// Functor implementations -*- C++ -*- // Copyright (C) 2001-2022 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996-1998 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file bits/stl_function.h * This is an internal header file, included by other library headers. * Do not attempt to use it directly. @headername{functional} */ #ifndef _STL_FUNCTION_H #define _STL_FUNCTION_H 1 #if __cplusplus > 201103L #include #endif namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION // 20.3.1 base classes /** @defgroup functors Function Objects * @ingroup utilities * * Function objects, or _functors_, are objects with an `operator()` * defined and accessible. They can be passed as arguments to algorithm * templates and used in place of a function pointer. Not only is the * resulting expressiveness of the library increased, but the generated * code can be more efficient than what you might write by hand. When we * refer to _functors_, then, generally we include function pointers in * the description as well. * * Often, functors are only created as temporaries passed to algorithm * calls, rather than being created as named variables. * * Two examples taken from the standard itself follow. To perform a * by-element addition of two vectors `a` and `b` containing `double`, * and put the result in `a`, use * \code * transform (a.begin(), a.end(), b.begin(), a.begin(), plus()); * \endcode * To negate every element in `a`, use * \code * transform(a.begin(), a.end(), a.begin(), negate()); * \endcode * The addition and negation functions will usually be inlined directly. * * An _adaptable function object_ is one which provides nested typedefs * `result_type` and either `argument_type` (for a unary function) or * `first_argument_type` and `second_argument_type` (for a binary function). * Those typedefs are used by function object adaptors such as `bind2nd`. * The standard library provides two class templates, `unary_function` and * `binary_function`, which define those typedefs and so can be used as * base classes of adaptable function objects. * * Since C++11 the use of function object adaptors has been superseded by * more powerful tools such as lambda expressions, `function<>`, and more * powerful type deduction (using `auto` and `decltype`). The helpers for * defining adaptable function objects are deprecated since C++11, and no * longer part of the standard library since C++17. However, they are still * defined and used by libstdc++ after C++17, as a conforming extension. * * @{ */ /** * Helper for defining adaptable unary function objects. * @deprecated Deprecated in C++11, no longer in the standard since C++17. */ template struct unary_function { /// @c argument_type is the type of the argument typedef _Arg argument_type; /// @c result_type is the return type typedef _Result result_type; } _GLIBCXX11_DEPRECATED; /** * Helper for defining adaptable binary function objects. * @deprecated Deprecated in C++11, no longer in the standard since C++17. */ template struct binary_function { /// @c first_argument_type is the type of the first argument typedef _Arg1 first_argument_type; /// @c second_argument_type is the type of the second argument typedef _Arg2 second_argument_type; /// @c result_type is the return type typedef _Result result_type; } _GLIBCXX11_DEPRECATED; /** @} */ // 20.3.2 arithmetic /** @defgroup arithmetic_functors Arithmetic Function Object Classes * @ingroup functors * * The library provides function objects for basic arithmetic operations. * See the documentation for @link functors function objects @endlink * for examples of their use. * * @{ */ #if __cplusplus > 201103L struct __is_transparent; // undefined template struct plus; template struct minus; template struct multiplies; template struct divides; template struct modulus; template struct negate; #endif // Ignore warnings about unary_function and binary_function. #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wdeprecated-declarations" /// One of the @link arithmetic_functors math functors@endlink. template struct plus : public binary_function<_Tp, _Tp, _Tp> { /// Returns the sum _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x + __y; } }; /// One of the @link arithmetic_functors math functors@endlink. template struct minus : public binary_function<_Tp, _Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x - __y; } }; /// One of the @link arithmetic_functors math functors@endlink. template struct multiplies : public binary_function<_Tp, _Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x * __y; } }; /// One of the @link arithmetic_functors math functors@endlink. template struct divides : public binary_function<_Tp, _Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x / __y; } }; /// One of the @link arithmetic_functors math functors@endlink. template struct modulus : public binary_function<_Tp, _Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x % __y; } }; /// One of the @link arithmetic_functors math functors@endlink. template struct negate : public unary_function<_Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x) const { return -__x; } }; #pragma GCC diagnostic pop #if __cplusplus > 201103L #define __cpp_lib_transparent_operators 201510L template<> struct plus { template _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) + std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) + std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) + std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link arithmetic_functors math functors@endlink. template<> struct minus { template _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) - std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) - std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) - std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link arithmetic_functors math functors@endlink. template<> struct multiplies { template _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) * std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) * std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) * std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link arithmetic_functors math functors@endlink. template<> struct divides { template _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) / std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) / std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) / std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link arithmetic_functors math functors@endlink. template<> struct modulus { template _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) % std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) % std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) % std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link arithmetic_functors math functors@endlink. template<> struct negate { template _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t) const noexcept(noexcept(-std::forward<_Tp>(__t))) -> decltype(-std::forward<_Tp>(__t)) { return -std::forward<_Tp>(__t); } typedef __is_transparent is_transparent; }; #endif /** @} */ // 20.3.3 comparisons /** @defgroup comparison_functors Comparison Classes * @ingroup functors * * The library provides six wrapper functors for all the basic comparisons * in C++, like @c <. * * @{ */ #if __cplusplus > 201103L template struct equal_to; template struct not_equal_to; template struct greater; template struct less; template struct greater_equal; template struct less_equal; #endif #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wdeprecated-declarations" /// One of the @link comparison_functors comparison functors@endlink. template struct equal_to : public binary_function<_Tp, _Tp, bool> { _GLIBCXX14_CONSTEXPR bool operator()(const _Tp& __x, const _Tp& __y) const { return __x == __y; } }; /// One of the @link comparison_functors comparison functors@endlink. template struct not_equal_to : public binary_function<_Tp, _Tp, bool> { _GLIBCXX14_CONSTEXPR bool operator()(const _Tp& __x, const _Tp& __y) const { return __x != __y; } }; /// One of the @link comparison_functors comparison functors@endlink. template struct greater : public binary_function<_Tp, _Tp, bool> { _GLIBCXX14_CONSTEXPR bool operator()(const _Tp& __x, const _Tp& __y) const { return __x > __y; } }; /// One of the @link comparison_functors comparison functors@endlink. template struct less : public binary_function<_Tp, _Tp, bool> { _GLIBCXX14_CONSTEXPR bool operator()(const _Tp& __x, const _Tp& __y) const { return __x < __y; } }; /// One of the @link comparison_functors comparison functors@endlink. template struct greater_equal : public binary_function<_Tp, _Tp, bool> { _GLIBCXX14_CONSTEXPR bool operator()(const _Tp& __x, const _Tp& __y) const { return __x >= __y; } }; /// One of the @link comparison_functors comparison functors@endlink. template struct less_equal : public binary_function<_Tp, _Tp, bool> { _GLIBCXX14_CONSTEXPR bool operator()(const _Tp& __x, const _Tp& __y) const { return __x <= __y; } }; // Partial specialization of std::greater for pointers. template struct greater<_Tp*> : public binary_function<_Tp*, _Tp*, bool> { _GLIBCXX14_CONSTEXPR bool operator()(_Tp* __x, _Tp* __y) const _GLIBCXX_NOTHROW { #if __cplusplus >= 201402L if (std::__is_constant_evaluated()) return __x > __y; #endif return (__UINTPTR_TYPE__)__x > (__UINTPTR_TYPE__)__y; } }; // Partial specialization of std::less for pointers. template struct less<_Tp*> : public binary_function<_Tp*, _Tp*, bool> { _GLIBCXX14_CONSTEXPR bool operator()(_Tp* __x, _Tp* __y) const _GLIBCXX_NOTHROW { #if __cplusplus >= 201402L if (std::__is_constant_evaluated()) return __x < __y; #endif return (__UINTPTR_TYPE__)__x < (__UINTPTR_TYPE__)__y; } }; // Partial specialization of std::greater_equal for pointers. template struct greater_equal<_Tp*> : public binary_function<_Tp*, _Tp*, bool> { _GLIBCXX14_CONSTEXPR bool operator()(_Tp* __x, _Tp* __y) const _GLIBCXX_NOTHROW { #if __cplusplus >= 201402L if (std::__is_constant_evaluated()) return __x >= __y; #endif return (__UINTPTR_TYPE__)__x >= (__UINTPTR_TYPE__)__y; } }; // Partial specialization of std::less_equal for pointers. template struct less_equal<_Tp*> : public binary_function<_Tp*, _Tp*, bool> { _GLIBCXX14_CONSTEXPR bool operator()(_Tp* __x, _Tp* __y) const _GLIBCXX_NOTHROW { #if __cplusplus >= 201402L if (std::__is_constant_evaluated()) return __x <= __y; #endif return (__UINTPTR_TYPE__)__x <= (__UINTPTR_TYPE__)__y; } }; #pragma GCC diagnostic pop #if __cplusplus >= 201402L /// One of the @link comparison_functors comparison functors@endlink. template<> struct equal_to { template constexpr auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) == std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) == std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) == std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link comparison_functors comparison functors@endlink. template<> struct not_equal_to { template constexpr auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) != std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) != std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) != std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link comparison_functors comparison functors@endlink. template<> struct greater { template constexpr auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) > std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) > std::forward<_Up>(__u)) { return _S_cmp(std::forward<_Tp>(__t), std::forward<_Up>(__u), __ptr_cmp<_Tp, _Up>{}); } template constexpr bool operator()(_Tp* __t, _Up* __u) const noexcept { return greater>{}(__t, __u); } typedef __is_transparent is_transparent; private: template static constexpr decltype(auto) _S_cmp(_Tp&& __t, _Up&& __u, false_type) { return std::forward<_Tp>(__t) > std::forward<_Up>(__u); } template static constexpr bool _S_cmp(_Tp&& __t, _Up&& __u, true_type) noexcept { return greater{}( static_cast(std::forward<_Tp>(__t)), static_cast(std::forward<_Up>(__u))); } // True if there is no viable operator> member function. template struct __not_overloaded2 : true_type { }; // False if we can call T.operator>(U) template struct __not_overloaded2<_Tp, _Up, __void_t< decltype(std::declval<_Tp>().operator>(std::declval<_Up>()))>> : false_type { }; // True if there is no overloaded operator> for these operands. template struct __not_overloaded : __not_overloaded2<_Tp, _Up> { }; // False