the def provides no new range.
      if (arg == phi_def)
	continue;

      edge e = gimple_phi_arg_edge (phi, x);

      // Get the range of the argument on its edge.
      src.get_phi_operand (arg_range, arg, e);

      if (!arg_range.undefined_p ())
	{
	  // Register potential dependencies for stale value tracking.
	  // Likewise, if the incoming PHI argument is equivalent to this
	  // PHI definition, it provides no new info.  Accumulate these ranges
	  // in case all arguments are equivalences.
	  if (src.query ()->query_relation (e, arg, phi_def, false) == EQ_EXPR)
	    equiv_range.union_(arg_range);
	  else
	    r.union_ (arg_range);

	  if (gimple_range_ssa_p (arg) && src.gori ())
	    src.gori ()->register_dependency (phi_def, arg);

	  // Track if all arguments are the same.
	  if (!seen_arg)
	    {
	      seen_arg = true;
	      single_arg = arg;
	    }
	  else if (single_arg != arg)
	    single_arg = NULL_TREE;
	}

      // Once the value reaches varying, stop looking.
      if (r.varying_p () && single_arg == NULL_TREE)
	break;
    }

    // If all arguments were equivalences, use the equivalence ranges as no
    // arguments were processed.
    if (r.undefined_p () && !equiv_range.undefined_p ())
      r = equiv_range;

    // If the PHI boils down to a single effective argument, look at it.
    if (single_arg)
      {
	// Symbolic arguments are equivalences.
	if (gimple_range_ssa_p (single_arg))
	  src.register_relation (phi, EQ_EXPR, phi_def, single_arg);
	else if (src.get_operand (arg_range, single_arg)
		 && arg_range.singleton_p ())
	  {
	    // Numerical arguments that are a constant can be returned as
	    // the constant. This can help fold later cases where even this
	    // constant might have been UNDEFINED via an unreachable edge.
	    r = arg_range;
	    return true;
	  }
      }

  // If SCEV is available, query if this PHI has any knonwn values.
  if (scev_initialized_p () && !POINTER_TYPE_P (TREE_TYPE (phi_def)))
    {
      value_range loop_range;
      class loop *l = loop_containing_stmt (phi);
      if (l && loop_outer (l))
	{
	  range_of_ssa_name_with_loop_info (loop_range, phi_def, l, phi, src);
	  if (!loop_range.varying_p ())
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		{
		  fprintf (dump_file, "   Loops range found for ");
		  print_generic_expr (dump_file, phi_def, TDF_SLIM);
		  fprintf (dump_file, ": ");
		  loop_range.dump (dump_file);
		  fprintf (dump_file, " and calculated range :");
		  r.dump (dump_file);
		  fprintf (dump_file, "\n");
		}
	      r.intersect (loop_range);
	    }
	}
    }

  return true;
}

// Calculate a range for call statement S and return it in R.
// If a range cannot be calculated, return false.

bool
fold_using_range::range_of_call (irange &r, gcall *call, fur_source &src)
{
  tree type = gimple_range_type (call);
  if (!type)
    return false;

  tree lhs = gimple_call_lhs (call);
  bool strict_overflow_p;

  if (range_of_builtin_call (r, call, src))
    ;
  else if (gimple_stmt_nonnegative_warnv_p (call, &strict_overflow_p))
    r.set (build_int_cst (type, 0), TYPE_MAX_VALUE (type));
  else if (gimple_call_nonnull_result_p (call)
	   || gimple_call_nonnull_arg (call))
    r = range_nonzero (type);
  else
    r.set_varying (type);

  // If there is an LHS, intersect that with what is known.
  if (lhs)
    {
      value_range def;
      def = gimple_range_global (lhs);
      r.intersect (def);
    }
  return true;
}

// Return the range of a __builtin_ubsan* in CALL and set it in R.
// CODE is the type of ubsan call (PLUS_EXPR, MINUS_EXPR or
// MULT_EXPR).

void
fold_using_range::range_of_builtin_ubsan_call (irange &r, gcall *call,
					       tree_code code, fur_source &src)
{
  gcc_checking_assert (code == PLUS_EXPR || code == MINUS_EXPR
		       || code == MULT_EXPR);
  tree type = gimple_range_type (call);
  range_operator *op = range_op_handler (code, type);
  gcc_checking_assert (op);
  int_range_max ir0, ir1;
  tree arg0 = gimple_call_arg (call, 0);
  tree arg1 = gimple_call_arg (call, 1);
  src.get_operand (ir0, arg0);
  src.get_operand (ir1, arg1);
  // Check for any relation between arg0 and arg1.
  relation_kind relation = src.query_relation (arg0, arg1);

  bool saved_flag_wrapv = flag_wrapv;
  // Pretend the arithmetic is wrapping.  If there is any overflow,
  // we'll complain, but will actually do wrapping operation.
  flag_wrapv = 1;
  op->fold_range (r, type, ir0, ir1, relation);
  flag_wrapv = saved_flag_wrapv;

  // If for both arguments vrp_valueize returned non-NULL, this should
  // have been already folded and if not, it wasn't folded because of
  // overflow.  Avoid removing the UBSAN_CHECK_* calls in that case.
  if (r.singleton_p ())
    r.set_varying (type);
}

// Return TRUE if we recognize the target character set and return the
// range for lower case and upper case letters.

static bool
get_letter_range (tree type, irange &lowers, irange &uppers)
{
  // ASCII
  int a = lang_hooks.to_target_charset ('a');
  int z = lang_hooks.to_target_charset ('z');
  int A = lang_hooks.to_target_charset ('A');
  int Z = lang_hooks.to_target_charset ('Z');

  if ((z - a == 25) && (Z - A == 25))
    {
      lowers = int_range<2> (build_int_cst (type, a), build_int_cst (type, z));
      uppers = int_range<2> (build_int_cst (type, A), build_int_cst (type, Z));
      return true;
    }
  // Unknown character set.
  return false;
}

// For a builtin in CALL, return a range in R if known and return
// TRUE.  Otherwise return FALSE.

bool
fold_using_range::range_of_builtin_call (irange &r, gcall *call,
					 fur_source &src)
{
  combined_fn func = gimple_call_combined_fn (call);
  if (func == CFN_LAST)
    return false;

  tree type = gimple_range_type (call);
  tree arg;
  int mini, maxi, zerov = 0, prec;
  scalar_int_mode mode;

  switch (func)
    {
    case CFN_BUILT_IN_CONSTANT_P:
      arg = gimple_call_arg (call, 0);
      if (src.get_operand (r, arg) && r.singleton_p ())
	{
	  r.set (build_one_cst (type), build_one_cst (type));
	  return true;
	}
      if (cfun->after_inlining)
	{
	  r.set_zero (type);
	  // r.equiv_clear ();
	  return true;
	}
      break;

    case CFN_BUILT_IN_TOUPPER:
      {
	arg = gimple_call_arg (call, 0);
	// If the argument isn't compatible with the LHS, do nothing.
	if (!range_compatible_p (type, TREE_TYPE (arg)))
	  return false;
	if (!src.get_operand (r, arg))
	  return false;

	int_range<3> lowers;
	int_range<3> uppers;
	if (!get_letter_range (type, lowers, uppers))
	  return false;

	// Return the range passed in without any lower case characters,
	// but including all the upper case ones.
	lowers.invert ();
	r.intersect (lowers);
	r.union_ (uppers);
	return true;
      }

     case CFN_BUILT_IN_TOLOWER:
      {
	arg = gimple_call_arg (call, 0);
	// If the argument isn't compatible with the LHS, do nothing.
	if (!range_compatible_p (type, TREE_TYPE (arg)))
	  return false;
	if (!src.get_operand (r, arg))
	  return false;

	int_range<3> lowers;
	int_range<3> uppers;
	if (!get_letter_range (type, lowers, uppers))
	  return false;

	// Return the range passed in without any upper case characters,
	// but including all the lower case ones.
	uppers.invert ();
	r.intersect (uppers);
	r.union_ (lowers);
	return true;
      }