if we can call operator>(T,U) template struct __not_overloaded<_Tp, _Up, __void_t< decltype(operator>(std::declval<_Tp>(), std::declval<_Up>()))>> : false_type { }; template using __ptr_cmp = __and_<__not_overloaded<_Tp, _Up>, is_convertible<_Tp, const volatile void*>, is_convertible<_Up, const volatile void*>>; }; /// One of the @link comparison_functors comparison functors@endlink. template<> struct less { template constexpr auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) < std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) < std::forward<_Up>(__u)) { return _S_cmp(std::forward<_Tp>(__t), std::forward<_Up>(__u), __ptr_cmp<_Tp, _Up>{}); } template constexpr bool operator()(_Tp* __t, _Up* __u) const noexcept { return less>{}(__t, __u); } typedef __is_transparent is_transparent; private: template static constexpr decltype(auto) _S_cmp(_Tp&& __t, _Up&& __u, false_type) { return std::forward<_Tp>(__t) < std::forward<_Up>(__u); } template static constexpr bool _S_cmp(_Tp&& __t, _Up&& __u, true_type) noexcept { return less{}( static_cast(std::forward<_Tp>(__t)), static_cast(std::forward<_Up>(__u))); } // True if there is no viable operator< member function. template struct __not_overloaded2 : true_type { }; // False if we can call T.operator<(U) template struct __not_overloaded2<_Tp, _Up, __void_t< decltype(std::declval<_Tp>().operator<(std::declval<_Up>()))>> : false_type { }; // True if there is no overloaded operator< for these operands. template struct __not_overloaded : __not_overloaded2<_Tp, _Up> { }; // False if we can call operator<(T,U) template struct __not_overloaded<_Tp, _Up, __void_t< decltype(operator<(std::declval<_Tp>(), std::declval<_Up>()))>> : false_type { }; template using __ptr_cmp = __and_<__not_overloaded<_Tp, _Up>, is_convertible<_Tp, const volatile void*>, is_convertible<_Up, const volatile void*>>; }; /// One of the @link comparison_functors comparison functors@endlink. template<> struct greater_equal { template constexpr auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) >= std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) >= std::forward<_Up>(__u)) { return _S_cmp(std::forward<_Tp>(__t), std::forward<_Up>(__u), __ptr_cmp<_Tp, _Up>{}); } template constexpr bool operator()(_Tp* __t, _Up* __u) const noexcept { return greater_equal>{}(__t, __u); } typedef __is_transparent is_transparent; private: template static constexpr decltype(auto) _S_cmp(_Tp&& __t, _Up&& __u, false_type) { return std::forward<_Tp>(__t) >= std::forward<_Up>(__u); } template static constexpr bool _S_cmp(_Tp&& __t, _Up&& __u, true_type) noexcept { return greater_equal{}( static_cast(std::forward<_Tp>(__t)), static_cast(std::forward<_Up>(__u))); } // True if there is no viable operator>= member function. template struct __not_overloaded2 : true_type { }; // False if we can call T.operator>=(U) template struct __not_overloaded2<_Tp, _Up, __void_t< decltype(std::declval<_Tp>().operator>=(std::declval<_Up>()))>> : false_type { }; // True if there is no overloaded operator>= for these operands. template struct __not_overloaded : __not_overloaded2<_Tp, _Up> { }; // False if we can call operator>=(T,U) template struct __not_overloaded<_Tp, _Up, __void_t< decltype(operator>=(std::declval<_Tp>(), std::declval<_Up>()))>> : false_type { }; template using __ptr_cmp = __and_<__not_overloaded<_Tp, _Up>, is_convertible<_Tp, const volatile void*>, is_convertible<_Up, const volatile void*>>; }; /// One of the @link comparison_functors comparison functors@endlink. template<> struct less_equal { template constexpr auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) <= std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) <= std::forward<_Up>(__u)) { return _S_cmp(std::forward<_Tp>(__t), std::forward<_Up>(__u), __ptr_cmp<_Tp, _Up>{}); } template constexpr bool operator()(_Tp* __t, _Up* __u) const noexcept { return less_equal>{}(__t, __u); } typedef __is_transparent is_transparent; private: template static constexpr decltype(auto) _S_cmp(_Tp&& __t, _Up&& __u, false_type) { return std::forward<_Tp>(__t) <= std::forward<_Up>(__u); } template static constexpr bool _S_cmp(_Tp&& __t, _Up&& __u, true_type) noexcept { return less_equal{}( static_cast(std::forward<_Tp>(__t)), static_cast(std::forward<_Up>(__u))); } // True if there is no viable operator<= member function. template struct __not_overloaded2 : true_type { }; // False if we can call T.operator<=(U) template struct __not_overloaded2<_Tp, _Up, __void_t< decltype(std::declval<_Tp>().operator<=(std::declval<_Up>()))>> : false_type { }; // True if there is no overloaded operator<= for these operands. template struct __not_overloaded : __not_overloaded2<_Tp, _Up> { }; // False if we can call operator<=(T,U) template struct __not_overloaded<_Tp, _Up, __void_t< decltype(operator<=(std::declval<_Tp>(), std::declval<_Up>()))>> : false_type { }; template using __ptr_cmp = __and_<__not_overloaded<_Tp, _Up>, is_convertible<_Tp, const volatile void*>, is_convertible<_Up, const volatile void*>>; }; #endif // C++14 /** @} */ // 20.3.4 logical operations /** @defgroup logical_functors Boolean Operations Classes * @ingroup functors * * The library provides function objects for the logical operations: * `&&`, `||`, and `!`. * * @{ */ #if __cplusplus > 201103L template struct logical_and; template struct logical_or; template struct logical_not; #endif #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wdeprecated-declarations" /// One of the @link logical_functors Boolean operations functors@endlink. template struct logical_and : public binary_function<_Tp, _Tp, bool> { _GLIBCXX14_CONSTEXPR bool operator()(const _Tp& __x, const _Tp& __y) const { return __x && __y; } }; /// One of the @link logical_functors Boolean operations functors@endlink. template struct logical_or : public binary_function<_Tp, _Tp, bool> { _GLIBCXX14_CONSTEXPR bool operator()(const _Tp& __x, const _Tp& __y) const { return __x || __y; } }; /// One of the @link logical_functors Boolean operations functors@endlink. template struct logical_not : public unary_function<_Tp, bool> { _GLIBCXX14_CONSTEXPR bool operator()(const _Tp& __x) const { return !__x; } }; #pragma GCC diagnostic pop #if __cplusplus > 201103L /// One of the @link logical_functors Boolean operations functors@endlink. template<> struct logical_and { template _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) && std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) && std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) && std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link logical_functors Boolean operations functors@endlink. template<> struct logical_or { template _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) || std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) || std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) || std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; /// One of the @link logical_functors Boolean operations functors@endlink. template<> struct logical_not { template _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t) const noexcept(noexcept(!std::forward<_Tp>(__t))) -> decltype(!std::forward<_Tp>(__t)) { return !std::forward<_Tp>(__t); } typedef __is_transparent is_transparent; }; #endif /** @} */ #if __cplusplus > 201103L template struct bit_and; template struct bit_or; template struct bit_xor; template struct bit_not; #endif #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wdeprecated-declarations" // _GLIBCXX_RESOLVE_LIB_DEFECTS // DR 660. Missing Bitwise Operations. template struct bit_and : public binary_function<_Tp, _Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x & __y; } }; template struct bit_or : public binary_function<_Tp, _Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x | __y; } }; template struct bit_xor : public binary_function<_Tp, _Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x ^ __y; } }; template struct bit_not : public unary_function<_Tp, _Tp> { _GLIBCXX14_CONSTEXPR _Tp operator()(const _Tp& __x) const { return ~__x; } }; #pragma GCC diagnostic pop #if __cplusplus > 201103L template <> struct bit_and { template _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) & std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) & std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) & std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; template <> struct bit_or { template _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) | std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) | std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) | std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; template <> struct bit_xor { template _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t, _Up&& __u) const noexcept(noexcept(std::forward<_Tp>(__t) ^ std::forward<_Up>(__u))) -> decltype(std::forward<_Tp>(__t) ^ std::forward<_Up>(__u)) { return std::forward<_Tp>(__t) ^ std::forward<_Up>(__u); } typedef __is_transparent is_transparent; }; template <> struct bit_not { template _GLIBCXX14_CONSTEXPR auto operator()(_Tp&& __t) const noexcept(noexcept(~std::forward<_Tp>(__t))) -> decltype(~std::forward<_Tp>(__t)) { return ~std::forward<_Tp>(__t); } typedef __is_transparent is_transparent; }; #endif // C++14 #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wdeprecated-declarations" // 20.3.5 negators /** @defgroup negators Negators * @ingroup functors * * The function templates `not1` and `not2` are function object adaptors, * which each take a predicate functor and wrap it in an instance of * `unary_negate` or `binary_negate`, respectively. Those classes are * functors whose `operator()` evaluates the wrapped predicate function * and then returns the negation of the result. * * For example, given a vector of integers and a trivial predicate, * \code * struct IntGreaterThanThree * : public std::unary_function * { * bool operator() (int x) const { return x > 3; } * }; * * std::find_if (v.begin(), v.end(), not1(IntGreaterThanThree())); * \endcode * The call to `find_if` will locate the first index (i) of `v` for which * `!(v[i] > 3)` is true. * * The not1/unary_negate combination works on predicates taking a single * argument. The not2/binary_negate combination works on predicates taking * two arguments. * * @deprecated Deprecated in C++17, no longer in the standard since C++20. * Use `not_fn` instead. * * @{ */ /// One of the @link negators negation functors@endlink. template class _GLIBCXX17_DEPRECATED unary_negate : public unary_function { protected: _Predicate _M_pred; public: _GLIBCXX14_CONSTEXPR explicit unary_negate(const _Predicate& __x) : _M_pred(__x) { } _GLIBCXX14_CONSTEXPR bool operator()(const typename _Predicate::argument_type& __x) const { return !_M_pred(__x); } }; /// One of the @link negators negation functors@endlink. template _GLIBCXX17_DEPRECATED_SUGGEST("std::not_fn") _GLIBCXX14_CONSTEXPR inline unary_negate<_Predicate> not1(const _Predicate& __pred) { return unary_negate<_Predicate>(__pred); } /// One of the @link negators negation functors@endlink. template class _GLIBCXX17_DEPRECATED binary_negate : public binary_function { protected: _Predicate _M_pred; public: _GLIBCXX14_CONSTEXPR explicit binary_negate(const _Predicate& __x) : _M_pred(__x) { } _GLIBCXX14_CONSTEXPR bool operator()(const typename _Predicate::first_argument_type& __x, const typename _Predicate::second_argument_type& __y) const { return !_M_pred(__x, __y); } }; /// One of the @link negators negation functors@endlink. template _GLIBCXX17_DEPRECATED_SUGGEST("std::not_fn") _GLIBCXX14_CONSTEXPR inline binary_negate<_Predicate> not2(const _Predicate& __pred) { return binary_negate<_Predicate>(__pred); } /** @} */ // 20.3.7 adaptors pointers functions /** @defgroup pointer_adaptors Adaptors for pointers to functions * @ingroup functors * * The advantage of function objects over pointers to functions is that * the objects in the standard library declare nested typedefs describing * their argument and result types with uniform names (e.g., `result_type` * from the base classes `unary_function` and `binary_function`). * Sometimes those typedefs are required, not just optional. * * Adaptors are provided to turn pointers to unary (single-argument) and * binary (double-argument) functions into function objects. The * long-winded functor `pointer_to_unary_function` is constructed with a * function pointer `f`, and its `operator()` called with argument `x` * returns `f(x)`. The functor `pointer_to_binary_function` does the same * thing, but with a double-argument `f` and `operator()`. * * The function `ptr_fun` takes a pointer-to-function `f` and constructs * an instance of the appropriate functor. * * @deprecated Deprecated in C++11, no longer in the standard since C++17. * * @{ */ /// One of the @link pointer_adaptors adaptors for function pointers@endlink. template class pointer_to_unary_function : public unary_function<_Arg, _Result> { protected: _Result (*_M_ptr)(_Arg); public: pointer_to_unary_function() { } explicit pointer_to_unary_function(_Result (*__x)(_Arg)) : _M_ptr(__x) { } _Result operator()(_Arg __x) const { return _M_ptr(__x); } } _GLIBCXX11_DEPRECATED; /// One of the @link pointer_adaptors adaptors for function pointers@endlink. template _GLIBCXX11_DEPRECATED_SUGGEST("std::function") inline pointer_to_unary_function<_Arg, _Result> ptr_fun(_Result (*__x)(_Arg)) { return pointer_to_unary_function<_Arg, _Result>(__x); } /// One of the @link pointer_adaptors adaptors for function pointers@endlink. template class pointer_to_binary_function : public binary_function<_Arg1, _Arg2, _Result> { protected: _Result (*_M_ptr)(_Arg1, _Arg2); public: pointer_to_binary_function() { } explicit pointer_to_binary_function(_Result (*__x)(_Arg1, _Arg2)) : _M_ptr(__x) { } _Result operator()(_Arg1 __x, _Arg2 __y) const { return _M_ptr(__x, __y); } } _GLIBCXX11_DEPRECATED; /// One of the @link pointer_adaptors adaptors for function pointers@endlink. template _GLIBCXX11_DEPRECATED_SUGGEST("std::function") inline pointer_to_binary_function<_Arg1, _Arg2, _Result> ptr_fun(_Result (*__x)(_Arg1, _Arg2)) { return pointer_to_binary_function<_Arg1, _Arg2, _Result>(__x); } /** @} */ template struct _Identity : public unary_function<_Tp, _Tp> { _Tp& operator()(_Tp& __x) const { return __x; } const _Tp& operator()(const _Tp& __x) const { return __x; } }; // Partial specialization, avoids confusing errors in e.g. std::set. template struct _Identity : _Identity<_Tp> { }; template struct _Select1st : public unary_function<_Pair, typename _Pair::first_type> { typename _Pair::first_type& operator()(_Pair& __x) const { return __x.first; } const typename _Pair::first_type& operator()(const _Pair& __x) const { return __x.first; } #if __cplusplus >= 201103L template typename _Pair2::first_type& operator()(_Pair2& __x) const { return __x.first; } template const typename _Pair2::first_type& operator()(const _Pair2& __x) const { return __x.first; } #endif }; template struct _Select2nd : public unary_function<_Pair, typename _Pair::second_type> { typename _Pair::second_type& operator()(_Pair& __x) const { return __x.second; } const typename _Pair::second_type& operator()(const _Pair& __x) const { return __x.second; } }; // 20.3.8 adaptors pointers members /** @defgroup ptrmem_adaptors Adaptors for pointers to members * @ingroup functors * * There are a total of 8 = 2^3 function objects in this family. * (1) Member functions taking no arguments vs member functions taking * one argument. * (2) Call through pointer vs call through reference. * (3) Const vs non-const member function. * * All of this complexity is in the function objects themselves. You can * ignore it by using the helper function `mem_fun` and `mem_fun_ref`, * which create whichever type of adaptor is appropriate. * * @deprecated Deprecated in C++11, no longer in the standard since C++17. * Use `mem_fn` instead. * * @{ */ /// One of the @link ptrmem_adaptors adaptors for member pointers@endlink. template class mem_fun_t : public unary_function<_Tp*, _Ret> { public: explicit mem_fun_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) { } _Ret operator()(_Tp* __p) const { return (__p->*_M_f)(); } private: _Ret (_Tp::*_M_f)(); } _GLIBCXX11_DEPRECATED; /// One of the @link ptrmem_adaptors adaptors for member pointers@endlink. template class const_mem_fun_t : public unary_function { public: explicit const_mem_fun_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) { } _Ret operator()(const _Tp* __p) const { return (__p->*_M_f)(); } private: _Ret (_Tp::*_M_f)() const; } _GLIBCXX11_DEPRECATED; /// One of the @link ptrmem_adaptors adaptors for member pointers@endlink. template class mem_fun_ref_t : public unary_function<_Tp, _Ret> { public: explicit mem_fun_ref_t(_Ret (_Tp::*__pf)()) : _M_f(__pf) { } _Ret operator()(_Tp& __r) const { return (__r.