    CASE_CFN_FFS:
    CASE_CFN_POPCOUNT:
      // __builtin_ffs* and __builtin_popcount* return [0, prec].
      arg = gimple_call_arg (call, 0);
      prec = TYPE_PRECISION (TREE_TYPE (arg));
      mini = 0;
      maxi = prec;
      src.get_operand (r, arg);
      // If arg is non-zero, then ffs or popcount are non-zero.
      if (!range_includes_zero_p (&r))
	mini = 1;
      // If some high bits are known to be zero, decrease the maximum.
      if (!r.undefined_p ())
	{
	  if (TYPE_SIGN (r.type ()) == SIGNED)
	    range_cast (r, unsigned_type_for (r.type ()));
	  wide_int max = r.upper_bound ();
	  maxi = wi::floor_log2 (max) + 1;
	}
      r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
      return true;

    CASE_CFN_PARITY:
      r.set (build_zero_cst (type), build_one_cst (type));
      return true;

    CASE_CFN_CLZ:
      // __builtin_c[lt]z* return [0, prec-1], except when the
      // argument is 0, but that is undefined behavior.
      //
      // For __builtin_c[lt]z* consider argument of 0 always undefined
      // behavior, for internal fns depending on C?Z_DEFINED_VALUE_AT_ZERO.
      arg = gimple_call_arg (call, 0);
      prec = TYPE_PRECISION (TREE_TYPE (arg));
      mini = 0;
      maxi = prec - 1;
      mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
      if (gimple_call_internal_p (call))
	{
	  if (optab_handler (clz_optab, mode) != CODE_FOR_nothing
	      && CLZ_DEFINED_VALUE_AT_ZERO (mode, zerov) == 2)
	    {
	      // Only handle the single common value.
	      if (zerov == prec)
		maxi = prec;
	      else
		// Magic value to give up, unless we can prove arg is non-zero.
		mini = -2;
	    }
	}

      src.get_operand (r, arg);
      // From clz of minimum we can compute result maximum.
      if (!r.undefined_p ())
	{
	  // From clz of minimum we can compute result maximum.
	  if (wi::gt_p (r.lower_bound (), 0, TYPE_SIGN (r.type ())))
	    {
	      maxi = prec - 1 - wi::floor_log2 (r.lower_bound ());
	      if (mini == -2)
		mini = 0;
	    }
	  else if (!range_includes_zero_p (&r))
	    {
	      mini = 0;
	      maxi = prec - 1;
	    }
	  if (mini == -2)
	    break;
	  // From clz of maximum we can compute result minimum.
	  wide_int max = r.upper_bound ();
	  int newmini = prec - 1 - wi::floor_log2 (max);
	  if (max == 0)
	    {
	      // If CLZ_DEFINED_VALUE_AT_ZERO is 2 with VALUE of prec,
	      // return [prec, prec], otherwise ignore the range.
	      if (maxi == prec)
		mini = prec;
	    }
	  else
	    mini = newmini;
	}
      if (mini == -2)
	break;
      r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
      return true;

    CASE_CFN_CTZ:
      // __builtin_ctz* return [0, prec-1], except for when the
      // argument is 0, but that is undefined behavior.
      //
      // For __builtin_ctz* consider argument of 0 always undefined
      // behavior, for internal fns depending on CTZ_DEFINED_VALUE_AT_ZERO.
      arg = gimple_call_arg (call, 0);
      prec = TYPE_PRECISION (TREE_TYPE (arg));
      mini = 0;
      maxi = prec - 1;
      mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
      if (gimple_call_internal_p (call))
	{
	  if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing
	      && CTZ_DEFINED_VALUE_AT_ZERO (mode, zerov) == 2)
	    {
	      // Handle only the two common values.
	      if (zerov == -1)
		mini = -1;
	      else if (zerov == prec)
		maxi = prec;
	      else
		// Magic value to give up, unless we can prove arg is non-zero.
		mini = -2;
	    }
	}
      src.get_operand (r, arg);
      if (!r.undefined_p ())
	{
	  // If arg is non-zero, then use [0, prec - 1].
	  if (!range_includes_zero_p (&r))
	    {
	      mini = 0;
	      maxi = prec - 1;
	    }
	  // If some high bits are known to be zero, we can decrease
	  // the maximum.
	  wide_int max = r.upper_bound ();
	  if (max == 0)
	    {
	      // Argument is [0, 0].  If CTZ_DEFINED_VALUE_AT_ZERO
	      // is 2 with value -1 or prec, return [-1, -1] or [prec, prec].
	      // Otherwise ignore the range.
	      if (mini == -1)
		maxi = -1;
	      else if (maxi == prec)
		mini = prec;
	    }
	  // If value at zero is prec and 0 is in the range, we can't lower
	  // the upper bound.  We could create two separate ranges though,
	  // [0,floor_log2(max)][prec,prec] though.
	  else if (maxi != prec)
	    maxi = wi::floor_log2 (max);
	}
      if (mini == -2)
	break;
      r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
      return true;

    CASE_CFN_CLRSB:
      arg = gimple_call_arg (call, 0);
      prec = TYPE_PRECISION (TREE_TYPE (arg));
      r.set (build_int_cst (type, 0), build_int_cst (type, prec - 1));
      return true;
    case CFN_UBSAN_CHECK_ADD:
      range_of_builtin_ubsan_call (r, call, PLUS_EXPR, src);
      return true;
    case CFN_UBSAN_CHECK_SUB:
      range_of_builtin_ubsan_call (r, call, MINUS_EXPR, src);
      return true;
    case CFN_UBSAN_CHECK_MUL:
      range_of_builtin_ubsan_call (r, call, MULT_EXPR, src);
      return true;

    case CFN_GOACC_DIM_SIZE:
    case CFN_GOACC_DIM_POS:
      // Optimizing these two internal functions helps the loop
      // optimizer eliminate outer comparisons.  Size is [1,N]
      // and pos is [0,N-1].
      {
	bool is_pos = func == CFN_GOACC_DIM_POS;
	int axis = oacc_get_ifn_dim_arg (call);
	int size = oacc_get_fn_dim_size (current_function_decl, axis);
	if (!size)
	  // If it's dynamic, the backend might know a hardware limitation.
	  size = targetm.goacc.dim_limit (axis);

	r.set (build_int_cst (type, is_pos ? 0 : 1),
	       size
	       ? build_int_cst (type, size - is_pos) : vrp_val_max (type));
	return true;
      }

    case CFN_BUILT_IN_STRLEN:
      if (tree lhs = gimple_call_lhs (call))
	if (ptrdiff_type_node
	    && (TYPE_PRECISION (ptrdiff_type_node)
		== TYPE_PRECISION (TREE_TYPE (lhs))))
	  {
	    tree type = TREE_TYPE (lhs);
	    tree max = vrp_val_max (ptrdiff_type_node);
	    wide_int wmax
	      = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
	    tree range_min = build_zero_cst (type);
	    // To account for the terminating NULL, the maximum length
	    // is one less than the maximum array size, which in turn
	    // is one less than PTRDIFF_MAX (or SIZE_MAX where it's
	    // smaller than the former type).
	    // FIXME: Use max_object_size() - 1 here.
	    tree range_max = wide_int_to_tree (type, wmax - 2);
	    r.set (range_min, range_max);
	    return true;
	  }
      break;
    default:
      break;
    }
  return false;
}


// Calculate a range for COND_EXPR statement S and return it in R.
// If a range cannot be calculated, return false.

bool
fold_using_range::range_of_cond_expr  (irange &r, gassign *s, fur_source &src)
{
  int_range_max cond_range, range1, range2;
  tree cond = gimple_assign_rhs1 (s);
  tree op1 = gimple_assign_rhs2 (s);
  tree op2 = gimple_assign_rhs3 (s);

  tree type = gimple_range_type (s);
  if (!type)
    return false;

  gcc_checking_assert (gimple_assign_rhs_code (s) == COND_EXPR);
  gcc_checking_assert (range_compatible_p (TREE_TYPE (op1), TREE_TYPE (op2)));
  src.get_operand (cond_range, cond);
  src.get_operand (range1, op1);
  src.get_operand (range2, op2);

  // Try to see if there is a dependence between the COND and either operand
  if (src.gori ())
    if (src.gori ()->condexpr_adjust (range1, range2, s, cond, op1, op2, src))
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Possible COND_EXPR adjustment. Range op1 : ");
	  range1.dump(dump_file);
	  fprintf (dump_file, " and Range op2: ");
	  range2.dump(dump_file);
	  fprintf (dump_file, "\n");
	}

  // If the condition is known, choose the appropriate expression.
  if (cond_range.singleton_p ())
    {
      // False, pick second operand.
      if (cond_range.zero_p ())
	r = range2;
      else
	r = range1;
    }
  else
    {
      r = range1;
      r.union_ (range2);
    }
  gcc_checking_assert (r.undefined_p ()
		       || range_compatible_p (r.type (), type));
  return true;
}