*_M_f)(); } private: _Ret (_Tp::*_M_f)(); } _GLIBCXX11_DEPRECATED; /// One of the @link ptrmem_adaptors adaptors for member pointers@endlink. template class const_mem_fun_ref_t : public unary_function<_Tp, _Ret> { public: explicit const_mem_fun_ref_t(_Ret (_Tp::*__pf)() const) : _M_f(__pf) { } _Ret operator()(const _Tp& __r) const { return (__r.*_M_f)(); } private: _Ret (_Tp::*_M_f)() const; } _GLIBCXX11_DEPRECATED; /// One of the @link ptrmem_adaptors adaptors for member pointers@endlink. template class mem_fun1_t : public binary_function<_Tp*, _Arg, _Ret> { public: explicit mem_fun1_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) { } _Ret operator()(_Tp* __p, _Arg __x) const { return (__p->*_M_f)(__x); } private: _Ret (_Tp::*_M_f)(_Arg); } _GLIBCXX11_DEPRECATED; /// One of the @link ptrmem_adaptors adaptors for member pointers@endlink. template class const_mem_fun1_t : public binary_function { public: explicit const_mem_fun1_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) { } _Ret operator()(const _Tp* __p, _Arg __x) const { return (__p->*_M_f)(__x); } private: _Ret (_Tp::*_M_f)(_Arg) const; } _GLIBCXX11_DEPRECATED; /// One of the @link ptrmem_adaptors adaptors for member pointers@endlink. template class mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret> { public: explicit mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg)) : _M_f(__pf) { } _Ret operator()(_Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); } private: _Ret (_Tp::*_M_f)(_Arg); } _GLIBCXX11_DEPRECATED; /// One of the @link ptrmem_adaptors adaptors for member pointers@endlink. template class const_mem_fun1_ref_t : public binary_function<_Tp, _Arg, _Ret> { public: explicit const_mem_fun1_ref_t(_Ret (_Tp::*__pf)(_Arg) const) : _M_f(__pf) { } _Ret operator()(const _Tp& __r, _Arg __x) const { return (__r.*_M_f)(__x); } private: _Ret (_Tp::*_M_f)(_Arg) const; } _GLIBCXX11_DEPRECATED; // Mem_fun adaptor helper functions. There are only two: // mem_fun and mem_fun_ref. template _GLIBCXX11_DEPRECATED_SUGGEST("std::mem_fn") inline mem_fun_t<_Ret, _Tp> mem_fun(_Ret (_Tp::*__f)()) { return mem_fun_t<_Ret, _Tp>(__f); } template _GLIBCXX11_DEPRECATED_SUGGEST("std::mem_fn") inline const_mem_fun_t<_Ret, _Tp> mem_fun(_Ret (_Tp::*__f)() const) { return const_mem_fun_t<_Ret, _Tp>(__f); } template _GLIBCXX11_DEPRECATED_SUGGEST("std::mem_fn") inline mem_fun_ref_t<_Ret, _Tp> mem_fun_ref(_Ret (_Tp::*__f)()) { return mem_fun_ref_t<_Ret, _Tp>(__f); } template _GLIBCXX11_DEPRECATED_SUGGEST("std::mem_fn") inline const_mem_fun_ref_t<_Ret, _Tp> mem_fun_ref(_Ret (_Tp::*__f)() const) { return const_mem_fun_ref_t<_Ret, _Tp>(__f); } template _GLIBCXX11_DEPRECATED_SUGGEST("std::mem_fn") inline mem_fun1_t<_Ret, _Tp, _Arg> mem_fun(_Ret (_Tp::*__f)(_Arg)) { return mem_fun1_t<_Ret, _Tp, _Arg>(__f); } template _GLIBCXX11_DEPRECATED_SUGGEST("std::mem_fn") inline const_mem_fun1_t<_Ret, _Tp, _Arg> mem_fun(_Ret (_Tp::*__f)(_Arg) const) { return const_mem_fun1_t<_Ret, _Tp, _Arg>(__f); } template _GLIBCXX11_DEPRECATED_SUGGEST("std::mem_fn") inline mem_fun1_ref_t<_Ret, _Tp, _Arg> mem_fun_ref(_Ret (_Tp::*__f)(_Arg)) { return mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); } template _GLIBCXX11_DEPRECATED_SUGGEST("std::mem_fn") inline const_mem_fun1_ref_t<_Ret, _Tp, _Arg> mem_fun_ref(_Ret (_Tp::*__f)(_Arg) const) { return const_mem_fun1_ref_t<_Ret, _Tp, _Arg>(__f); } #pragma GCC diagnostic pop /** @} */ #if __cplusplus >= 201402L template> struct __has_is_transparent { }; template struct __has_is_transparent<_Func, _SfinaeType, __void_t> { typedef void type; }; template using __has_is_transparent_t = typename __has_is_transparent<_Func, _SfinaeType>::type; #endif _GLIBCXX_END_NAMESPACE_VERSION } // namespace #if (__cplusplus < 201103L) || _GLIBCXX_USE_DEPRECATED # include #endif #endif /* _STL_FUNCTION_H */