// If SCEV has any information about phi node NAME, return it as a range in R.

void
fold_using_range::range_of_ssa_name_with_loop_info (irange &r, tree name,
						    class loop *l, gphi *phi,
						    fur_source &src)
{
  gcc_checking_assert (TREE_CODE (name) == SSA_NAME);
  tree min, max, type = TREE_TYPE (name);
  if (bounds_of_var_in_loop (&min, &max, src.query (), l, phi, name))
    {
      if (TREE_CODE (min) != INTEGER_CST)
	{
	  if (src.query ()->range_of_expr (r, min, phi) && !r.undefined_p ())
	    min = wide_int_to_tree (type, r.lower_bound ());
	  else
	    min = vrp_val_min (type);
	}
      if (TREE_CODE (max) != INTEGER_CST)
	{
	  if (src.query ()->range_of_expr (r, max, phi) && !r.undefined_p ())
	    max = wide_int_to_tree (type, r.upper_bound ());
	  else
	    max = vrp_val_max (type);
	}
      r.set (min, max);
    }
  else
    r.set_varying (type);
}

// -----------------------------------------------------------------------

// Check if an && or || expression can be folded based on relations. ie
//   c_2 = a_6 > b_7
//   c_3 = a_6 < b_7
//   c_4 = c_2 && c_3
// c_2 and c_3 can never be true at the same time,
// Therefore c_4 can always resolve to false based purely on the relations.

void
fold_using_range::relation_fold_and_or (irange& lhs_range, gimple *s,
					fur_source &src)
{
  // No queries or already folded.
  if (!src.gori () || !src.query ()->oracle () || lhs_range.singleton_p ())
    return;

  // Only care about AND and OR expressions.
  enum tree_code code = gimple_expr_code (s);
  bool is_and = false;
  if (code == BIT_AND_EXPR || code == TRUTH_AND_EXPR)
    is_and = true;
  else if (code != BIT_IOR_EXPR && code != TRUTH_OR_EXPR)
    return;

  tree lhs = gimple_get_lhs (s);
  tree ssa1 = gimple_range_ssa_p (gimple_range_operand1 (s));
  tree ssa2 = gimple_range_ssa_p (gimple_range_operand2 (s));

  // Deal with || and && only when there is a full set of symbolics.
  if (!lhs || !ssa1 || !ssa2
      || (TREE_CODE (TREE_TYPE (lhs)) != BOOLEAN_TYPE)
      || (TREE_CODE (TREE_TYPE (ssa1)) != BOOLEAN_TYPE)
      || (TREE_CODE (TREE_TYPE (ssa2)) != BOOLEAN_TYPE))
    return;

  // Now we know its a boolean AND or OR expression with boolean operands.
  // Ideally we search dependencies for common names, and see what pops out.
  // until then, simply try to resolve direct dependencies.

  // Both names will need to have 2 direct dependencies.
  tree ssa1_dep2 = src.gori ()->depend2 (ssa1);
  tree ssa2_dep2 = src.gori ()->depend2 (ssa2);
  if (!ssa1_dep2 || !ssa2_dep2)
    return;

  tree ssa1_dep1 = src.gori ()->depend1 (ssa1);
  tree ssa2_dep1 = src.gori ()->depend1 (ssa2);
  // Make sure they are the same dependencies, and detect the order of the
  // relationship.
  bool reverse_op2 = true;
  if (ssa1_dep1 == ssa2_dep1 && ssa1_dep2 == ssa2_dep2)
    reverse_op2 = false;
  else if (ssa1_dep1 != ssa2_dep2 || ssa1_dep2 != ssa2_dep1)
    return;

  range_operator *handler1 = gimple_range_handler (SSA_NAME_DEF_STMT (ssa1));
  range_operator *handler2 = gimple_range_handler (SSA_NAME_DEF_STMT (ssa2));

  // If either handler is not present, no relation is found.
  if (!handler1 || !handler2)
    return;

  int_range<2> bool_one (boolean_true_node, boolean_true_node);

  relation_kind relation1 = handler1->op1_op2_relation (bool_one);
  relation_kind relation2 = handler2->op1_op2_relation (bool_one);
  if (relation1 == VREL_NONE || relation2 == VREL_NONE)
    return;

  if (reverse_op2)
    relation2 = relation_negate (relation2);

  // x && y is false if the relation intersection of the true cases is NULL.
  if (is_and && relation_intersect (relation1, relation2) == VREL_EMPTY)
    lhs_range = int_range<2> (boolean_false_node, boolean_false_node);
  // x || y is true if the union of the true cases is NO-RELATION..
  // ie, one or the other being true covers the full range of possibilties.
  else if (!is_and && relation_union (relation1, relation2) == VREL_NONE)
    lhs_range = bool_one;
  else
    return;

  range_cast (lhs_range, TREE_TYPE (lhs));
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "  Relation adjustment: ");
      print_generic_expr (dump_file, ssa1, TDF_SLIM);
      fprintf (dump_file, "  and ");
      print_generic_expr (dump_file, ssa2, TDF_SLIM);
      fprintf (dump_file, "  combine to produce ");
      lhs_range.dump (dump_file);
      fputc ('\n', dump_file);
    }

  return;
}

// Register any outgoing edge relations from a conditional branch.

void
fur_source::register_outgoing_edges (gcond *s, irange &lhs_range, edge e0, edge e1)
{
  int_range_max r;
  int_range<2> e0_range, e1_range;
  tree name;
  range_operator *handler;
  basic_block bb = gimple_bb (s);

  if (e0)
    {
      // If this edge is never taken, ignore it.
      gcond_edge_range (e0_range, e0);
      e0_range.intersect (lhs_range);
      if (e0_range.undefined_p ())
	e0 = NULL;
    }


  if (e1)
    {
      // If this edge is never taken, ignore it.
      gcond_edge_range (e1_range, e1);
      e1_range.intersect (lhs_range);
      if (e1_range.undefined_p ())
	e1 = NULL;
    }

  if (!e0 && !e1)
    return;

  // First, register the gcond itself.  This will catch statements like
  // if (a_2 < b_5)
  tree ssa1 = gimple_range_ssa_p (gimple_range_operand1 (s));
  tree ssa2 = gimple_range_ssa_p (gimple_range_operand2 (s));
  if (ssa1 && ssa2)
    {
      handler = gimple_range_handler (s);
      gcc_checking_assert (handler);
      if (e0)
	{
	  relation_kind relation = handler->op1_op2_relation (e0_range);
	  if (relation != VREL_NONE)
	    register_relation (e0, relation, ssa1, ssa2);
	}
      if (e1)
	{
	  relation_kind relation = handler->op1_op2_relation (e1_range);
	  if (relation != VREL_NONE)
	    register_relation (e1, relation, ssa1, ssa2);
	}
    }

  // Outgoing relations of GORI exports require a gori engine.
  if (!gori ())
    return;

  // Now look for other relations in the exports.  This will find stmts
  // leading to the condition such as:
  // c_2 = a_4 < b_7
  // if (c_2)
  FOR_EACH_GORI_EXPORT_NAME (*(gori ()), bb, name)
    {
      if (TREE_CODE (TREE_TYPE (name)) != BOOLEAN_TYPE)
	continue;
      gimple *stmt = SSA_NAME_DEF_STMT (name);
      handler = gimple_range_handler (stmt);
      if (!handler)
	continue;
      tree ssa1 = gimple_range_ssa_p (gimple_range_operand1 (stmt));
      tree ssa2 = gimple_range_ssa_p (gimple_range_operand2 (stmt));
      if (ssa1 && ssa2)
	{
	  if (e0 && gori ()->outgoing_edge_range_p (r, e0, name, *m_query)
	      && r.singleton_p ())
	    {
	      relation_kind relation = handler->op1_op2_relation (r);
	      if (relation != VREL_NONE)
		register_relation (e0, relation, ssa1, ssa2);
	    }
	  if (e1 && gori ()->outgoing_edge_range_p (r, e1, name, *m_query)
	      && r.singleton_p ())
	    {
	      relation_kind relation = handler->op1_op2_relation (r);
	      if (relation != VREL_NONE)
		register_relation (e1, relation, ssa1, ssa2);
	    }
	}
    }
}